summaryrefslogtreecommitdiff
path: root/chromium/media/base/channel_mixer.cc
blob: 3de63fe8bf1582a947d3e82c2fe330c823d5c267 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// MSVC++ requires this to be set before any other includes to get M_SQRT1_2.
#define _USE_MATH_DEFINES

#include "media/base/channel_mixer.h"

#include <algorithm>
#include <cmath>

#include "base/logging.h"
#include "media/audio/audio_parameters.h"
#include "media/base/audio_bus.h"
#include "media/base/vector_math.h"

namespace media {

// Default scale factor for mixing two channels together.  We use a different
// value for stereo -> mono and mono -> stereo mixes.
static const float kEqualPowerScale = static_cast<float>(M_SQRT1_2);

static void ValidateLayout(ChannelLayout layout) {
  CHECK_NE(layout, CHANNEL_LAYOUT_NONE);
  CHECK_NE(layout, CHANNEL_LAYOUT_MAX);
  CHECK_NE(layout, CHANNEL_LAYOUT_UNSUPPORTED);
  CHECK_NE(layout, CHANNEL_LAYOUT_DISCRETE);

  // Verify there's at least one channel.  Should always be true here by virtue
  // of not being one of the invalid layouts, but lets double check to be sure.
  int channel_count = ChannelLayoutToChannelCount(layout);
  DCHECK_GT(channel_count, 0);

  // If we have more than one channel, verify a symmetric layout for sanity.
  // The unit test will verify all possible layouts, so this can be a DCHECK.
  // Symmetry allows simplifying the matrix building code by allowing us to
  // assume that if one channel of a pair exists, the other will too.
  if (channel_count > 1) {
    DCHECK((ChannelOrder(layout, LEFT) >= 0 &&
            ChannelOrder(layout, RIGHT) >= 0) ||
           (ChannelOrder(layout, SIDE_LEFT) >= 0 &&
            ChannelOrder(layout, SIDE_RIGHT) >= 0) ||
           (ChannelOrder(layout, BACK_LEFT) >= 0 &&
            ChannelOrder(layout, BACK_RIGHT) >= 0) ||
           (ChannelOrder(layout, LEFT_OF_CENTER) >= 0 &&
            ChannelOrder(layout, RIGHT_OF_CENTER) >= 0))
        << "Non-symmetric channel layout encountered.";
  } else {
    DCHECK_EQ(layout, CHANNEL_LAYOUT_MONO);
  }

  return;
}

class MatrixBuilder {
 public:
  MatrixBuilder(ChannelLayout input_layout, int input_channels,
                ChannelLayout output_layout, int output_channels)
      : input_layout_(input_layout),
        input_channels_(input_channels),
        output_layout_(output_layout),
        output_channels_(output_channels) {
    // Special case for 5.0, 5.1 with back channels when upmixed to 7.0, 7.1,
    // which should map the back LR to side LR.
    if (input_layout_ == CHANNEL_LAYOUT_5_0_BACK &&
        output_layout_ == CHANNEL_LAYOUT_7_0) {
      input_layout_ = CHANNEL_LAYOUT_5_0;
    } else if (input_layout_ == CHANNEL_LAYOUT_5_1_BACK &&
               output_layout_ == CHANNEL_LAYOUT_7_1) {
      input_layout_ = CHANNEL_LAYOUT_5_1;
    }
  }

  ~MatrixBuilder() { }

  // Create the transformation matrix of input channels to output channels.
  // Updates the empty matrix with the transformation, and returns true
  // if the transformation is just a remapping of channels (no mixing).
  bool CreateTransformationMatrix(std::vector< std::vector<float> >* matrix);

 private:
  // Result transformation of input channels to output channels
  std::vector< std::vector<float> >* matrix_;

  // Input and output channel layout provided during construction.
  ChannelLayout input_layout_;
  int input_channels_;
  ChannelLayout output_layout_;
  int output_channels_;

  // Helper variable for tracking which inputs are currently unaccounted,
  // should be empty after construction completes.
  std::vector<Channels> unaccounted_inputs_;

  // Helper methods for managing unaccounted input channels.
  void AccountFor(Channels ch);
  bool IsUnaccounted(Channels ch);

  // Helper methods for checking if |ch| exists in either |input_layout_| or
  // |output_layout_| respectively.
  bool HasInputChannel(Channels ch);
  bool HasOutputChannel(Channels ch);

