1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/win/src/win_utils.h"
#include <psapi.h>
#include <stddef.h>
#include <stdint.h>
#include <map>
#include <memory>
#include <vector>
#include "base/macros.h"
#include "base/numerics/safe_math.h"
#include "base/strings/string16.h"
#include "base/strings/string_util.h"
#include "base/win/pe_image.h"
#include "sandbox/win/src/internal_types.h"
#include "sandbox/win/src/nt_internals.h"
#include "sandbox/win/src/sandbox_nt_util.h"
namespace {
// Holds the information about a known registry key.
struct KnownReservedKey {
const wchar_t* name;
HKEY key;
};
// Contains all the known registry key by name and by handle.
const KnownReservedKey kKnownKey[] = {
{ L"HKEY_CLASSES_ROOT", HKEY_CLASSES_ROOT },
{ L"HKEY_CURRENT_USER", HKEY_CURRENT_USER },
{ L"HKEY_LOCAL_MACHINE", HKEY_LOCAL_MACHINE},
{ L"HKEY_USERS", HKEY_USERS},
{ L"HKEY_PERFORMANCE_DATA", HKEY_PERFORMANCE_DATA},
{ L"HKEY_PERFORMANCE_TEXT", HKEY_PERFORMANCE_TEXT},
{ L"HKEY_PERFORMANCE_NLSTEXT", HKEY_PERFORMANCE_NLSTEXT},
{ L"HKEY_CURRENT_CONFIG", HKEY_CURRENT_CONFIG},
{ L"HKEY_DYN_DATA", HKEY_DYN_DATA}
};
// These functions perform case independent path comparisons.
bool EqualPath(const base::string16& first, const base::string16& second) {
return _wcsicmp(first.c_str(), second.c_str()) == 0;
}
bool EqualPath(const base::string16& first, size_t first_offset,
const base::string16& second, size_t second_offset) {
return _wcsicmp(first.c_str() + first_offset,
second.c_str() + second_offset) == 0;
}
bool EqualPath(const base::string16& first,
const wchar_t* second, size_t second_len) {
return _wcsnicmp(first.c_str(), second, second_len) == 0;
}
bool EqualPath(const base::string16& first, size_t first_offset,
const wchar_t* second, size_t second_len) {
return _wcsnicmp(first.c_str() + first_offset, second, second_len) == 0;
}
// Returns true if |path| starts with "\??\" and returns a path without that
// component.
bool IsNTPath(const base::string16& path, base::string16* trimmed_path ) {
if ((path.size() < sandbox::kNTPrefixLen) ||
(0 != path.compare(0, sandbox::kNTPrefixLen, sandbox::kNTPrefix))) {
*trimmed_path = path;
return false;
}
*trimmed_path = path.substr(sandbox::kNTPrefixLen);
return true;
}
// Returns true if |path| starts with "\Device\" and returns a path without that
// component.
bool IsDevicePath(const base::string16& path, base::string16* trimmed_path ) {
if ((path.size() < sandbox::kNTDevicePrefixLen) ||
(!EqualPath(path, sandbox::kNTDevicePrefix,
sandbox::kNTDevicePrefixLen))) {
*trimmed_path = path;
return false;
}
*trimmed_path = path.substr(sandbox::kNTDevicePrefixLen);
return true;
}
bool StartsWithDriveLetter(const base::string16& path) {
if (path.size() < 3)
return false;
if (path[1] != L':' || path[2] != L'\\')
return false;
return base::IsAsciiAlpha(path[0]);
}
const wchar_t kNTDotPrefix[] = L"\\\\.\\";
const size_t kNTDotPrefixLen = arraysize(kNTDotPrefix) - 1;
// Removes "\\\\.\\" from the path.
void RemoveImpliedDevice(base::string16* path) {
if (0 == path->compare(0, kNTDotPrefixLen, kNTDotPrefix))
*path = path->substr(kNTDotPrefixLen);
}
// Get the native path to the process.
bool GetProcessPath(HANDLE process, base::string16* path) {
wchar_t process_name[MAX_PATH];
DWORD size = MAX_PATH;
if (::QueryFullProcessImageNameW(process, PROCESS_NAME_NATIVE, process_name,
&size)) {
*path = process_name;
return true;
}
// Process name is potentially greater than MAX_PATH, try larger max size.
