1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/accessibility/ax_tree.h"
#include <stddef.h>
#include <set>
#include "base/logging.h"
#include "base/strings/stringprintf.h"
#include "ui/accessibility/ax_node.h"
namespace ui {
namespace {
std::string TreeToStringHelper(AXNode* node, int indent) {
std::string result = std::string(2 * indent, ' ');
result += node->data().ToString() + "\n";
for (int i = 0; i < node->child_count(); ++i)
result += TreeToStringHelper(node->ChildAtIndex(i), indent + 1);
return result;
}
} // namespace
// Intermediate state to keep track of during a tree update.
struct AXTreeUpdateState {
AXTreeUpdateState() : new_root(nullptr) {}
// Returns whether this update changes |node|.
bool HasChangedNode(const AXNode* node) {
return changed_node_ids.find(node->id()) != changed_node_ids.end();
}
// Returns whether this update removes |node|.
bool HasRemovedNode(const AXNode* node) {
return removed_node_ids.find(node->id()) != removed_node_ids.end();
}
// During an update, this keeps track of all nodes that have been
// implicitly referenced as part of this update, but haven't been
// updated yet. It's an error if there are any pending nodes at the
// end of Unserialize.
std::set<AXNode*> pending_nodes;
// This is similar to above, but we store node ids here because this list gets
// generated before any nodes get created or re-used. Its purpose is to allow
// us to know what nodes will be updated so we can make more intelligent
// decisions about when to notify delegates of removals or reparenting.
std::set<int> changed_node_ids;
// Keeps track of new nodes created during this update.
std::set<AXNode*> new_nodes;
// The new root in this update, if any.
AXNode* new_root;
// Keeps track of any nodes removed. Used to identify re-parented nodes.
std::set<int> removed_node_ids;
};
AXTreeDelegate::AXTreeDelegate() {
}
AXTreeDelegate::~AXTreeDelegate() {
}
AXTree::AXTree()
: delegate_(NULL), root_(NULL) {
AXNodeData root;
root.id = -1;
AXTreeUpdate initial_state;
initial_state.root_id = -1;
initial_state.nodes.push_back(root);
CHECK(Unserialize(initial_state)) << error();
}
AXTree::AXTree(const AXTreeUpdate& initial_state)
: delegate_(NULL), root_(NULL) {
CHECK(Unserialize(initial_state)) << error();
}
AXTree::~AXTree() {
if (root_)
DestroyNodeAndSubtree(root_, nullptr);
}
void AXTree::SetDelegate(AXTreeDelegate* delegate) {
delegate_ = delegate;
}
AXNode* AXTree::GetFromId(int32_t id) const {
base::hash_map<int32_t, AXNode*>::const_iterator iter = id_map_.find(id);
return iter != id_map_.end() ? iter->second : NULL;
}
void AXTree::UpdateData(const AXTreeData& data) {
data_ = data;
if (delegate_)
delegate_->OnTreeDataChanged(this);
}
bool AXTree::Unserialize(const AXTreeUpdate& update) {
AXTreeUpdateState update_state;
int32_t old_root_id = root_ ? root_->id() : 0;
// First, make a note of any nodes we will touch as part of this update.
for (size_t i = 0; i < update.nodes.size(); ++i)
update_state.changed_node_ids.insert(update.nodes[i].id);
if (update.has_tree_data)
UpdateData(update.tree_data);
if (update.node_id_to_clear != 0) {
AXNode* node = GetFromId(update.node_id_to_clear);
if (!node) {
error_ = base::StringPrintf("Bad node_id_to_clear: %d",
update.node_id_to_clear);
return false;
}
if (node == root_) {
// Clear root_ before calling DestroySubtree so that root_ doesn't
// ever point to an invalid node.
