1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/renderer/v8_unwinder.h"
#include <algorithm>
#include <memory>
#include <utility>
namespace {
class V8Module : public base::ModuleCache::Module {
public:
explicit V8Module(const v8::MemoryRange& memory_range)
: memory_range_(memory_range) {}
V8Module(const V8Module&) = delete;
V8Module& operator=(const V8Module&) = delete;
// ModuleCache::Module
uintptr_t GetBaseAddress() const override {
return reinterpret_cast<uintptr_t>(memory_range_.start);
}
std::string GetId() const override {
// We don't want to distinguish V8 code by memory region so we use the same
// synthetic build id for all V8Modules.
return V8Unwinder::kV8CodeRangeBuildId;
}
base::FilePath GetDebugBasename() const override {
return base::FilePath().AppendASCII("V8 Code Range");
}
size_t GetSize() const override { return memory_range_.length_in_bytes; }
bool IsNative() const override { return false; }
private:
const v8::MemoryRange memory_range_;
};
// Heterogeneous comparator for MemoryRanges and Modules. Compares on both
// base address and size because the module sizes can be updated while the
// base address remains the same.
struct MemoryRangeModuleCompare {
bool operator()(const v8::MemoryRange& range,
const base::ModuleCache::Module* module) const {
return std::make_pair(reinterpret_cast<uintptr_t>(range.start),
range.length_in_bytes) <
std::make_pair(module->GetBaseAddress(), module->GetSize());
}
bool operator()(const base::ModuleCache::Module* module,
const v8::MemoryRange& range) const {
return std::make_pair(module->GetBaseAddress(), module->GetSize()) <
std::make_pair(reinterpret_cast<uintptr_t>(range.start),
range.length_in_bytes);
}
bool operator()(const v8::MemoryRange& a, const v8::MemoryRange& b) const {
return std::make_pair(a.start, a.length_in_bytes) <
std::make_pair(b.start, b.length_in_bytes);
}
};
} // namespace
V8Unwinder::V8Unwinder(v8::Isolate* isolate)
: isolate_(isolate), js_entry_stubs_(isolate->GetJSEntryStubs()) {}
V8Unwinder::~V8Unwinder() = default;
// IMPORTANT NOTE: to avoid deadlock this function must not invoke any
// non-reentrant code that is also invoked by the target thread. In particular,
// no heap allocation or deallocation is permitted, including indirectly via use
// of DCHECK/CHECK or other logging statements.
void V8Unwinder::OnStackCapture() {
required_code_ranges_capacity_ =
CopyCodePages(code_ranges_.capacity(), code_ranges_.buffer());
code_ranges_.SetSize(
std::min(required_code_ranges_capacity_, code_ranges_.capacity()));
}
void V8Unwinder::UpdateModules(base::ModuleCache* module_cache) {
MemoryRangeModuleCompare less_than;
std::vector<std::unique_ptr<const base::ModuleCache::Module>> new_modules;
std::vector<const base::ModuleCache::Module*> defunct_modules;
// Identify defunct modules and create new modules seen since the last
// sample. Code ranges provided by V8 are in sorted order.
v8::MemoryRange* const code_ranges_start = code_ranges_.buffer();
v8::MemoryRange* const code_ranges_end =
code_ranges_start + code_ranges_.size();
DCHECK(std::is_sorted(code_ranges_start, code_ranges_end, less_than));
v8::MemoryRange* range_it = code_ranges_start;
auto modules_it = modules_.begin();
while (range_it != code_ranges_end && modules_it != modules_.end()) {
if (less_than(*range_it, *modules_it)) {
new_modules.push_back(std::make_unique<V8Module>(*range_it));
modules_.insert(modules_it, new_modules.back().get());
++range_it;
} else if (less_than(*modules_it, *range_it)) {
defunct_modules.push_back(*modules_it);
modules_it = modules_.erase(modules_it);
} else {
// The range already has a module, so there's nothing to do.