std::vector<wchar_t> process_name_buffer(SHRT_MAX);
size = SHRT_MAX;
if (::QueryFullProcessImageNameW(process, PROCESS_NAME_NATIVE,
&process_name_buffer[0], &size)) {
*path = &process_name_buffer[0];
return true;
}
return false;
}
// Get the native path for a mapped file.
bool GetImageFilePath(HANDLE process,
void* base_address,
base::string16* path) {
wchar_t mapped_path[MAX_PATH];
if (::GetMappedFileNameW(process, base_address, mapped_path, MAX_PATH)) {
*path = mapped_path;
return true;
}
// Image name is potentially greater than MAX_PATH, try larger max size.
std::vector<wchar_t> mapped_path_buffer(SHRT_MAX);
if (::GetMappedFileNameW(process, base_address, &mapped_path_buffer[0],
SHRT_MAX)) {
*path = &mapped_path_buffer[0];
return true;
}
return false;
}
} // namespace
namespace sandbox {
// Returns true if the provided path points to a pipe.
bool IsPipe(const base::string16& path) {
size_t start = 0;
if (0 == path.compare(0, sandbox::kNTPrefixLen, sandbox::kNTPrefix))
start = sandbox::kNTPrefixLen;
const wchar_t kPipe[] = L"pipe\\";
if (path.size() < start + arraysize(kPipe) - 1)
return false;
return EqualPath(path, start, kPipe, arraysize(kPipe) - 1);
}
HKEY GetReservedKeyFromName(const base::string16& name) {
for (size_t i = 0; i < arraysize(kKnownKey); ++i) {
if (name == kKnownKey[i].name)
return kKnownKey[i].key;
}
return NULL;
}
bool ResolveRegistryName(base::string16 name, base::string16* resolved_name) {
for (size_t i = 0; i < arraysize(kKnownKey); ++i) {
if (name.find(kKnownKey[i].name) == 0) {
HKEY key;
DWORD disposition;
if (ERROR_SUCCESS != ::RegCreateKeyEx(kKnownKey[i].key, L"", 0, NULL, 0,
MAXIMUM_ALLOWED, NULL, &key,
&disposition))
return false;
bool result = GetPathFromHandle(key, resolved_name);
::RegCloseKey(key);
if (!result)
return false;
*resolved_name += name.substr(wcslen(kKnownKey[i].name));
return true;
}
}
return false;
}
// |full_path| can have any of the following forms:
// \??\c:\some\foo\bar
// \Device\HarddiskVolume0\some\foo\bar
// \??\HarddiskVolume0\some\foo\bar
DWORD IsReparsePoint(const base::string16& full_path) {
// Check if it's a pipe. We can't query the attributes of a pipe.
if (IsPipe(full_path))
return ERROR_NOT_A_REPARSE_POINT;
base::string16 path;
bool nt_path = IsNTPath(full_path, &path);
bool has_drive = StartsWithDriveLetter(path);
bool is_device_path = IsDevicePath(path, &path);
if (!has_drive && !is_device_path && !nt_path)
return ERROR_INVALID_NAME;
bool added_implied_device = false;
if (!has_drive) {
path = base::string16(kNTDotPrefix) + path;
added_implied_device = true;
}
base::string16::size_type last_pos = base::string16::npos;
bool passed_once = false;
do {
path = path.substr(0, last_pos);
DWORD attributes = ::GetFileAttributes(path.c_str());
if (INVALID_FILE_ATTRIBUTES == attributes) {
DWORD error = ::GetLastError();
if (error != ERROR_FILE_NOT_FOUND &&
error != ERROR_PATH_NOT_FOUND &&
error != ERROR_INVALID_NAME) {
// Unexpected error.
if (passed_once && added_implied_device &&
(path.rfind(L'\\') == kNTDotPrefixLen - 1)) {
break;
}
NOTREACHED_NT();
return error;
}
} else if (FILE_ATTRIBUTE_REPARSE_POINT & attributes) {
// This is a reparse point.
return ERROR_SUCCESS;
}
passed_once = true;
last_pos = path.rfind(L'\\');
} while (last_pos > 2); // Skip root dir.
return ERROR_NOT_A_REPARSE_POINT;
}
// We get a |full_path| of the forms accepted by IsReparsePoint(), and the name
// we'll get from |handle| will be \device\harddiskvolume1\some\foo\bar.
