summaryrefslogtreecommitdiff
path: root/chromium/net/quic/congestion_control/cubic.cc
blob: 3d03b9f60d1249af6a6c808e6ee6624ff2852a19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/quic/congestion_control/cubic.h"

#include <algorithm>

#include "base/basictypes.h"
#include "base/logging.h"
#include "base/time/time.h"

namespace net {

// Constants based on TCP defaults.
// The following constants are in 2^10 fractions of a second instead of ms to
// allow a 10 shift right to divide.
const int kCubeScale = 40;  // 1024*1024^3 (first 1024 is from 0.100^3)
                            // where 0.100 is 100 ms which is the scaling
                            // round trip time.
const int kCubeCongestionWindowScale = 410;
const uint64 kCubeFactor = (GG_UINT64_C(1) << kCubeScale) /
    kCubeCongestionWindowScale;
const uint32 kBetaSPDY = 939;  // Back off factor after loss for SPDY, reduces
                               // the CWND by 1/12th.
const uint32 kBetaLastMax = 871;  // Additional back off factor after loss for
                                  // the stored max value.

namespace {
// Find last bit in a 64-bit word.
int FindMostSignificantBit(uint64 x) {
  if (!x) {
    return 0;
  }
  int r = 0;
  if (x & 0xffffffff00000000ull) {
    x >>= 32;
    r += 32;
  }
  if (x & 0xffff0000u) {
    x >>= 16;
    r += 16;
  }
  if (x & 0xff00u) {
    x >>= 8;
    r += 8;
  }
  if (x & 0xf0u) {
    x >>= 4;
    r += 4;
  }
  if (x & 0xcu) {
    x >>= 2;
    r += 2;
  }
  if (x & 0x02u) {
    x >>= 1;
    r++;
  }
  if (x & 0x01u) {
    r++;
  }
  return r;
}

// 6 bits table [0..63]
const uint32 cube_root_table[] = {
    0,  54,  54,  54, 118, 118, 118, 118, 123, 129, 134, 138, 143, 147, 151,
  156, 157, 161, 164, 168, 170, 173, 176, 179, 181, 185, 187, 190, 192, 194,
  197, 199, 200, 202, 204, 206, 209, 211, 213, 215, 217, 219, 221, 222, 224,
  225, 227, 229, 231, 232, 234, 236, 237, 239, 240, 242, 244, 245, 246, 248,
  250, 251, 252, 254
};
}  // namespace

Cubic::Cubic(const QuicClock* clock)
    : clock_(clock),
      epoch_(QuicTime::Zero()),
      last_update_time_(QuicTime::Zero()) {
  Reset();
}

// Calculate the cube root using a table lookup followed by one Newton-Raphson
// iteration.
uint32 Cubic::CubeRoot(uint64 a) {
  uint32 msb = FindMostSignificantBit(a);
  DCHECK_LE(msb, 64u);

  if (msb < 7) {
    // MSB in our table.
    return ((cube_root_table[static_cast<uint32>(a)]) + 31) >> 6;
  }
  // MSB          7,  8,  9, 10, 11, 12, 13, 14, 15, 16, ...
  // cubic_shift  1,  1,  1,  2,  2,  2,  3,  3,  3,  4, ...
  uint32 cubic_shift = (msb - 4);
  cubic_shift = ((cubic_shift * 342) >> 10);  // Div by 3, biased high.

  // 4 to 6 bits accuracy depending on MSB.
  uint32 down_shifted_to_6bit = (a >> (cubic_shift * 3));
  uint64 root = ((cube_root_table[down_shifted_to_6bit] + 10) << cubic_shift)
      >> 6;

