summaryrefslogtreecommitdiff
path: root/chromium/net/disk_cache/v3/block_bitmaps.cc
blob: 0d0317b39dc8b088b9eb501894b102d334f5d37f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/disk_cache/block_files.h"

#include "base/atomicops.h"
#include "base/file_util.h"
#include "base/metrics/histogram.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/threading/thread_checker.h"
#include "base/time/time.h"
#include "net/disk_cache/cache_util.h"
#include "net/disk_cache/file_lock.h"
#include "net/disk_cache/trace.h"

using base::TimeTicks;

namespace disk_cache {

BlockFiles::BlockFiles(const base::FilePath& path)
    : init_(false), zero_buffer_(NULL), path_(path) {
}

BlockFiles::~BlockFiles() {
  if (zero_buffer_)
    delete[] zero_buffer_;
  CloseFiles();
}

bool BlockFiles::Init(bool create_files) {
  DCHECK(!init_);
  if (init_)
    return false;

  thread_checker_.reset(new base::ThreadChecker);

  block_files_.resize(kFirstAdditionalBlockFile);
  for (int i = 0; i < kFirstAdditionalBlockFile; i++) {
    if (create_files)
      if (!CreateBlockFile(i, static_cast<FileType>(i + 1), true))
        return false;

    if (!OpenBlockFile(i))
      return false;

    // Walk this chain of files removing empty ones.
    if (!RemoveEmptyFile(static_cast<FileType>(i + 1)))
      return false;
  }

  init_ = true;
  return true;
}

bool BlockFiles::CreateBlock(FileType block_type, int block_count,
                             Addr* block_address) {
  DCHECK(thread_checker_->CalledOnValidThread());
  if (block_type < RANKINGS || block_type > BLOCK_4K ||
      block_count < 1 || block_count > 4)
    return false;
  if (!init_)
    return false;

  MappedFile* file = FileForNewBlock(block_type, block_count);
  if (!file)
    return false;

  ScopedFlush flush(file);
  BlockFileHeader* header = reinterpret_cast<BlockFileHeader*>(file->buffer());

  int target_size = 0;
  for (int i = block_count; i <= 4; i++) {
    if (header->empty[i - 1]) {
      target_size = i;
      break;
    }
  }

  DCHECK(target_size);
  int index;
  if (!CreateMapBlock(target_size, block_count, header, &index))
    return false;

  Addr address(block_type, block_count, header->this_file, index);
  block_address->set_value(address.value());
  Trace("CreateBlock 0x%x", address.value());
  return true;
}

void BlockFiles::DeleteBlock(Addr address, bool deep) {
  DCHECK(thread_checker_->CalledOnValidThread());
  if (!address.is_initialized() || address.is_separate_file())
    return;

  if (!zero_buffer_) {
    zero_buffer_ = new char[Addr::BlockSizeForFileType(BLOCK_4K) * 4];
    memset(zero_buffer_, 0, Addr::BlockSizeForFileType(BLOCK_4K) * 4);
  }
  MappedFile* file = GetFile(address);
  if (!file)
    return;

  Trace("DeleteBlock 0x%x", address.value());

  size_t size = address.BlockSize() * address.num_blocks();
  size_t offset = address.start_block() * address.BlockSize() +
                  kBlockHeaderSize;
  if (deep)
    file->Write(zero_buffer_, size, offset);

  BlockFileHeader* header = reinterpret_cast<BlockFileHeader*>(file->buffer());
  DeleteMapBlock(address.start_block(), address.num_blocks(), header);
  file->Flush();

  if (!header->num_entries) {
    // This file is now empty. Let's try to delete it.
    FileType type = Addr::RequiredFileType(header->entry_size);
    if (Addr::BlockSizeForFileType(RANKINGS) == header->entry_size)
      type = RANKINGS;
    RemoveEmptyFile(type);  // Ignore failures.
  }
}

void BlockFiles::CloseFiles() {
  if (init_) {
    DCHECK(thread_checker_->CalledOnValidThread());
  }
  init_ = false;
  for (unsigned int i = 0; i < block_files_.size(); i++) {
    if (block_files_[i]) {
      block_files_[i]->Release();
      block_files_[i] = NULL;
    }
  }
  block_files_.clear();
}

void BlockFiles::ReportStats() {
  DCHECK(thread_checker_->CalledOnValidThread());
  int used_blocks[kFirstAdditionalBlockFile];
  int load[kFirstAdditionalBlockFile];
  for (int i = 0; i < kFirstAdditionalBlockFile; i++) {
    GetFileStats(i, &used_blocks[i], &load[i]);
  }
  UMA_HISTOGRAM_COUNTS("DiskCache.Blocks_0", used_blocks[0]);
  UMA_HISTOGRAM_COUNTS("DiskCache.Blocks_1", used_blocks[1]);
  UMA_HISTOGRAM_COUNTS("DiskCache.Blocks_2", used_blocks[2]);
  UMA_HISTOGRAM_COUNTS("DiskCache.Blocks_3", used_blocks[3]);

  UMA_HISTOGRAM_ENUMERATION("DiskCache.BlockLoad_0", load[0], 101);
  UMA_HISTOGRAM_ENUMERATION("DiskCache.BlockLoad_1", load[1], 101);
  UMA_HISTOGRAM_ENUMERATION("DiskCache.BlockLoad_2", load[2], 101);
  UMA_HISTOGRAM_ENUMERATION("DiskCache.BlockLoad_3", load[3], 101);
}

bool BlockFiles::IsValid(Addr address) {
#ifdef NDEBUG
  return true;
#else
  if (!address.is_initialized() || address.is_separate_file())
    return false;

  MappedFile* file = GetFile(address);
  if (!file)
    return false;

