summaryrefslogtreecommitdiff
path: root/chromium/ui/display/util/edid_parser.cc
blob: d1b248b92ed761cfa8b1379afecea22fb4a429d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/display/util/edid_parser.h"

#include <stddef.h>

#include <algorithm>
#include <bitset>

#include "base/check.h"
#include "base/hash/hash.h"
#include "base/metrics/histogram_functions.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/sys_byteorder.h"
#include "third_party/skia/include/core/SkColorSpace.h"
#include "ui/display/types/display_constants.h"
#include "ui/display/util/display_util.h"
#include "ui/gfx/geometry/size.h"

namespace display {
namespace {

constexpr char kParseEdidFailureMetric[] = "Display.ParseEdidFailure";

// These values are persisted to logs. Entries should not be renumbered and
// numeric values should never be reused.
enum class ParseEdidFailure {
  kNoError = 0,
  kManufacturerId = 1,
  kProductId = 2,
  kYearOfManufacture = 3,
  kBitsPerChannel = 4,
  kGamma = 5,
  kChromaticityCoordinates = 6,
  kDisplayName = 7,
  kExtensions = 8,
  kMaxValue = kExtensions,
};
}  // namespace

EdidParser::EdidParser(const std::vector<uint8_t>& edid_blob)
    : manufacturer_id_(0),
      product_id_(0),
      year_of_manufacture_(display::kInvalidYearOfManufacture),
      gamma_(0.0),
      bits_per_channel_(-1),
      primaries_({0}) {
  ParseEdid(edid_blob);
}

EdidParser::~EdidParser() = default;

uint32_t EdidParser::GetProductCode() const {
  return ((static_cast<uint32_t>(manufacturer_id_) << 16) |
          (static_cast<uint32_t>(product_id_)));
}

int64_t EdidParser::GetDisplayId(uint8_t output_index) const {
  // Generates product specific value from product_name instead of product code.
  // See https://crbug.com/240341
  const uint32_t product_code_hash =
      display_name_.empty() ? 0 : base::Hash(display_name_);
  // An ID based on display's index will be assigned later if this call fails.
  return GenerateDisplayID(manufacturer_id_, product_code_hash, output_index);
}

// static
void EdidParser::SplitProductCodeInManufacturerIdAndProductId(
    int64_t product_code,
    uint16_t* manufacturer_id,
    uint16_t* product_id) {
  DCHECK(manufacturer_id);
  DCHECK(product_id);
  // Undo GetProductCode() packing.
  *product_id = product_code & 0xFFFF;
  *manufacturer_id = (product_code >> 16) & 0xFFFF;
}

// static
std::string EdidParser::ManufacturerIdToString(uint16_t manufacturer_id) {
  // Constants are taken from "VESA Enhanced EDID Standard" Release A, Revision
  // 2, Sep 2006, Sec 3.4.1 "ID Manufacturer Name: 2 Bytes". Essentially these
  // are 3 5-bit ASCII characters packed in 2 bytes, where 1 means 'A', etc.
  constexpr uint8_t kFiveBitAsciiMask = 0x1F;
  constexpr char kFiveBitToAsciiOffset = 'A' - 1;
  constexpr size_t kSecondLetterOffset = 5;
  constexpr size_t kFirstLetterOffset = 10;

  char out[4] = {};
  out[2] = (manufacturer_id & kFiveBitAsciiMask) + kFiveBitToAsciiOffset;
  out[1] = ((manufacturer_id >> kSecondLetterOffset) & kFiveBitAsciiMask) +
           kFiveBitToAsciiOffset;
  out[0] = ((manufacturer_id >> kFirstLetterOffset) & kFiveBitAsciiMask) +
           kFiveBitToAsciiOffset;
  return out;
}