  // Helper methods for updating |matrix_| with the proper value for
  // mixing |input_ch| into |output_ch|.  MixWithoutAccounting() does not
  // remove the channel from |unaccounted_inputs_|.
  void Mix(Channels input_ch, Channels output_ch, float scale);
  void MixWithoutAccounting(Channels input_ch, Channels output_ch,
                                          float scale);

  DISALLOW_COPY_AND_ASSIGN(MatrixBuilder);
};

ChannelMixer::ChannelMixer(ChannelLayout input_layout,
                           ChannelLayout output_layout) {
  Initialize(input_layout,
             ChannelLayoutToChannelCount(input_layout),
             output_layout,
             ChannelLayoutToChannelCount(output_layout));
}

ChannelMixer::ChannelMixer(
    const AudioParameters& input, const AudioParameters& output) {
  Initialize(input.channel_layout(),
             input.channels(),
             output.channel_layout(),
             output.channels());
}

void ChannelMixer::Initialize(
    ChannelLayout input_layout, int input_channels,
    ChannelLayout output_layout, int output_channels) {
  // Stereo down mix should never be the output layout.
  CHECK_NE(output_layout, CHANNEL_LAYOUT_STEREO_DOWNMIX);

  // Verify that the layouts are supported
  if (input_layout != CHANNEL_LAYOUT_DISCRETE)
    ValidateLayout(input_layout);
  if (output_layout != CHANNEL_LAYOUT_DISCRETE)
    ValidateLayout(output_layout);

  // Create the transformation matrix
  MatrixBuilder matrix_builder(input_layout, input_channels,
                               output_layout, output_channels);
  remapping_ = matrix_builder.CreateTransformationMatrix(&matrix_);
}

bool MatrixBuilder::CreateTransformationMatrix(
    std::vector< std::vector<float> >* matrix) {
  matrix_ = matrix;

  // Size out the initial matrix.
  matrix_->reserve(output_channels_);
  for (int output_ch = 0; output_ch < output_channels_; ++output_ch)
    matrix_->push_back(std::vector<float>(input_channels_, 0));

  // First check for discrete case.
  if (input_layout_ == CHANNEL_LAYOUT_DISCRETE ||
      output_layout_ == CHANNEL_LAYOUT_DISCRETE) {
    // If the number of input channels is more than output channels, then
    // copy as many as we can then drop the remaining input channels.
    // If the number of input channels is less than output channels, then
    // copy them all, then zero out the remaining output channels.
    int passthrough_channels = std::min(input_channels_, output_channels_);
    for (int i = 0; i < passthrough_channels; ++i)
      (*matrix_)[i][i] = 1;

    return true;
  }

  // Route matching channels and figure out which ones aren't accounted for.
  for (Channels ch = LEFT; ch < CHANNELS_MAX;
       ch = static_cast<Channels>(ch + 1)) {
    int input_ch_index = ChannelOrder(input_layout_, ch);
    if (input_ch_index < 0)
      continue;

    int output_ch_index = ChannelOrder(output_layout_, ch);
    if (output_ch_index < 0) {
      unaccounted_inputs_.push_back(ch);
      continue;
    }

    DCHECK_LT(static_cast<size_t>(output_ch_index), matrix_->size());
    DCHECK_LT(static_cast<size_t>(input_ch_index),
              (*matrix_)[output_ch_index].size());
    (*matrix_)[output_ch_index][input_ch_index] = 1;
  }

  // If all input channels are accounted for, there's nothing left to do.
  if (unaccounted_inputs_.empty()) {
    // Since all output channels map directly to inputs we can optimize.
    return true;
  }

  // Mix front LR into center.
  if (IsUnaccounted(LEFT)) {
    // When down mixing to mono from stereo, we need to be careful of full scale
    // stereo mixes.  Scaling by 1 / sqrt(2) here will likely lead to clipping
    // so we use 1 / 2 instead.
    float scale =
        (output_layout_ == CHANNEL_LAYOUT_MONO && input_channels_ == 2) ?
        0.5 : kEqualPowerScale;
    Mix(LEFT, CENTER, scale);
    Mix(RIGHT, CENTER, scale);
  }

  // Mix center into front LR.
  if (IsUnaccounted(CENTER)) {
    // When up mixing from mono, just do a copy to front LR.
    float scale =
        (input_layout_ == CHANNEL_LAYOUT_MONO) ? 1 : kEqualPowerScale;
    MixWithoutAccounting(CENTER, LEFT, scale);
    Mix(CENTER, RIGHT, scale);
  }