AXNode* old_root = root_;
root_ = nullptr;
DestroySubtree(old_root, &update_state);
} else {
for (int i = 0; i < node->child_count(); ++i)
DestroySubtree(node->ChildAtIndex(i), &update_state);
std::vector<AXNode*> children;
node->SwapChildren(children);
update_state.pending_nodes.insert(node);
}
}
bool root_exists = GetFromId(update.root_id) != nullptr;
for (size_t i = 0; i < update.nodes.size(); ++i) {
bool is_new_root = !root_exists && update.nodes[i].id == update.root_id;
if (!UpdateNode(update.nodes[i], is_new_root, &update_state))
return false;
}
if (!root_) {
error_ = "Tree has no root.";
return false;
}
if (!update_state.pending_nodes.empty()) {
error_ = "Nodes left pending by the update:";
for (std::set<AXNode*>::iterator iter = update_state.pending_nodes.begin();
iter != update_state.pending_nodes.end(); ++iter) {
error_ += base::StringPrintf(" %d", (*iter)->id());
}
return false;
}
if (delegate_) {
std::set<AXNode*>& new_nodes = update_state.new_nodes;
std::vector<AXTreeDelegate::Change> changes;
changes.reserve(update.nodes.size());
for (size_t i = 0; i < update.nodes.size(); ++i) {
AXNode* node = GetFromId(update.nodes[i].id);
bool is_new_node = new_nodes.find(node) != new_nodes.end();
bool is_reparented_node =
is_new_node && update_state.HasRemovedNode(node);
AXTreeDelegate::ChangeType change = AXTreeDelegate::NODE_CHANGED;
if (is_new_node) {
if (is_reparented_node) {
// A reparented subtree is any new node whose parent either doesn't
// exist, or is not new.
bool is_subtree = !node->parent() ||
new_nodes.find(node->parent()) == new_nodes.end();
change = is_subtree ? AXTreeDelegate::SUBTREE_REPARENTED
: AXTreeDelegate::NODE_REPARENTED;
} else {
// A new subtree is any new node whose parent is either not new, or
// whose parent happens to be new only because it has been reparented.
bool is_subtree = !node->parent() ||
new_nodes.find(node->parent()) == new_nodes.end() ||
update_state.HasRemovedNode(node->parent());
change = is_subtree ? AXTreeDelegate::SUBTREE_CREATED
: AXTreeDelegate::NODE_CREATED;
}
}
changes.push_back(AXTreeDelegate::Change(node, change));
}
delegate_->OnAtomicUpdateFinished(
this, root_->id() != old_root_id, changes);
}
return true;
}
std::string AXTree::ToString() const {
return "AXTree" + data_.ToString() + "\n" + TreeToStringHelper(root_, 0);
}
AXNode* AXTree::CreateNode(AXNode* parent,
int32_t id,
int32_t index_in_parent,
AXTreeUpdateState* update_state) {
AXNode* new_node = new AXNode(parent, id, index_in_parent);
id_map_[new_node->id()] = new_node;
if (delegate_) {
if (update_state->HasChangedNode(new_node) &&
!update_state->HasRemovedNode(new_node))
delegate_->OnNodeCreated(this, new_node);
else
delegate_->OnNodeReparented(this, new_node);
}
return new_node;
}
bool AXTree::UpdateNode(const AXNodeData& src,
bool is_new_root,
AXTreeUpdateState* update_state) {
// This method updates one node in the tree based on serialized data
// received in an AXTreeUpdate. See AXTreeUpdate for pre and post
// conditions.
// Look up the node by id. If it's not found, then either the root
// of the tree is being swapped, or we're out of sync with the source
// and this is a serious error.
AXNode* node = GetFromId(src.id);
if (node) {
update_state->pending_nodes.erase(node);
if (delegate_ &&
update_state->new_nodes.find(node) == update_state->new_nodes.end())
delegate_->OnNodeDataWillChange(this, node->data(), src);
node->SetData(src);
} else {
if (!is_new_root) {
error_ = base::StringPrintf(
"%d is not in the tree and not the new root", src.id);
return false;
}
update_state->new_root = CreateNode(NULL, src.id, 0, update_state);
node = update_state->new_root;
update_state->new_nodes.insert(node);
node->SetData(src);
}
if (delegate_)
delegate_->OnNodeChanged(this, node);
// First, delete nodes that used to be children of this node but aren't
// anymore.
if (!DeleteOldChildren(node, src.child_ids, update_state)) {
// If DeleteOldChildren failed, we need to carefully clean up before
// returning false as well. In particular, if this node was a new root,
// we need to safely destroy the whole tree.