  BlockFileHeader* header = reinterpret_cast<BlockFileHeader*>(file->buffer());
  bool rv = UsedMapBlock(address.start_block(), address.num_blocks(), header);
  DCHECK(rv);

  static bool read_contents = false;
  if (read_contents) {
    scoped_ptr<char[]> buffer;
    buffer.reset(new char[Addr::BlockSizeForFileType(BLOCK_4K) * 4]);
    size_t size = address.BlockSize() * address.num_blocks();
    size_t offset = address.start_block() * address.BlockSize() +
                    kBlockHeaderSize;
    bool ok = file->Read(buffer.get(), size, offset);
    DCHECK(ok);
  }

  return rv;
#endif
}

MappedFile* BlockFiles::GetFile(Addr address) {
  DCHECK(thread_checker_->CalledOnValidThread());
  DCHECK(block_files_.size() >= 4);
  DCHECK(address.is_block_file() || !address.is_initialized());
  if (!address.is_initialized())
    return NULL;

  int file_index = address.FileNumber();
  if (static_cast<unsigned int>(file_index) >= block_files_.size() ||
      !block_files_[file_index]) {
    // We need to open the file
    if (!OpenBlockFile(file_index))
      return NULL;
  }
  DCHECK(block_files_.size() >= static_cast<unsigned int>(file_index));
  return block_files_[file_index];
}

bool BlockFiles::GrowBlockFile(MappedFile* file, BlockFileHeader* header) {
  if (kMaxBlocks == header->max_entries)
    return false;

  ScopedFlush flush(file);
  DCHECK(!header->empty[3]);
  int new_size = header->max_entries + 1024;
  if (new_size > kMaxBlocks)
    new_size = kMaxBlocks;

  int new_size_bytes = new_size * header->entry_size + sizeof(*header);

  if (!file->SetLength(new_size_bytes)) {
    // Most likely we are trying to truncate the file, so the header is wrong.
    if (header->updating < 10 && !FixBlockFileHeader(file)) {
      // If we can't fix the file increase the lock guard so we'll pick it on
      // the next start and replace it.
      header->updating = 100;
      return false;
    }
    return (header->max_entries >= new_size);
  }

  FileLock lock(header);
  header->empty[3] = (new_size - header->max_entries) / 4;  // 4 blocks entries
  header->max_entries = new_size;

  return true;
}

MappedFile* BlockFiles::FileForNewBlock(FileType block_type, int block_count) {
  COMPILE_ASSERT(RANKINGS == 1, invalid_file_type);
  MappedFile* file = block_files_[block_type - 1];
  BlockFileHeader* header = reinterpret_cast<BlockFileHeader*>(file->buffer());

  TimeTicks start = TimeTicks::Now();
  while (NeedToGrowBlockFile(header, block_count)) {
    if (kMaxBlocks == header->max_entries) {
      file = NextFile(file);
      if (!file)
        return NULL;
      header = reinterpret_cast<BlockFileHeader*>(file->buffer());
      continue;
    }

    if (!GrowBlockFile(file, header))
      return NULL;
    break;
  }
  HISTOGRAM_TIMES("DiskCache.GetFileForNewBlock", TimeTicks::Now() - start);
  return file;
}

// Note that we expect to be called outside of a FileLock... however, we cannot
// DCHECK on header->updating because we may be fixing a crash.
bool BlockFiles::FixBlockFileHeader(MappedFile* file) {
  ScopedFlush flush(file);
  BlockFileHeader* header = reinterpret_cast<BlockFileHeader*>(file->buffer());
  int file_size = static_cast<int>(file->GetLength());
  if (file_size < static_cast<int>(sizeof(*header)))
    return false;  // file_size > 2GB is also an error.

  const int kMinBlockSize = 36;
  const int kMaxBlockSize = 4096;
  if (header->entry_size < kMinBlockSize ||
      header->entry_size > kMaxBlockSize || header->num_entries < 0)
    return false;

  // Make sure that we survive crashes.
  header->updating = 1;
  int expected = header->entry_size * header->max_entries + sizeof(*header);
  if (file_size != expected) {
    int max_expected = header->entry_size * kMaxBlocks + sizeof(*header);
    if (file_size < expected || header->empty[3] || file_size > max_expected) {
      NOTREACHED();
      LOG(ERROR) << "Unexpected file size";
      return false;
    }
    // We were in the middle of growing the file.
    int num_entries = (file_size - sizeof(*header)) / header->entry_size;
    header->max_entries = num_entries;
  }

  FixAllocationCounters(header);
  int empty_blocks = EmptyBlocks(header);
  if (empty_blocks + header->num_entries > header->max_entries)
    header->num_entries = header->max_entries - empty_blocks;

  if (!ValidateCounters(header))
    return false;

  header->updating = 0;
  return true;
}

// We are interested in the total number of blocks used by this file type, and
// the max number of blocks that we can store (reported as the percentage of
// used blocks). In order to find out the number of used blocks, we have to
// substract the empty blocks from the total blocks for each file in the chain.
void BlockFiles::GetFileStats(int index, int* used_count, int* load) {
  int max_blocks = 0;
  *used_count = 0;
  *load = 0;
  for (;;) {
    if (!block_files_[index] && !OpenBlockFile(index))
      return;

    BlockFileHeader* header =
        reinterpret_cast<BlockFileHeader*>(block_files_[index]->buffer());

    max_blocks += header->max_entries;
    int used = header->max_entries;
    for (int i = 0; i < 4; i++) {
      used -= header->empty[i] * (i + 1);
      DCHECK_GE(used, 0);
    }
    *used_count += used;

    if (!header->next_file)
      break;
    index = header->next_file;
  }
  if (max_blocks)
    *load = *used_count * 100 / max_blocks;
}

}  // namespace disk_cache