bool SameObject(HANDLE handle, const wchar_t* full_path) {
// Check if it's a pipe.
if (IsPipe(full_path))
return true;
base::string16 actual_path;
if (!GetPathFromHandle(handle, &actual_path))
return false;
base::string16 path(full_path);
DCHECK_NT(!path.empty());
// This may end with a backslash.
const wchar_t kBackslash = '\\';
if (path.back() == kBackslash)
path = path.substr(0, path.length() - 1);
// Perfect match (case-insesitive check).
if (EqualPath(actual_path, path))
return true;
bool nt_path = IsNTPath(path, &path);
bool has_drive = StartsWithDriveLetter(path);
if (!has_drive && nt_path) {
base::string16 simple_actual_path;
if (!IsDevicePath(actual_path, &simple_actual_path))
return false;
// Perfect match (case-insesitive check).
return (EqualPath(simple_actual_path, path));
}
if (!has_drive)
return false;
// We only need 3 chars, but let's alloc a buffer for four.
wchar_t drive[4] = {0};
wchar_t vol_name[MAX_PATH];
memcpy(drive, &path[0], 2 * sizeof(*drive));
// We'll get a double null terminated string.
DWORD vol_length = ::QueryDosDeviceW(drive, vol_name, MAX_PATH);
if (vol_length < 2 || vol_length == MAX_PATH)
return false;
// Ignore the nulls at the end.
vol_length = static_cast<DWORD>(wcslen(vol_name));
// The two paths should be the same length.
if (vol_length + path.size() - 2 != actual_path.size())
return false;
// Check up to the drive letter.
if (!EqualPath(actual_path, vol_name, vol_length))
return false;
// Check the path after the drive letter.
if (!EqualPath(actual_path, vol_length, path, 2))
return false;
return true;
}
// Paths like \Device\HarddiskVolume0\some\foo\bar are assumed to be already
// expanded.
bool ConvertToLongPath(base::string16* path) {
if (IsPipe(*path))
return true;
base::string16 temp_path;
if (IsDevicePath(*path, &temp_path))
return false;
bool is_nt_path = IsNTPath(temp_path, &temp_path);
bool added_implied_device = false;
if (!StartsWithDriveLetter(temp_path) && is_nt_path) {
temp_path = base::string16(kNTDotPrefix) + temp_path;
added_implied_device = true;
}
DWORD size = MAX_PATH;
std::unique_ptr<wchar_t[]> long_path_buf(new wchar_t[size]);
DWORD return_value = ::GetLongPathName(temp_path.c_str(), long_path_buf.get(),
size);
while (return_value >= size) {
size *= 2;
long_path_buf.reset(new wchar_t[size]);
return_value = ::GetLongPathName(temp_path.c_str(), long_path_buf.get(),
size);
}
DWORD last_error = ::GetLastError();
if (0 == return_value && (ERROR_FILE_NOT_FOUND == last_error ||
ERROR_PATH_NOT_FOUND == last_error ||
ERROR_INVALID_NAME == last_error)) {
// The file does not exist, but maybe a sub path needs to be expanded.
base::string16::size_type last_slash = temp_path.rfind(L'\\');
if (base::string16::npos == last_slash)
return false;
base::string16 begin = temp_path.substr(0, last_slash);
base::string16 end = temp_path.substr(last_slash);
if (!ConvertToLongPath(&begin))
return false;
// Ok, it worked. Let's reset the return value.
temp_path = begin + end;
return_value = 1;
} else if (0 != return_value) {
temp_path = long_path_buf.get();
}
if (return_value != 0) {
if (added_implied_device)
RemoveImpliedDevice(&temp_path);
if (is_nt_path) {
*path = kNTPrefix;
*path += temp_path;
} else {
*path = temp_path;
}
return true;
}
return false;
}
bool GetPathFromHandle(HANDLE handle, base::string16* path) {
NtQueryObjectFunction NtQueryObject = NULL;
ResolveNTFunctionPtr("NtQueryObject", &NtQueryObject);
OBJECT_NAME_INFORMATION initial_buffer;
OBJECT_NAME_INFORMATION* name = &initial_buffer;
ULONG size = sizeof(initial_buffer);
// Query the name information a first time to get the size of the name.
// Windows XP requires that the size of the buffer passed in here be != 0.
