1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/linux/services/credentials.h"
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys/capability.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "base/basictypes.h"
#include "base/bind.h"
#include "base/logging.h"
#include "base/strings/string_number_conversions.h"
#include "base/template_util.h"
#include "base/threading/thread.h"
namespace {
struct CapFreeDeleter {
inline void operator()(cap_t cap) const {
int ret = cap_free(cap);
CHECK_EQ(0, ret);
}
};
// Wrapper to manage libcap2's cap_t type.
typedef scoped_ptr<typeof(*((cap_t)0)), CapFreeDeleter> ScopedCap;
struct CapTextFreeDeleter {
inline void operator()(char* cap_text) const {
int ret = cap_free(cap_text);
CHECK_EQ(0, ret);
}
};
// Wrapper to manage the result from libcap2's cap_from_text().
typedef scoped_ptr<char, CapTextFreeDeleter> ScopedCapText;
struct FILECloser {
inline void operator()(FILE* f) const {
DCHECK(f);
PCHECK(0 == fclose(f));
}
};
// Don't use ScopedFILE in base/file_util.h since it doesn't check fclose().
// TODO(jln): fix base/.
typedef scoped_ptr<FILE, FILECloser> ScopedFILE;
struct DIRCloser {
void operator()(DIR* d) const {
DCHECK(d);
PCHECK(0 == closedir(d));
}
};
typedef scoped_ptr<DIR, DIRCloser> ScopedDIR;
COMPILE_ASSERT((base::is_same<uid_t, gid_t>::value), UidAndGidAreSameType);
// generic_id_t can be used for either uid_t or gid_t.
typedef uid_t generic_id_t;
// Write a uid or gid mapping from |id| to |id| in |map_file|.
bool WriteToIdMapFile(const char* map_file, generic_id_t id) {
ScopedFILE f(fopen(map_file, "w"));
PCHECK(f);
const uid_t inside_id = id;
const uid_t outside_id = id;
int num = fprintf(f.get(), "%d %d 1\n", inside_id, outside_id);
if (num < 0) return false;
// Manually call fflush() to catch permission failures.
int ret = fflush(f.get());
if (ret) {
VLOG(1) << "Could not write to id map file";
return false;
}
return true;
}
// Checks that the set of RES-uids and the set of RES-gids have
// one element each and return that element in |resuid| and |resgid|
// respectively. It's ok to pass NULL as one or both of the ids.
bool GetRESIds(uid_t* resuid, gid_t* resgid) {
uid_t ruid, euid, suid;
gid_t rgid, egid, sgid;
PCHECK(getresuid(&ruid, &euid, &suid) == 0);
PCHECK(getresgid(&rgid, &egid, &sgid) == 0);
const bool uids_are_equal = (ruid == euid) && (ruid == suid);
const bool gids_are_equal = (rgid == egid) && (rgid == sgid);
if (!uids_are_equal || !gids_are_equal) return false;
if (resuid) *resuid = euid;
if (resgid) *resgid = egid;
return true;
}
// chroot() and chdir() to /proc/<tid>/fdinfo.
void ChrootToThreadFdInfo(base::PlatformThreadId tid, bool* result) {
DCHECK(result);
*result = false;
COMPILE_ASSERT((base::is_same<base::PlatformThreadId, int>::value),
TidIsAnInt);
const std::string current_thread_fdinfo = "/proc/" +
base::IntToString(tid) + "/fdinfo/";
// Make extra sure that /proc/<tid>/fdinfo is unique to the thread.
CHECK(0 == unshare(CLONE_FILES));
int chroot_ret = chroot(current_thread_fdinfo.c_str());
if (chroot_ret) {
PLOG(ERROR) << "Could not chroot";
return;
}
// CWD is essentially an implicit file descriptor, so be careful to not leave
// it behind.
PCHECK(0 == chdir("/"));
*result = true;
return;
}
// chroot() to an empty dir that is "safe". To be safe, it must not contain
// any subdirectory (chroot-ing there would allow a chroot escape) and it must
// be impossible to create an empty directory there.
// We achieve this by doing the following:
// 1. We create a new thread, which will create a new /proc/<tid>/ directory
// 2. We chroot to /proc/<tid>/fdinfo/
// This is already "safe", since fdinfo/ does not contain another directory and
// one cannot create another directory there.