// static
std::string EdidParser::ProductIdToString(uint16_t product_id) {
  // From "VESA Enhanced EDID Standard" Release A, Revision 2, Sep 2006, Sec
  // 3.4.2 "ID Product Code: 2 Bytes": "The ID product code field, [...]
  // contains a 2-byte manufacturer assigned product code. [...] The 2 byte
  // number is stored in hex with the least significant byte listed first."
  uint8_t lower_char = (product_id >> 8) & 0xFF;
  uint8_t upper_char = product_id & 0xFF;
  return base::StringPrintf("%02X%02X", upper_char, lower_char);
}

void EdidParser::ParseEdid(const std::vector<uint8_t>& edid) {
  // See http://en.wikipedia.org/wiki/Extended_display_identification_data
  // for the details of EDID data format.  We use the following data:
  //   bytes 8-9: manufacturer EISA ID, in big-endian
  //   bytes 10-11: manufacturer product code, in little-endian
  constexpr size_t kManufacturerOffset = 8;
  constexpr size_t kManufacturerLength = 2;
  constexpr size_t kProductIdOffset = 10;
  constexpr size_t kProductIdLength = 2;

  if (edid.size() < kManufacturerOffset + kManufacturerLength) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kManufacturerId);
    return;  // Any other fields below are beyond this edid offset.
  }
  // ICC filename is generated based on these ids. We always read this as big
  // endian so that the file name matches bytes 8-11 as they appear in EDID.
  manufacturer_id_ =
      (edid[kManufacturerOffset] << 8) + edid[kManufacturerOffset + 1];

  if (edid.size() < kProductIdOffset + kProductIdLength) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kProductId);
    return;  // Any other fields below are beyond this edid offset.
  }
  product_id_ = (edid[kProductIdOffset] << 8) + edid[kProductIdOffset + 1];

  // Constants are taken from "VESA Enhanced EDID Standard" Release A, Revision
  // 2, Sep 2006, Sec 3.4.4 "Week and Year of Manufacture or Model Year: 2
  // Bytes".
  constexpr size_t kYearOfManufactureOffset = 17;
  constexpr uint32_t kValidValueLowerBound = 0x10;
  constexpr int32_t kYearOffset = 1990;

  if (edid.size() < kYearOfManufactureOffset + 1) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kYearOfManufacture);
    return;  // Any other fields below are beyond this edid offset.
  }
  const uint8_t byte_data = edid[kYearOfManufactureOffset];
  if (byte_data >= kValidValueLowerBound)
    year_of_manufacture_ = byte_data + kYearOffset;

  // Constants are taken from "VESA Enhanced EDID Standard" Release A, Revision
  // 1, Feb 2000, Sec 3.6 "Basic Display Parameters and Features: 5 bytes"
  static constexpr int kBitsPerChannelTable[] = {0, 6, 8, 10, 12, 14, 16, 0};

  constexpr size_t kEDIDRevisionNumberOffset = 19;
  constexpr uint8_t kEDIDRevision4Value = 4;

  constexpr size_t kVideoInputDefinitionOffset = 20;
  constexpr uint8_t kDigitalInfoMask = 0x80;
  constexpr uint8_t kColorBitDepthMask = 0x70;
  constexpr uint8_t kColorBitDepthOffset = 4;

  if (edid.size() < kVideoInputDefinitionOffset + 1) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kBitsPerChannel);
    return;  // Any other fields below are beyond this edid offset.
  }
  if (edid[kEDIDRevisionNumberOffset] >= kEDIDRevision4Value &&
      (edid[kVideoInputDefinitionOffset] & kDigitalInfoMask)) {
    // EDID needs to be revision 4 at least, and kDigitalInfoMask be set for
    // the Video Input Definition entry to describe a digital interface.
    bits_per_channel_ = kBitsPerChannelTable[(
        (edid[kVideoInputDefinitionOffset] & kColorBitDepthMask) >>
        kColorBitDepthOffset)];
  }