  // Make one Newton-Raphson iteration.
  // Since x has an error (inaccuracy due to the use of fix point) we get a
  // more accurate result by doing x * (x - 1) instead of x * x.
  root = 2 * root + (a / (root * (root - 1)));
  root = ((root * 341) >> 10);  // Div by 3, biased low.
  return static_cast<uint32>(root);
}

void Cubic::Reset() {
  epoch_ = QuicTime::Zero();  // Reset time.
  last_update_time_ = QuicTime::Zero();  // Reset time.
  last_congestion_window_ = 0;
  last_max_congestion_window_ = 0;
  acked_packets_count_ = 0;
  estimated_tcp_congestion_window_ = 0;
  origin_point_congestion_window_ = 0;
  time_to_origin_point_ = 0;
  last_target_congestion_window_ = 0;
}

QuicTcpCongestionWindow Cubic::CongestionWindowAfterPacketLoss(
    QuicTcpCongestionWindow current_congestion_window) {
  if (current_congestion_window < last_max_congestion_window_) {
    // We never reached the old max, so assume we are competing with another
    // flow. Use our extra back off factor to allow the other flow to go up.
    last_max_congestion_window_ =
        (kBetaLastMax * current_congestion_window) >> 10;
  } else {
    last_max_congestion_window_ = current_congestion_window;
  }
  epoch_ = QuicTime::Zero();  // Reset time.
  return (current_congestion_window * kBetaSPDY) >> 10;
}

QuicTcpCongestionWindow Cubic::CongestionWindowAfterAck(
    QuicTcpCongestionWindow current_congestion_window,
    QuicTime::Delta delay_min) {
  acked_packets_count_ += 1;  // Packets acked.
  QuicTime current_time = clock_->ApproximateNow();

  // Cubic is "independent" of RTT, the update is limited by the time elapsed.
  if (last_congestion_window_ == current_congestion_window &&
      (current_time.Subtract(last_update_time_) <= MaxCubicTimeInterval())) {
    return std::max(last_target_congestion_window_,
                    estimated_tcp_congestion_window_);
  }
  last_congestion_window_ = current_congestion_window;
  last_update_time_ = current_time;

  if (!epoch_.IsInitialized()) {
    // First ACK after a loss event.
    DVLOG(1) << "Start of epoch";
    epoch_ = current_time;  // Start of epoch.
    acked_packets_count_ = 1;  // Reset count.
    // Reset estimated_tcp_congestion_window_ to be in sync with cubic.
    estimated_tcp_congestion_window_ = current_congestion_window;
    if (last_max_congestion_window_ <= current_congestion_window) {
      time_to_origin_point_ = 0;
      origin_point_congestion_window_ = current_congestion_window;
    } else {
      time_to_origin_point_ = CubeRoot(kCubeFactor *
          (last_max_congestion_window_ - current_congestion_window));
      origin_point_congestion_window_ =
          last_max_congestion_window_;
    }
  }
  // Change the time unit from microseconds to 2^10 fractions per second. Take
  // the round trip time in account. This is done to allow us to use shift as a
  // divide operator.
  int64 elapsed_time =
      (current_time.Add(delay_min).Subtract(epoch_).ToMicroseconds() << 10) /
      base::Time::kMicrosecondsPerSecond;

  int64 offset = time_to_origin_point_ - elapsed_time;
  QuicTcpCongestionWindow delta_congestion_window = (kCubeCongestionWindowScale
      * offset * offset * offset) >> kCubeScale;

  QuicTcpCongestionWindow target_congestion_window =
      origin_point_congestion_window_ - delta_congestion_window;

  // We have a new cubic congestion window.
  last_target_congestion_window_ = target_congestion_window;

  // Update estimated TCP congestion_window.
  // Note: we do a normal Reno congestion avoidance calculation not the
  // calculation described in section 3.3 TCP-friendly region of the document.
  while (acked_packets_count_ >= estimated_tcp_congestion_window_) {
    acked_packets_count_ -= estimated_tcp_congestion_window_;
    estimated_tcp_congestion_window_++;
  }
  // Compute target congestion_window based on cubic target and estimated TCP
  // congestion_window, use highest (fastest).
  if (target_congestion_window < estimated_tcp_congestion_window_) {
    target_congestion_window = estimated_tcp_congestion_window_;
  }
  DVLOG(1) << "Target congestion_window:" << target_congestion_window;
  return target_congestion_window;
}

}  // namespace net