++range_it;
++modules_it;
}
}
while (range_it != code_ranges_end) {
new_modules.push_back(std::make_unique<V8Module>(*range_it));
modules_.insert(modules_it, new_modules.back().get());
++range_it;
}
while (modules_it != modules_.end()) {
defunct_modules.push_back(*modules_it);
modules_it = modules_.erase(modules_it);
}
module_cache->UpdateNonNativeModules(defunct_modules, std::move(new_modules));
code_ranges_.ExpandCapacityIfNecessary(required_code_ranges_capacity_);
}
bool V8Unwinder::CanUnwindFrom(const base::Frame& current_frame) const {
const base::ModuleCache::Module* module = current_frame.module;
if (!module)
return false;
const auto loc = modules_.find(module);
DCHECK(loc == modules_.end() || *loc == module);
return loc != modules_.end();
}
base::UnwindResult V8Unwinder::TryUnwind(
base::RegisterContext* thread_context,
uintptr_t stack_top,
base::ModuleCache* module_cache,
std::vector<base::Frame>* stack) const {
v8::RegisterState register_state;
register_state.pc = reinterpret_cast<void*>(
base::RegisterContextInstructionPointer(thread_context));
register_state.sp = reinterpret_cast<void*>(
base::RegisterContextStackPointer(thread_context));
register_state.fp = reinterpret_cast<void*>(
base::RegisterContextFramePointer(thread_context));
if (!v8::Unwinder::TryUnwindV8Frames(
js_entry_stubs_, code_ranges_.size(), code_ranges_.buffer(),
®ister_state, reinterpret_cast<const void*>(stack_top))) {
return base::UnwindResult::ABORTED;
}
const uintptr_t prev_stack_pointer =
base::RegisterContextStackPointer(thread_context);
DCHECK_GT(reinterpret_cast<uintptr_t>(register_state.sp), prev_stack_pointer);
DCHECK_LT(reinterpret_cast<uintptr_t>(register_state.sp), stack_top);
base::RegisterContextInstructionPointer(thread_context) =
reinterpret_cast<uintptr_t>(register_state.pc);
base::RegisterContextStackPointer(thread_context) =
reinterpret_cast<uintptr_t>(register_state.sp);
base::RegisterContextFramePointer(thread_context) =
reinterpret_cast<uintptr_t>(register_state.fp);
stack->emplace_back(
base::RegisterContextInstructionPointer(thread_context),
module_cache->GetModuleForAddress(
base::RegisterContextInstructionPointer(thread_context)));
return base::UnwindResult::UNRECOGNIZED_FRAME;
}
size_t V8Unwinder::CopyCodePages(size_t capacity, v8::MemoryRange* code_pages) {
return isolate_->CopyCodePages(capacity, code_pages);
}
// Synthetic build id to use for V8 modules.
const char V8Unwinder::kV8CodeRangeBuildId[] =
"5555555507284E1E874EFA4EB754964B999";
V8Unwinder::MemoryRanges::MemoryRanges()
: capacity_(v8::Isolate::kMinCodePagesBufferSize),
size_(0),
ranges_(std::make_unique<v8::MemoryRange[]>(capacity_)) {}
V8Unwinder::MemoryRanges::MemoryRanges::~MemoryRanges() = default;
void V8Unwinder::MemoryRanges::SetSize(size_t size) {
// DCHECKing size_ <= capacity_ is deferred to size() because the DCHECK may
// heap allocate.
size_ = size;
}
void V8Unwinder::MemoryRanges::ExpandCapacityIfNecessary(
size_t required_capacity) {
if (required_capacity > capacity_) {
while (required_capacity > capacity_)
capacity_ *= 2;
auto new_ranges = std::make_unique<v8::MemoryRange[]>(capacity_);
std::copy(buffer(), buffer() + size_, new_ranges.get());
ranges_ = std::move(new_ranges);
}
}
bool V8Unwinder::ModuleCompare::operator()(
const base::ModuleCache::Module* a,
const base::ModuleCache::Module* b) const {
return std::make_pair(a->GetBaseAddress(), a->GetSize()) <
std::make_pair(b->GetBaseAddress(), b->GetSize());
}
|