  // Constants are taken from "VESA Enhanced EDID Standard" Release A, Revision
  // 2, Sep 2006, Sec. 3.6.3 "Display Transfer Characteristics (GAMMA ): 1 Byte"
  constexpr size_t kGammaOffset = 23;
  constexpr double kGammaMultiplier = 100.0;
  constexpr double kGammaBias = 100.0;

  if (edid.size() < kGammaOffset + 1) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kGamma);
    return;  // Any other fields below are beyond this edid offset.
  }
  if (edid[kGammaOffset] != 0xFF) {
    // Otherwise the byte at kGammaOffset is 0xFF, gamma is stored elsewhere.
    gamma_ = (edid[kGammaOffset] + kGammaBias) / kGammaMultiplier;
  }

  // Offsets, lengths, positions and masks are taken from [1] (or [2]).
  // [1] http://en.wikipedia.org/wiki/Extended_display_identification_data
  // [2] "VESA Enhanced EDID Standard " Release A, Revision 1, Feb 2000, Sec 3.7
  //  "Phosphor or Filter Chromaticity: 10 bytes"
  constexpr size_t kChromaticityOffset = 25;
  constexpr unsigned int kChromaticityLength = 10;

  constexpr size_t kRedGreenLsbOffset = 25;
  constexpr uint8_t kRedxLsbPosition = 6;
  constexpr uint8_t kRedyLsbPosition = 4;
  constexpr uint8_t kGreenxLsbPosition = 2;
  constexpr uint8_t kGreenyLsbPosition = 0;

  constexpr size_t kBlueWhiteLsbOffset = 26;
  constexpr uint8_t kBluexLsbPosition = 6;
  constexpr uint8_t kBlueyLsbPosition = 4;
  constexpr uint8_t kWhitexLsbPosition = 2;
  constexpr uint8_t kWhiteyLsbPosition = 0;

  // All LSBits parts are 2 bits wide.
  constexpr uint8_t kLsbMask = 0x3;

  constexpr size_t kRedxMsbOffset = 27;
  constexpr size_t kRedyMsbOffset = 28;
  constexpr size_t kGreenxMsbOffset = 29;
  constexpr size_t kGreenyMsbOffset = 30;
  constexpr size_t kBluexMsbOffset = 31;
  constexpr size_t kBlueyMsbOffset = 32;
  constexpr size_t kWhitexMsbOffset = 33;
  constexpr size_t kWhiteyMsbOffset = 34;

  static_assert(
      kChromaticityOffset + kChromaticityLength == kWhiteyMsbOffset + 1,
      "EDID Parameter section length error");

  if (edid.size() < kChromaticityOffset + kChromaticityLength) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kChromaticityCoordinates);
    return;  // Any other fields below are beyond this edid offset.
  }

  const uint8_t red_green_lsbs = edid[kRedGreenLsbOffset];
  const uint8_t blue_white_lsbs = edid[kBlueWhiteLsbOffset];

  // Recompose the 10b values by appropriately mixing the 8 MSBs and the 2 LSBs,
  // then rescale to 1024;
  primaries_.fRX = ((edid[kRedxMsbOffset] << 2) +
                    ((red_green_lsbs >> kRedxLsbPosition) & kLsbMask)) /
                   1024.0f;
  primaries_.fRY = ((edid[kRedyMsbOffset] << 2) +
                    ((red_green_lsbs >> kRedyLsbPosition) & kLsbMask)) /
                   1024.0f;
  primaries_.fGX = ((edid[kGreenxMsbOffset] << 2) +
                    ((red_green_lsbs >> kGreenxLsbPosition) & kLsbMask)) /
                   1024.0f;
  primaries_.fGY = ((edid[kGreenyMsbOffset] << 2) +
                    ((red_green_lsbs >> kGreenyLsbPosition) & kLsbMask)) /
                   1024.0f;
  primaries_.fBX = ((edid[kBluexMsbOffset] << 2) +
                    ((blue_white_lsbs >> kBluexLsbPosition) & kLsbMask)) /
                   1024.0f;
  primaries_.fBY = ((edid[kBlueyMsbOffset] << 2) +
                    ((blue_white_lsbs >> kBlueyLsbPosition) & kLsbMask)) /
                   1024.0f;
  primaries_.fWX = ((edid[kWhitexMsbOffset] << 2) +
                    ((blue_white_lsbs >> kWhitexLsbPosition) & kLsbMask)) /
                   1024.0f;
  primaries_.fWY = ((edid[kWhiteyMsbOffset] << 2) +
                    ((blue_white_lsbs >> kWhiteyLsbPosition) & kLsbMask)) /
                   1024.0f;
  // TODO(mcasas): Up to two additional White Point coordinates can be provided
  // in a Display Descriptor. Read them if we are not satisfied with |fWX| or
  // |fWy|. https://crbug.com/771345.