if (update_state->new_root) {
AXNode* old_root = root_;
root_ = nullptr;
DestroySubtree(old_root, update_state);
// Delete |node|'s subtree too as long as it wasn't already removed
// or added elsewhere in the tree.
if (update_state->removed_node_ids.find(src.id) ==
update_state->removed_node_ids.end() &&
update_state->new_nodes.find(node) != update_state->new_nodes.end()) {
DestroySubtree(node, update_state);
}
}
return false;
}
// Now build a new children vector, reusing nodes when possible,
// and swap it in.
std::vector<AXNode*> new_children;
bool success = CreateNewChildVector(
node, src.child_ids, &new_children, update_state);
node->SwapChildren(new_children);
// Update the root of the tree if needed.
if (is_new_root) {
// Make sure root_ always points to something valid or null_, even inside
// DestroySubtree.
AXNode* old_root = root_;
root_ = node;
if (old_root && old_root != node)
DestroySubtree(old_root, update_state);
}
return success;
}
void AXTree::DestroySubtree(AXNode* node,
AXTreeUpdateState* update_state) {
DCHECK(update_state);
if (delegate_) {
if (!update_state->HasChangedNode(node))
delegate_->OnSubtreeWillBeDeleted(this, node);
else
delegate_->OnSubtreeWillBeReparented(this, node);
}
DestroyNodeAndSubtree(node, update_state);
}
void AXTree::DestroyNodeAndSubtree(AXNode* node,
AXTreeUpdateState* update_state) {
if (delegate_) {
if (!update_state || !update_state->HasChangedNode(node))
delegate_->OnNodeWillBeDeleted(this, node);
else
delegate_->OnNodeWillBeReparented(this, node);
}
id_map_.erase(node->id());
for (int i = 0; i < node->child_count(); ++i)
DestroyNodeAndSubtree(node->ChildAtIndex(i), update_state);
if (update_state) {
update_state->pending_nodes.erase(node);
update_state->removed_node_ids.insert(node->id());
}
node->Destroy();
}
bool AXTree::DeleteOldChildren(AXNode* node,
const std::vector<int32_t>& new_child_ids,
AXTreeUpdateState* update_state) {
// Create a set of child ids in |src| for fast lookup, and return false
// if a duplicate is found;
std::set<int32_t> new_child_id_set;
for (size_t i = 0; i < new_child_ids.size(); ++i) {
if (new_child_id_set.find(new_child_ids[i]) != new_child_id_set.end()) {
error_ = base::StringPrintf("Node %d has duplicate child id %d",
node->id(), new_child_ids[i]);
return false;
}
new_child_id_set.insert(new_child_ids[i]);
}
// Delete the old children.
const std::vector<AXNode*>& old_children = node->children();
for (size_t i = 0; i < old_children.size(); ++i) {
int old_id = old_children[i]->id();
if (new_child_id_set.find(old_id) == new_child_id_set.end())
DestroySubtree(old_children[i], update_state);
}
return true;
}
bool AXTree::CreateNewChildVector(AXNode* node,
const std::vector<int32_t>& new_child_ids,
std::vector<AXNode*>* new_children,
AXTreeUpdateState* update_state) {
bool success = true;
for (size_t i = 0; i < new_child_ids.size(); ++i) {
int32_t child_id = new_child_ids[i];
int32_t index_in_parent = static_cast<int32_t>(i);
AXNode* child = GetFromId(child_id);
if (child) {
if (child->parent() != node) {
// This is a serious error - nodes should never be reparented.
// If this case occurs, continue so this node isn't left in an
// inconsistent state, but return failure at the end.
error_ = base::StringPrintf(
"Node %d reparented from %d to %d",
child->id(),
child->parent() ? child->parent()->id() : 0,
node->id());
success = false;
continue;
}
child->SetIndexInParent(index_in_parent);
} else {
child = CreateNode(node, child_id, index_in_parent, update_state);
update_state->pending_nodes.insert(child);
update_state->new_nodes.insert(child);
}
new_children->push_back(child);
}
return success;
}
} // namespace ui
|