1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
/*
* libjingle
* Copyright 2004--2010, Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef TALK_BASE_REFERENCECOUNTEDSINGLETONFACTORY_H_
#define TALK_BASE_REFERENCECOUNTEDSINGLETONFACTORY_H_
#include "talk/base/common.h"
#include "talk/base/criticalsection.h"
#include "talk/base/logging.h"
#include "talk/base/scoped_ptr.h"
namespace talk_base {
template <typename Interface> class rcsf_ptr;
// A ReferenceCountedSingletonFactory is an object which owns another object,
// and doles out the owned object to consumers in a reference-counted manner.
// Thus, the factory owns at most one object of the desired kind, and
// hands consumers a special pointer to it, through which they can access it.
// When the consumers delete the pointer, the reference count goes down,
// and if the reference count hits zero, the factory can throw the object
// away. If a consumer requests the pointer and the factory has none,
// it can create one on the fly and pass it back.
template <typename Interface>
class ReferenceCountedSingletonFactory {
friend class rcsf_ptr<Interface>;
public:
ReferenceCountedSingletonFactory() : ref_count_(0) {}
virtual ~ReferenceCountedSingletonFactory() {
ASSERT(ref_count_ == 0);
}
protected:
// Must be implemented in a sub-class. The sub-class may choose whether or not
// to cache the instance across lifetimes by either reset()'ing or not
// reset()'ing the scoped_ptr in CleanupInstance().
virtual bool SetupInstance() = 0;
virtual void CleanupInstance() = 0;
scoped_ptr<Interface> instance_;
private:
Interface* GetInstance() {
talk_base::CritScope cs(&crit_);
if (ref_count_ == 0) {
if (!SetupInstance()) {
LOG(LS_VERBOSE) << "Failed to setup instance";
return NULL;
}
ASSERT(instance_.get() != NULL);
}
++ref_count_;
LOG(LS_VERBOSE) << "Number of references: " << ref_count_;
return instance_.get();
}
void ReleaseInstance() {
talk_base::CritScope cs(&crit_);
ASSERT(ref_count_ > 0);
ASSERT(instance_.get() != NULL);
--ref_count_;
LOG(LS_VERBOSE) << "Number of references: " << ref_count_;
if (ref_count_ == 0) {
CleanupInstance();
}
}
CriticalSection crit_;
int ref_count_;
DISALLOW_COPY_AND_ASSIGN(ReferenceCountedSingletonFactory);
};
template <typename Interface>
class rcsf_ptr {
public:
// Create a pointer that uses the factory to get the instance.
// This is lazy - it won't generate the instance until it is requested.
explicit rcsf_ptr(ReferenceCountedSingletonFactory<Interface>* factory)
: instance_(NULL),
factory_(factory) {
}
~rcsf_ptr() {
release();
}
Interface& operator*() {
EnsureAcquired();
return *instance_;
}
Interface* operator->() {
EnsureAcquired();
return instance_;
}
// Gets the pointer, creating the singleton if necessary. May return NULL if
// creation failed.
Interface* get() {
Acquire();
return instance_;
}
// Set instance to NULL and tell the factory we aren't using the instance
// anymore.
void release() {
if (instance_) {
instance_ = NULL;
factory_->ReleaseInstance();
}
}
// Lets us know whether instance is valid or not right now.
// Even though attempts to use the instance will automatically create it, it
// is advisable to check this because creation can fail.
bool valid() const {
return instance_ != NULL;
}
// Returns the factory that this pointer is using.
ReferenceCountedSingletonFactory<Interface>* factory() const {
return factory_;
}
private:
void EnsureAcquired() {
Acquire();
ASSERT(instance_ != NULL);
}
void Acquire() {
// Since we're getting a singleton back, acquire is a noop if instance is
// already populated.
if (!instance_) {
instance_ = factory_->GetInstance();
}
}
Interface* instance_;
ReferenceCountedSingletonFactory<Interface>* factory_;
DISALLOW_IMPLICIT_CONSTRUCTORS(rcsf_ptr);
};
}; // namespace talk_base
#endif // TALK_BASE_REFERENCECOUNTEDSINGLETONFACTORY_H_
|