  // Mix back LR into: side LR || back center || front LR || front center.
  if (IsUnaccounted(BACK_LEFT)) {
    if (HasOutputChannel(SIDE_LEFT)) {
      // If we have side LR, mix back LR into side LR, but instead if the input
      // doesn't have side LR (but output does) copy back LR to side LR.
      float scale = HasInputChannel(SIDE_LEFT) ? kEqualPowerScale : 1;
      Mix(BACK_LEFT, SIDE_LEFT, scale);
      Mix(BACK_RIGHT, SIDE_RIGHT, scale);
    } else if (HasOutputChannel(BACK_CENTER)) {
      // Mix back LR into back center.
      Mix(BACK_LEFT, BACK_CENTER, kEqualPowerScale);
      Mix(BACK_RIGHT, BACK_CENTER, kEqualPowerScale);
    } else if (output_layout_ > CHANNEL_LAYOUT_MONO) {
      // Mix back LR into front LR.
      Mix(BACK_LEFT, LEFT, kEqualPowerScale);
      Mix(BACK_RIGHT, RIGHT, kEqualPowerScale);
    } else {
      // Mix back LR into front center.
      Mix(BACK_LEFT, CENTER, kEqualPowerScale);
      Mix(BACK_RIGHT, CENTER, kEqualPowerScale);
    }
  }

  // Mix side LR into: back LR || back center || front LR || front center.
  if (IsUnaccounted(SIDE_LEFT)) {
    if (HasOutputChannel(BACK_LEFT)) {
      // If we have back LR, mix side LR into back LR, but instead if the input
      // doesn't have back LR (but output does) copy side LR to back LR.
      float scale = HasInputChannel(BACK_LEFT) ? kEqualPowerScale : 1;
      Mix(SIDE_LEFT, BACK_LEFT, scale);
      Mix(SIDE_RIGHT, BACK_RIGHT, scale);
    } else if (HasOutputChannel(BACK_CENTER)) {
      // Mix side LR into back center.
      Mix(SIDE_LEFT, BACK_CENTER, kEqualPowerScale);
      Mix(SIDE_RIGHT, BACK_CENTER, kEqualPowerScale);
    } else if (output_layout_ > CHANNEL_LAYOUT_MONO) {
      // Mix side LR into front LR.
      Mix(SIDE_LEFT, LEFT, kEqualPowerScale);
      Mix(SIDE_RIGHT, RIGHT, kEqualPowerScale);
    } else {
      // Mix side LR into front center.
      Mix(SIDE_LEFT, CENTER, kEqualPowerScale);
      Mix(SIDE_RIGHT, CENTER, kEqualPowerScale);
    }
  }

  // Mix back center into: back LR || side LR || front LR || front center.
  if (IsUnaccounted(BACK_CENTER)) {
    if (HasOutputChannel(BACK_LEFT)) {
      // Mix back center into back LR.
      MixWithoutAccounting(BACK_CENTER, BACK_LEFT, kEqualPowerScale);
      Mix(BACK_CENTER, BACK_RIGHT, kEqualPowerScale);
    } else if (HasOutputChannel(SIDE_LEFT)) {
      // Mix back center into side LR.
      MixWithoutAccounting(BACK_CENTER, SIDE_LEFT, kEqualPowerScale);
      Mix(BACK_CENTER, SIDE_RIGHT, kEqualPowerScale);
    } else if (output_layout_ > CHANNEL_LAYOUT_MONO) {
      // Mix back center into front LR.
      // TODO(dalecurtis): Not sure about these values?
      MixWithoutAccounting(BACK_CENTER, LEFT, kEqualPowerScale);
      Mix(BACK_CENTER, RIGHT, kEqualPowerScale);
    } else {
      // Mix back center into front center.
      // TODO(dalecurtis): Not sure about these values?
      Mix(BACK_CENTER, CENTER, kEqualPowerScale);
    }
  }

  // Mix LR of center into: front center || front LR.
  if (IsUnaccounted(LEFT_OF_CENTER)) {
    if (HasOutputChannel(LEFT)) {
      // Mix LR of center into front LR.
      Mix(LEFT_OF_CENTER, LEFT, kEqualPowerScale);
      Mix(RIGHT_OF_CENTER, RIGHT, kEqualPowerScale);
    } else {
      // Mix LR of center into front center.
      Mix(LEFT_OF_CENTER, CENTER, kEqualPowerScale);
      Mix(RIGHT_OF_CENTER, CENTER, kEqualPowerScale);
    }
  }