  // See http://en.wikipedia.org/wiki/Extended_display_identification_data
  // for the details of EDID data format.  We use the following data:
  //   bytes 54-125: four descriptors (18-bytes each) which may contain
  //     the display name.
  constexpr size_t kDescriptorOffset = 54;
  constexpr size_t kNumDescriptors = 4;
  constexpr size_t kDescriptorLength = 18;
  // The specifier types.
  constexpr uint8_t kMonitorNameDescriptor = 0xfc;

  display_name_.clear();
  for (size_t i = 0; i < kNumDescriptors; ++i) {
    if (edid.size() < kDescriptorOffset + (i + 1) * kDescriptorLength)
      break;

    size_t offset = kDescriptorOffset + i * kDescriptorLength;

    // Detailed Timing Descriptor:
    if (edid[offset] != 0 && edid[offset + 1] != 0) {
      constexpr int kMaxResolution = 10080;  // 8k display.

      // EDID may contain multiple DTD. Use the first one, that contains the
      // highest resolution.
      if (active_pixel_size_.IsEmpty()) {
        constexpr size_t kHorizontalPixelLsbOffset = 2;
        constexpr size_t kHorizontalPixelMsbOffset = 4;
        constexpr size_t kVerticalPixelLsbOffset = 5;
        constexpr size_t kVerticalPixelMsbOffset = 7;

        const uint8_t h_lsb = edid[offset + kHorizontalPixelLsbOffset];
        const uint8_t h_msb = edid[offset + kHorizontalPixelMsbOffset];
        int h_pixel = std::min(h_lsb + ((h_msb & 0xF0) << 4), kMaxResolution);

        const uint8_t v_lsb = edid[offset + kVerticalPixelLsbOffset];
        const uint8_t v_msb = edid[offset + kVerticalPixelMsbOffset];
        int v_pixel = std::min(v_lsb + ((v_msb & 0xF0) << 4), kMaxResolution);

        active_pixel_size_.SetSize(h_pixel, v_pixel);
      }
      continue;
    }

    // EDID Other Monitor Descriptors:
    // If the descriptor contains the display name, it has the following
    // structure:
    //   bytes 0-2, 4: \0
    //   byte 3: descriptor type, defined above.
    //   bytes 5-17: text data, ending with \r, padding with spaces
    // we should check bytes 0-2 and 4, since it may have other values in
    // case that the descriptor contains other type of data.
    if (edid[offset] == 0 && edid[offset + 1] == 0 && edid[offset + 2] == 0 &&
        edid[offset + 3] == kMonitorNameDescriptor && edid[offset + 4] == 0) {
      std::string name(reinterpret_cast<const char*>(&edid[offset + 5]),
                       kDescriptorLength - 5);
      base::TrimWhitespaceASCII(name, base::TRIM_TRAILING, &display_name_);
      continue;
    }
  }

  // Verify if the |display_name_| consists of printable characters only.
  // Replace unprintable chars with white space.
  std::replace_if(
      display_name_.begin(), display_name_.end(),
      [](char c) { return !isascii(c) || !isprint(c); }, ' ');