NTSTATUS status = NtQueryObject(handle, ObjectNameInformation, name, size,
&size);
std::unique_ptr<BYTE[]> name_ptr;
if (size) {
name_ptr.reset(new BYTE[size]);
name = reinterpret_cast<OBJECT_NAME_INFORMATION*>(name_ptr.get());
// Query the name information a second time to get the name of the
// object referenced by the handle.
status = NtQueryObject(handle, ObjectNameInformation, name, size, &size);
}
if (STATUS_SUCCESS != status)
return false;
path->assign(name->ObjectName.Buffer, name->ObjectName.Length /
sizeof(name->ObjectName.Buffer[0]));
return true;
}
bool GetNtPathFromWin32Path(const base::string16& path,
base::string16* nt_path) {
HANDLE file = ::CreateFileW(path.c_str(), 0,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, NULL);
if (file == INVALID_HANDLE_VALUE)
return false;
bool rv = GetPathFromHandle(file, nt_path);
::CloseHandle(file);
return rv;
}
bool WriteProtectedChildMemory(HANDLE child_process, void* address,
const void* buffer, size_t length) {
// First, remove the protections.
DWORD old_protection;
if (!::VirtualProtectEx(child_process, address, length,
PAGE_WRITECOPY, &old_protection))
return false;
SIZE_T written;
bool ok = ::WriteProcessMemory(child_process, address, buffer, length,
&written) && (length == written);
// Always attempt to restore the original protection.
if (!::VirtualProtectEx(child_process, address, length,
old_protection, &old_protection))
return false;
return ok;
}
DWORD GetLastErrorFromNtStatus(NTSTATUS status) {
RtlNtStatusToDosErrorFunction NtStatusToDosError = nullptr;
ResolveNTFunctionPtr("RtlNtStatusToDosError", &NtStatusToDosError);
return NtStatusToDosError(status);
}
// This function walks the virtual memory map using VirtualQueryEx to find
// the main executable's image section. We attempt to find the first image
// section which matches the path returned for the process. This shouldn't
// be a major performance problem because a new process has a very limited
// amount of memory allocated so the majority of the valid range should be
// skipped immediately. However if it turns out to be the case it could be
// optimized in the specific case of the process being the same as the
// current process, which due to ASLR rules the image load address will almost
// always match the current process's load address.
void* GetProcessBaseAddress(HANDLE process) {
MEMORY_BASIC_INFORMATION mem_info = {};
// Start 64KiB above zero page.
void* current = reinterpret_cast<void*>(0x10000);
base::string16 process_path;
if (!GetProcessPath(process, &process_path))
return nullptr;
// Walk the virtual memory mappings trying to find image sections.
// VirtualQueryEx will return false if it encounters a location outside of
// the user memory range.
while (::VirtualQueryEx(process, current, &mem_info, sizeof(mem_info))) {
base::string16 image_path;
if (mem_info.Type == MEM_IMAGE &&
GetImageFilePath(process, mem_info.BaseAddress, &image_path) &&
EqualPath(process_path, image_path)) {
return mem_info.BaseAddress;
}
// VirtualQueryEx should fail before overflow, but just in case we'll check
// to prevent an infinite loop.
base::CheckedNumeric<uintptr_t> next_base =
reinterpret_cast<uintptr_t>(mem_info.BaseAddress);
next_base += mem_info.RegionSize;
if (!next_base.IsValid())
return nullptr;
current =
reinterpret_cast<void*>(static_cast<uintptr_t>(next_base.ValueOrDie()));
}
return nullptr;
}
}; // namespace sandbox
void ResolveNTFunctionPtr(const char* name, void* ptr) {
static volatile HMODULE ntdll = NULL;
if (!ntdll) {
HMODULE ntdll_local = ::GetModuleHandle(sandbox::kNtdllName);
// Use PEImage to sanity-check that we have a valid ntdll handle.
base::win::PEImage ntdll_peimage(ntdll_local);
CHECK_NT(ntdll_peimage.VerifyMagic());
// Race-safe way to set static ntdll.
::InterlockedCompareExchangePointer(
reinterpret_cast<PVOID volatile*>(&ntdll), ntdll_local, NULL);
}
CHECK_NT(ntdll);
FARPROC* function_ptr = reinterpret_cast<FARPROC*>(ptr);
*function_ptr = ::GetProcAddress(ntdll, name);
CHECK_NT(*function_ptr);
}
|