// 3. The thread dies
// After (3) happens, the directory is not available anymore in /proc.
bool ChrootToSafeEmptyDir() {
base::Thread chrooter("sandbox_chrooter");
if (!chrooter.Start()) return false;
bool is_chrooted = false;
chrooter.message_loop()->PostTask(FROM_HERE,
base::Bind(&ChrootToThreadFdInfo, chrooter.thread_id(), &is_chrooted));
// Make sure our task has run before committing the return value.
chrooter.Stop();
return is_chrooted;
}
} // namespace.
namespace sandbox {
Credentials::Credentials() {
}
Credentials::~Credentials() {
}
bool Credentials::HasOpenDirectory(int proc_fd) {
int proc_self_fd = -1;
if (proc_fd >= 0) {
proc_self_fd = openat(proc_fd, "self/fd", O_DIRECTORY | O_RDONLY);
} else {
proc_self_fd = openat(AT_FDCWD, "/proc/self/fd", O_DIRECTORY | O_RDONLY);
if (proc_self_fd < 0) {
// If this process has been chrooted (eg into /proc/self/fdinfo) then
// the new root dir will not have directory listing permissions for us
// (hence EACCES). And if we do have this permission, then /proc won't
// exist anyway (hence ENOENT).
DPCHECK(errno == EACCES || errno == ENOENT)
<< "Unexpected failure when trying to open /proc/self/fd: ("
<< errno << ") " << strerror(errno);
// If not available, guess false.
return false;
}
}
CHECK_GE(proc_self_fd, 0);
// Ownership of proc_self_fd is transferred here, it must not be closed
// or modified afterwards except via dir.
ScopedDIR dir(fdopendir(proc_self_fd));
CHECK(dir);
struct dirent e;
struct dirent* de;
while (!readdir_r(dir.get(), &e, &de) && de) {
if (strcmp(e.d_name, ".") == 0 || strcmp(e.d_name, "..") == 0) {
continue;
}
int fd_num;
CHECK(base::StringToInt(e.d_name, &fd_num));
if (fd_num == proc_fd || fd_num == proc_self_fd) {
continue;
}
struct stat s;
// It's OK to use proc_self_fd here, fstatat won't modify it.
CHECK(fstatat(proc_self_fd, e.d_name, &s, 0) == 0);
if (S_ISDIR(s.st_mode)) {
return true;
}
}
// No open unmanaged directories found.
return false;
}
bool Credentials::DropAllCapabilities() {
ScopedCap cap(cap_init());
CHECK(cap);
PCHECK(0 == cap_set_proc(cap.get()));
// We never let this function fail.
return true;
}
bool Credentials::HasAnyCapability() const {
ScopedCap current_cap(cap_get_proc());
CHECK(current_cap);
ScopedCap empty_cap(cap_init());
CHECK(empty_cap);
return cap_compare(current_cap.get(), empty_cap.get()) != 0;
}
scoped_ptr<std::string> Credentials::GetCurrentCapString() const {
ScopedCap current_cap(cap_get_proc());
CHECK(current_cap);
ScopedCapText cap_text(cap_to_text(current_cap.get(), NULL));
CHECK(cap_text);
return scoped_ptr<std::string> (new std::string(cap_text.get()));
}
bool Credentials::MoveToNewUserNS() {
uid_t uid;
gid_t gid;
if (!GetRESIds(&uid, &gid)) {
// If all the uids (or gids) are not equal to each other, the security
// model will most likely confuse the caller, abort.
DVLOG(1) << "uids or gids differ!";
return false;
}
int ret = unshare(CLONE_NEWUSER);
// EPERM can happen if already in a chroot. EUSERS if too many nested
// namespaces are used. EINVAL for kernels that don't support the feature.
// Valgrind will ENOSYS unshare().
PCHECK(!ret || errno == EPERM || errno == EUSERS || errno == EINVAL ||
errno == ENOSYS);
if (ret) {
VLOG(1) << "Looks like unprivileged CLONE_NEWUSER may not be available "
<< "on this kernel.";
return false;
}
// The current {r,e,s}{u,g}id is now an overflow id (c.f.
// /proc/sys/kernel/overflowuid). Setup the uid and gid maps.
DCHECK(GetRESIds(NULL, NULL));
const char kGidMapFile[] = "/proc/self/gid_map";
const char kUidMapFile[] = "/proc/self/uid_map";
CHECK(WriteToIdMapFile(kGidMapFile, gid));
CHECK(WriteToIdMapFile(kUidMapFile, uid));
DCHECK(GetRESIds(NULL, NULL));
return true;
}
bool Credentials::DropFileSystemAccess() {
// Chrooting to a safe empty dir will only be safe if no directory file
// descriptor is available to the process.
DCHECK(!HasOpenDirectory(-1));
return ChrootToSafeEmptyDir();
}
} // namespace sandbox.
|