  // See http://en.wikipedia.org/wiki/Extended_display_identification_data
  // for the extension format of EDID.  Also see EIA/CEA-861 spec for
  // the format of the extensions and how video capability is encoded.
  //  - byte 0: tag.  should be 02h.
  //  - byte 1: revision.  only cares revision 3 (03h).
  //  - byte 4-: data block.
  constexpr size_t kExtensionBaseOffset = 128;
  constexpr size_t kExtensionSize = 128;
  constexpr size_t kNumExtensionsOffset = 126;
  constexpr size_t kDataBlockOffset = 4;
  constexpr uint8_t kCEAExtensionTag = '\x02';
  constexpr uint8_t kExpectedExtensionRevision = '\x03';
  constexpr uint8_t kExtendedTag = 7;
  constexpr uint8_t kExtendedVideoCapabilityTag = 0;
  constexpr uint8_t kPTOverscanFlagPosition = 4;
  constexpr uint8_t kITOverscanFlagPosition = 2;
  constexpr uint8_t kCEOverscanFlagPosition = 0;
  // See CTA-861-F, particularly Table 56 "Colorimetry Data Block".
  constexpr uint8_t kColorimetryDataBlockCapabilityTag = 0x05;
  constexpr gfx::ColorSpace::PrimaryID kPrimaryIDMap[] = {
      // xvYCC601. Standard Definition Colorimetry based on IEC 61966-2-4.
      gfx::ColorSpace::PrimaryID::SMPTE170M,
      // xvYCC709. High Definition Colorimetry based on IEC 61966-2-4.
      gfx::ColorSpace::PrimaryID::BT709,
      // sYCC601. Colorimetry based on IEC 61966-2-1/Amendment 1.
      gfx::ColorSpace::PrimaryID::SMPTE170M,
      // opYCC601. Colorimetry based on IEC 61966-2-5, Annex A.
      gfx::ColorSpace::PrimaryID::SMPTE170M,
      // opRGB, Colorimetry based on IEC 61966-2-5.
      gfx::ColorSpace::PrimaryID::SMPTE170M,
      // BT2020RGB. Colorimetry based on ITU-R BT.2020 R’G’B’.
      gfx::ColorSpace::PrimaryID::BT2020,
      // BT2020YCC. Colorimetry based on ITU-R BT.2020 Y’C’BC’R.
      gfx::ColorSpace::PrimaryID::BT2020,
      // BT2020cYCC. Colorimetry based on ITU-R BT.2020 Y’cC’BCC’RC.
      gfx::ColorSpace::PrimaryID::BT2020,
  };
  // See CEA 861.G-2018, Sec.7.5.13, "HDR Static Metadata Data Block" for these.
  constexpr uint8_t kHDRStaticMetadataCapabilityTag = 0x6;
  constexpr gfx::ColorSpace::TransferID kTransferIDMap[] = {
      gfx::ColorSpace::TransferID::BT709,
      gfx::ColorSpace::TransferID::GAMMA24,
      gfx::ColorSpace::TransferID::SMPTEST2084,
      // STD B67 is also known as Hybrid-log Gamma (HLG).
      gfx::ColorSpace::TransferID::ARIB_STD_B67,
  };
  constexpr uint8_t kHDRStaticMetadataDataBlockLengthMask = 0x1F;

  if (edid.size() < kNumExtensionsOffset + 1) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kExtensions);
    return;  // Any other fields below are beyond this edid offset.
  }
  const uint8_t num_extensions = edid[kNumExtensionsOffset];

  for (size_t i = 0; i < num_extensions; ++i) {
    // Skip parsing the whole extension if size is not enough.
    if (edid.size() < kExtensionBaseOffset + (i + 1) * kExtensionSize)
      break;

    const size_t extension_offset = kExtensionBaseOffset + i * kExtensionSize;
    const uint8_t cea_tag = edid[extension_offset];
    const uint8_t revision = edid[extension_offset + 1];
    if (cea_tag != kCEAExtensionTag || revision != kExpectedExtensionRevision)
      continue;

