summaryrefslogtreecommitdiff
path: root/chromium/ui/events/latency_info.cc
blob: a3a11828db041ee90e844c9076a4d3bd70fb24e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/debug/trace_event.h"
#include "base/json/json_writer.h"
#include "base/memory/scoped_ptr.h"
#include "base/strings/stringprintf.h"
#include "ui/events/latency_info.h"

#include <algorithm>

namespace {
const char* GetComponentName(ui::LatencyComponentType type) {
#define CASE_TYPE(t) case ui::t:  return #t
  switch (type) {
    CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT);
    CASE_TYPE(INPUT_EVENT_LATENCY_SCROLL_UPDATE_RWH_COMPONENT);
    CASE_TYPE(INPUT_EVENT_LATENCY_SCROLL_UPDATE_ORIGINAL_COMPONENT);
    CASE_TYPE(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT);
    CASE_TYPE(INPUT_EVENT_LATENCY_UI_COMPONENT);
    CASE_TYPE(INPUT_EVENT_LATENCY_RENDERING_SCHEDULED_COMPONENT);
    CASE_TYPE(INPUT_EVENT_LATENCY_ACKED_TOUCH_COMPONENT);
    CASE_TYPE(WINDOW_SNAPSHOT_FRAME_NUMBER_COMPONENT);
    CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_MOUSE_COMPONENT);
    CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_TOUCH_COMPONENT);
    CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_GESTURE_COMPONENT);
    CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT);
    CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT);
    CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT);
    CASE_TYPE(LATENCY_INFO_LIST_TERMINATED_OVERFLOW_COMPONENT);
    default:
      DLOG(WARNING) << "Unhandled LatencyComponentType.\n";
      break;
  }
#undef CASE_TYPE
  return "unknown";
}

bool IsTerminalComponent(ui::LatencyComponentType type) {
  switch (type) {
    case ui::INPUT_EVENT_LATENCY_TERMINATED_MOUSE_COMPONENT:
    case ui::INPUT_EVENT_LATENCY_TERMINATED_TOUCH_COMPONENT:
    case ui::INPUT_EVENT_LATENCY_TERMINATED_GESTURE_COMPONENT:
    case ui::INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT:
    case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT:
    case ui::INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT:
    case ui::LATENCY_INFO_LIST_TERMINATED_OVERFLOW_COMPONENT:
      return true;
    default:
      return false;
  }
}

bool IsBeginComponent(ui::LatencyComponentType type) {
  return (type == ui::INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT);
}

// This class is for converting latency info to trace buffer friendly format.
class LatencyInfoTracedValue : public base::debug::ConvertableToTraceFormat {
 public:
  static scoped_refptr<ConvertableToTraceFormat> FromValue(
      scoped_ptr<base::Value> value);

  virtual void AppendAsTraceFormat(std::string* out) const OVERRIDE;

 private:
  explicit LatencyInfoTracedValue(base::Value* value);
  virtual ~LatencyInfoTracedValue();

  scoped_ptr<base::Value> value_;

  DISALLOW_COPY_AND_ASSIGN(LatencyInfoTracedValue);
};

scoped_refptr<base::debug::ConvertableToTraceFormat>
LatencyInfoTracedValue::FromValue(scoped_ptr<base::Value> value) {
  return scoped_refptr<base::debug::ConvertableToTraceFormat>(
      new LatencyInfoTracedValue(value.release()));
}

LatencyInfoTracedValue::~LatencyInfoTracedValue() {
}

void LatencyInfoTracedValue::AppendAsTraceFormat(std::string* out) const {
  std::string tmp;
  base::JSONWriter::Write(value_.get(), &tmp);
  *out += tmp;
}

LatencyInfoTracedValue::LatencyInfoTracedValue(base::Value* value)
    : value_(value) {
}

// Converts latencyinfo into format that can be dumped into trace buffer.
scoped_refptr<base::debug::ConvertableToTraceFormat> AsTraceableData(
    const ui::LatencyInfo& latency) {
  scoped_ptr<base::DictionaryValue> record_data(new base::DictionaryValue());
  for (ui::LatencyInfo::LatencyMap::const_iterator it =
           latency.latency_components.begin();
       it != latency.latency_components.end(); ++it) {
    base::DictionaryValue* component_info = new base::DictionaryValue();
    component_info->SetDouble("comp_id", it->first.second);
    component_info->SetDouble("time", it->second.event_time.ToInternalValue());
    component_info->SetDouble("count", it->second.event_count);
    record_data->Set(GetComponentName(it->first.first), component_info);
  }
  record_data->SetDouble("trace_id", latency.trace_id);
  return LatencyInfoTracedValue::FromValue(record_data.PassAs<base::Value>());
}