  // Mix LFE into: front LR || front center.
  if (IsUnaccounted(LFE)) {
    if (!HasOutputChannel(CENTER)) {
      // Mix LFE into front LR.
      MixWithoutAccounting(LFE, LEFT, kEqualPowerScale);
      Mix(LFE, RIGHT, kEqualPowerScale);
    } else {
      // Mix LFE into front center.
      Mix(LFE, CENTER, kEqualPowerScale);
    }
  }

  // All channels should now be accounted for.
  DCHECK(unaccounted_inputs_.empty());

  // See if the output |matrix_| is simply a remapping matrix.  If each input
  // channel maps to a single output channel we can simply remap.  Doing this
  // programmatically is less fragile than logic checks on channel mappings.
  for (int output_ch = 0; output_ch < output_channels_; ++output_ch) {
    int input_mappings = 0;
    for (int input_ch = 0; input_ch < input_channels_; ++input_ch) {
      // We can only remap if each row contains a single scale of 1.  I.e., each
      // output channel is mapped from a single unscaled input channel.
      if ((*matrix_)[output_ch][input_ch] != 1 || ++input_mappings > 1)
        return false;
    }
  }

  // If we've gotten here, |matrix_| is simply a remapping.
  return true;
}

ChannelMixer::~ChannelMixer() {}

void ChannelMixer::Transform(const AudioBus* input, AudioBus* output) {
  CHECK_EQ(matrix_.size(), static_cast<size_t>(output->channels()));
  CHECK_EQ(matrix_[0].size(), static_cast<size_t>(input->channels()));
  CHECK_EQ(input->frames(), output->frames());

  // Zero initialize |output| so we're accumulating from zero.
  output->Zero();

  // If we're just remapping we can simply copy the correct input to output.
  if (remapping_) {
    for (int output_ch = 0; output_ch < output->channels(); ++output_ch) {
      for (int input_ch = 0; input_ch < input->channels(); ++input_ch) {
        float scale = matrix_[output_ch][input_ch];
        if (scale > 0) {
          DCHECK_EQ(scale, 1.0f);
          memcpy(output->channel(output_ch), input->channel(input_ch),
                 sizeof(*output->channel(output_ch)) * output->frames());
          break;
        }
      }
    }
    return;
  }

  for (int output_ch = 0; output_ch < output->channels(); ++output_ch) {
    for (int input_ch = 0; input_ch < input->channels(); ++input_ch) {
      float scale = matrix_[output_ch][input_ch];
      // Scale should always be positive.  Don't bother scaling by zero.
      DCHECK_GE(scale, 0);
      if (scale > 0) {
        vector_math::FMAC(input->channel(input_ch), scale, output->frames(),
                          output->channel(output_ch));
      }
    }
  }
}

void MatrixBuilder::AccountFor(Channels ch) {
  unaccounted_inputs_.erase(std::find(
      unaccounted_inputs_.begin(), unaccounted_inputs_.end(), ch));
}

bool MatrixBuilder::IsUnaccounted(Channels ch) {
  return std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(),
                   ch) != unaccounted_inputs_.end();
}

bool MatrixBuilder::HasInputChannel(Channels ch) {
  return ChannelOrder(input_layout_, ch) >= 0;
}

bool MatrixBuilder::HasOutputChannel(Channels ch) {
  return ChannelOrder(output_layout_, ch) >= 0;
}

void MatrixBuilder::Mix(Channels input_ch, Channels output_ch, float scale) {
  MixWithoutAccounting(input_ch, output_ch, scale);
  AccountFor(input_ch);
}

void MatrixBuilder::MixWithoutAccounting(Channels input_ch, Channels output_ch,
                                         float scale) {
  int input_ch_index = ChannelOrder(input_layout_, input_ch);
  int output_ch_index = ChannelOrder(output_layout_, output_ch);

  DCHECK(IsUnaccounted(input_ch));
  DCHECK_GE(input_ch_index, 0);
  DCHECK_GE(output_ch_index, 0);

  DCHECK_EQ((*matrix_)[output_ch_index][input_ch_index], 0);
  (*matrix_)[output_ch_index][input_ch_index] = scale;
}

}  // namespace media