    const uint8_t timing_descriptors_start = std::min(
        edid[extension_offset + 2], static_cast<unsigned char>(kExtensionSize));

    for (size_t data_offset = extension_offset + kDataBlockOffset;
         data_offset < extension_offset + timing_descriptors_start;) {
      // A data block is encoded as:
      // - byte 1 high 3 bits: tag. '07' for extended tags.
      // - byte 1 remaining bits: the length of data block.
      // - byte 2: the extended tag. E.g. '0' for video capability. Values are
      //   defined by the k...CapabilityTag constants.
      // - byte 3: the capability.
      const uint8_t tag = edid[data_offset] >> 5;
      const uint8_t payload_length = edid[data_offset] & 0x1f;
      if (data_offset + payload_length + 1 > edid.size())
        break;

      if (tag != kExtendedTag || payload_length < 2) {
        data_offset += payload_length + 1;
        continue;
      }

      switch (edid[data_offset + 1]) {
        case kExtendedVideoCapabilityTag:
          // The difference between preferred, IT, and CE video formats doesn't
          // matter. Set the flag to true if any of these flags are true.
          overscan_flag_ =
              (edid[data_offset + 2] & (1 << kPTOverscanFlagPosition)) ||
              (edid[data_offset + 2] & (1 << kITOverscanFlagPosition)) ||
              (edid[data_offset + 2] & (1 << kCEOverscanFlagPosition));
          break;

        case kColorimetryDataBlockCapabilityTag: {
          constexpr size_t kMaxNumColorimetryEntries = 8;
          const std::bitset<kMaxNumColorimetryEntries>
              supported_primaries_bitfield(edid[data_offset + 2]);
          static_assert(
              kMaxNumColorimetryEntries == base::size(kPrimaryIDMap),
              "kPrimaryIDMap should describe all possible colorimetry entries");
          for (size_t i = 0; i < kMaxNumColorimetryEntries; ++i) {
            if (supported_primaries_bitfield[i])
              supported_color_primary_ids_.insert(kPrimaryIDMap[i]);
          }
          break;
        }

        case kHDRStaticMetadataCapabilityTag: {
          constexpr size_t kMaxNumHDRStaticMedatataEntries = 4;
          const std::bitset<kMaxNumHDRStaticMedatataEntries>
              supported_eotfs_bitfield(edid[data_offset + 2]);
          static_assert(
              kMaxNumHDRStaticMedatataEntries == base::size(kTransferIDMap),
              "kTransferIDMap should describe all possible transfer entries");
          for (size_t i = 0; i < kMaxNumHDRStaticMedatataEntries; ++i) {
            if (supported_eotfs_bitfield[i])
              supported_color_transfer_ids_.insert(kTransferIDMap[i]);
          }

          // See CEA 861.3-2015, Sec.7.5.13, "HDR Static Metadata Data Block"
          // for details on the following calculations.
          const uint8_t length_of_data_block =
              edid[data_offset] & kHDRStaticMetadataDataBlockLengthMask;
          if (length_of_data_block <= 3)
            break;
          const uint8_t desired_content_max_luminance = edid[data_offset + 4];
          luminance_ = base::make_optional<Luminance>({});
          luminance_->max = 50.0 * pow(2, desired_content_max_luminance / 32.0);

          if (length_of_data_block <= 4)
            break;
          const uint8_t desired_content_max_frame_average_luminance =
              edid[data_offset + 5];
          luminance_->max_avg =
              50.0 * pow(2, desired_content_max_frame_average_luminance / 32.0);

          if (length_of_data_block <= 5)
            break;
          const uint8_t desired_content_min_luminance = edid[data_offset + 6];
          luminance_->min = luminance_->max *
                            pow(desired_content_min_luminance / 255.0, 2) /
                            100.0;
          break;
        }
        default:
          break;
      }

      data_offset += payload_length + 1;
    }
  }
  base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                ParseEdidFailure::kNoError);
}

}  // namespace display