summaryrefslogtreecommitdiff
path: root/chromium/v8/src/base/small-vector.h
blob: b11dfb86b446dcd8c81136ea897c213979ebc7eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_BASE_SMALL_VECTOR_H_
#define V8_BASE_SMALL_VECTOR_H_

#include <algorithm>
#include <type_traits>
#include <utility>

#include "src/base/bits.h"
#include "src/base/macros.h"

namespace v8 {
namespace base {

// Minimal SmallVector implementation. Uses inline storage first, switches to
// malloc when it overflows.
template <typename T, size_t kSize>
class SmallVector {
  // Currently only support trivially copyable and trivially destructible data
  // types, as it uses memcpy to copy elements and never calls destructors.
  ASSERT_TRIVIALLY_COPYABLE(T);
  STATIC_ASSERT(std::is_trivially_destructible<T>::value);

 public:
  static constexpr size_t kInlineSize = kSize;

  SmallVector() = default;
  explicit SmallVector(size_t size) { resize_no_init(size); }
  SmallVector(const SmallVector& other) V8_NOEXCEPT { *this = other; }
  SmallVector(SmallVector&& other) V8_NOEXCEPT { *this = std::move(other); }
  SmallVector(std::initializer_list<T> init) {
    resize_no_init(init.size());
    memcpy(begin_, init.begin(), sizeof(T) * init.size());
  }

  ~SmallVector() {
    if (is_big()) free(begin_);
  }

  SmallVector& operator=(const SmallVector& other) V8_NOEXCEPT {
    if (this == &other) return *this;
    size_t other_size = other.size();
    if (capacity() < other_size) {
      // Create large-enough heap-allocated storage.
      if (is_big()) free(begin_);
      begin_ = reinterpret_cast<T*>(malloc(sizeof(T) * other_size));
      end_of_storage_ = begin_ + other_size;
    }
    memcpy(begin_, other.begin_, sizeof(T) * other_size);
    end_ = begin_ + other_size;
    return *this;
  }

  SmallVector& operator=(SmallVector&& other) V8_NOEXCEPT {
    if (this == &other) return *this;
    if (other.is_big()) {
      if (is_big()) free(begin_);
      begin_ = other.begin_;
      end_ = other.end_;
      end_of_storage_ = other.end_of_storage_;
      other.reset();
    } else {
      DCHECK_GE(capacity(), other.size());  // Sanity check.
      size_t other_size = other.size();
      memcpy(begin_, other.begin_, sizeof(T) * other_size);
      end_ = begin_ + other_size;
    }
    return *this;
  }

  T* data() { return begin_; }
  const T* data() const { return begin_; }

  T* begin() { return begin_; }
  const T* begin() const { return begin_; }

  T* end() { return end_; }
  const T* end() const { return end_; }

  size_t size() const { return end_ - begin_; }
  bool empty() const { return end_ == begin_; }
  size_t capacity() const { return end_of_storage_ - begin_; }

  T& back() {
    DCHECK_NE(0, size());
    return end_[-1];
  }
  const T& back() const {
    DCHECK_NE(0, size());
    return end_[-1];
  }

  T& operator[](size_t index) {
    DCHECK_GT(size(), index);
    return begin_[index];
  }

  const T& at(size_t index) const {
    DCHECK_GT(size(), index);
    return begin_[index];
  }

  const T& operator[](size_t index) const { return at(index); }

  template <typename... Args>
  void emplace_back(Args&&... args) {
    T* end = end_;
    if (V8_UNLIKELY(end == end_of_storage_)) end = Grow();
    new (end) T(std::forward<Args>(args)...);
    end_ = end + 1;
  }

  void pop_back(size_t count = 1) {
    DCHECK_GE(size(), count);
    end_ -= count;
  }

  void resize_no_init(size_t new_size) {
    // Resizing without initialization is safe if T is trivially copyable.
    ASSERT_TRIVIALLY_COPYABLE(T);
    if (new_size > capacity()) Grow(new_size);
    end_ = begin_ + new_size;
  }

  // Clear without freeing any storage.
  void clear() { end_ = begin_; }

  // Clear and go back to inline storage.
  void reset() {
    begin_ = inline_storage_begin();
    end_ = begin_;
    end_of_storage_ = begin_ + kInlineSize;
  }

 private:
  T* begin_ = inline_storage_begin();
  T* end_ = begin_;
  T* end_of_storage_ = begin_ + kInlineSize;
  typename std::aligned_storage<sizeof(T) * kInlineSize, alignof(T)>::type
      inline_storage_;

  // Grows the backing store by a factor of two. Returns the new end of the used
  // storage (this reduces binary size).
  V8_NOINLINE T* Grow() { return Grow(0); }

  // Grows the backing store by a factor of two, and at least to {min_capacity}.
  V8_NOINLINE T* Grow(size_t min_capacity) {
    size_t in_use = end_ - begin_;
    size_t new_capacity =
        base::bits::RoundUpToPowerOfTwo(std::max(min_capacity, 2 * capacity()));
    T* new_storage = reinterpret_cast<T*>(malloc(sizeof(T) * new_capacity));
    memcpy(new_storage, begin_, sizeof(T) * in_use);
    if (is_big()) free(begin_);
    begin_ = new_storage;
    end_ = new_storage + in_use;
    end_of_storage_ = new_storage + new_capacity;
    return end_;
  }

  bool is_big() const { return begin_ != inline_storage_begin(); }

  T* inline_storage_begin() { return reinterpret_cast<T*>(&inline_storage_); }
  const T* inline_storage_begin() const {
    return reinterpret_cast<const T*>(&inline_storage_);
  }
};

}  // namespace base
}  // namespace v8

#endif  // V8_BASE_SMALL_VECTOR_H_