}  // namespace

namespace ui {

LatencyInfo::LatencyInfo() : trace_id(-1), terminated(false) {
}

LatencyInfo::~LatencyInfo() {
}

void LatencyInfo::MergeWith(const LatencyInfo& other) {
  for (LatencyMap::const_iterator it = other.latency_components.begin();
       it != other.latency_components.end();
       ++it) {
    AddLatencyNumberWithTimestamp(it->first.first,
                                  it->first.second,
                                  it->second.sequence_number,
                                  it->second.event_time,
                                  it->second.event_count,
                                  false);
  }
}

void LatencyInfo::AddNewLatencyFrom(const LatencyInfo& other) {
    for (LatencyMap::const_iterator it = other.latency_components.begin();
         it != other.latency_components.end();
         ++it) {
      if (!FindLatency(it->first.first, it->first.second, NULL)) {
        AddLatencyNumberWithTimestamp(it->first.first,
                                      it->first.second,
                                      it->second.sequence_number,
                                      it->second.event_time,
                                      it->second.event_count,
                                      false);
      }
    }
}

void LatencyInfo::AddLatencyNumber(LatencyComponentType component,
                                   int64 id,
                                   int64 component_sequence_number) {
  AddLatencyNumberWithTimestamp(component, id, component_sequence_number,
                                base::TimeTicks::HighResNow(), 1, true);
}

void LatencyInfo::AddLatencyNumberWithTimestamp(LatencyComponentType component,
                                                int64 id,
                                                int64 component_sequence_number,
                                                base::TimeTicks time,
                                                uint32 event_count,
                                                bool dump_to_trace) {
  if (dump_to_trace && IsBeginComponent(component)) {
    // Should only ever add begin component once.
    CHECK_EQ(-1, trace_id);
    trace_id = component_sequence_number;
    TRACE_EVENT_ASYNC_BEGIN0("benchmark",
                             "InputLatency",
                             TRACE_ID_DONT_MANGLE(trace_id));
  }

  LatencyMap::key_type key = std::make_pair(component, id);
  LatencyMap::iterator it = latency_components.find(key);
  if (it == latency_components.end()) {
    LatencyComponent info = {component_sequence_number, time, event_count};
    latency_components[key] = info;
  } else {
    it->second.sequence_number = std::max(component_sequence_number,
                                          it->second.sequence_number);
    uint32 new_count = event_count + it->second.event_count;
    if (event_count > 0 && new_count != 0) {
      // Do a weighted average, so that the new event_time is the average of
      // the times of events currently in this structure with the time passed
      // into this method.
      it->second.event_time += (time - it->second.event_time) * event_count /
          new_count;
      it->second.event_count = new_count;
    }
  }

  if (dump_to_trace && IsTerminalComponent(component) && trace_id != -1) {
    // Should only ever add terminal component once.
    CHECK(!terminated);
    terminated = true;
    TRACE_EVENT_ASYNC_END1("benchmark",
                           "InputLatency",
                           TRACE_ID_DONT_MANGLE(trace_id),
                           "data", AsTraceableData(*this));
  }
}

bool LatencyInfo::FindLatency(LatencyComponentType type,
                              int64 id,
                              LatencyComponent* output) const {
  LatencyMap::const_iterator it = latency_components.find(
      std::make_pair(type, id));
  if (it == latency_components.end())
    return false;
  if (output)
    *output = it->second;
  return true;
}

void LatencyInfo::RemoveLatency(LatencyComponentType type) {
  LatencyMap::iterator it = latency_components.begin();
  while (it != latency_components.end()) {
    if (it->first.first == type) {
      LatencyMap::iterator tmp = it;
      ++it;
      latency_components.erase(tmp);
    } else {
      it++;
    }
  }
}

void LatencyInfo::Clear() {
  latency_components.clear();
}

void LatencyInfo::TraceEventType(const char* event_type) {
  TRACE_EVENT_ASYNC_STEP_INTO0("benchmark",
                               "InputLatency",
                               TRACE_ID_DONT_MANGLE(trace_id),
                               event_type);
}

}  // namespace ui