summaryrefslogtreecommitdiff
path: root/chromium/v8/src/builtins/builtins-intl.cc
blob: 45471171c7741dacc61c7f12c11d2e8e0ba656b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_INTL_SUPPORT
#error Internationalization is expected to be enabled.
#endif  // V8_INTL_SUPPORT

#include "src/builtins/builtins-intl.h"
#include "src/builtins/builtins-utils.h"
#include "src/builtins/builtins.h"
#include "src/intl.h"
#include "src/objects-inl.h"
#include "src/objects/intl-objects.h"

#include "unicode/decimfmt.h"
#include "unicode/fieldpos.h"
#include "unicode/fpositer.h"
#include "unicode/normalizer2.h"
#include "unicode/numfmt.h"
#include "unicode/ufieldpositer.h"
#include "unicode/unistr.h"
#include "unicode/ustring.h"

namespace v8 {
namespace internal {

BUILTIN(StringPrototypeToUpperCaseIntl) {
  HandleScope scope(isolate);
  TO_THIS_STRING(string, "String.prototype.toUpperCase");
  string = String::Flatten(string);
  return ConvertCase(string, true, isolate);
}

BUILTIN(StringPrototypeNormalizeIntl) {
  HandleScope handle_scope(isolate);
  TO_THIS_STRING(string, "String.prototype.normalize");

  Handle<Object> form_input = args.atOrUndefined(isolate, 1);
  const char* form_name;
  UNormalization2Mode form_mode;
  if (form_input->IsUndefined(isolate)) {
    // default is FNC
    form_name = "nfc";
    form_mode = UNORM2_COMPOSE;
  } else {
    Handle<String> form;
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, form,
                                       Object::ToString(isolate, form_input));

    if (String::Equals(form, isolate->factory()->NFC_string())) {
      form_name = "nfc";
      form_mode = UNORM2_COMPOSE;
    } else if (String::Equals(form, isolate->factory()->NFD_string())) {
      form_name = "nfc";
      form_mode = UNORM2_DECOMPOSE;
    } else if (String::Equals(form, isolate->factory()->NFKC_string())) {
      form_name = "nfkc";
      form_mode = UNORM2_COMPOSE;
    } else if (String::Equals(form, isolate->factory()->NFKD_string())) {
      form_name = "nfkc";
      form_mode = UNORM2_DECOMPOSE;
    } else {
      Handle<String> valid_forms =
          isolate->factory()->NewStringFromStaticChars("NFC, NFD, NFKC, NFKD");
      THROW_NEW_ERROR_RETURN_FAILURE(
          isolate,
          NewRangeError(MessageTemplate::kNormalizationForm, valid_forms));
    }
  }

  int length = string->length();
  string = String::Flatten(string);
  icu::UnicodeString result;
  std::unique_ptr<uc16[]> sap;
  UErrorCode status = U_ZERO_ERROR;
  {
    DisallowHeapAllocation no_gc;
    String::FlatContent flat = string->GetFlatContent();
    const UChar* src = GetUCharBufferFromFlat(flat, &sap, length);
    icu::UnicodeString input(false, src, length);
    // Getting a singleton. Should not free it.
    const icu::Normalizer2* normalizer =
        icu::Normalizer2::getInstance(nullptr, form_name, form_mode, status);
    DCHECK(U_SUCCESS(status));
    CHECK_NOT_NULL(normalizer);
    int32_t normalized_prefix_length =
        normalizer->spanQuickCheckYes(input, status);
    // Quick return if the input is already normalized.
    if (length == normalized_prefix_length) return *string;
    icu::UnicodeString unnormalized =
        input.tempSubString(normalized_prefix_length);
    // Read-only alias of the normalized prefix.
    result.setTo(false, input.getBuffer(), normalized_prefix_length);
    // copy-on-write; normalize the suffix and append to |result|.
    normalizer->normalizeSecondAndAppend(result, unnormalized, status);
  }

  if (U_FAILURE(status)) {
    return isolate->heap()->undefined_value();
  }

  RETURN_RESULT_OR_FAILURE(
      isolate, isolate->factory()->NewStringFromTwoByte(Vector<const uint16_t>(
                   reinterpret_cast<const uint16_t*>(result.getBuffer()),
                   result.length())));
}

namespace {

// The list comes from third_party/icu/source/i18n/unicode/unum.h.
// They're mapped to NumberFormat part types mentioned throughout
// https://tc39.github.io/ecma402/#sec-partitionnumberpattern .
Handle<String> IcuNumberFieldIdToNumberType(int32_t field_id, double number,
                                            Isolate* isolate) {
  switch (static_cast<UNumberFormatFields>(field_id)) {
    case UNUM_INTEGER_FIELD:
      if (std::isfinite(number)) return isolate->factory()->integer_string();
      if (std::isnan(number)) return isolate->factory()->nan_string();
      return isolate->factory()->infinity_string();
    case UNUM_FRACTION_FIELD:
      return isolate->factory()->fraction_string();
    case UNUM_DECIMAL_SEPARATOR_FIELD:
      return isolate->factory()->decimal_string();
    case UNUM_GROUPING_SEPARATOR_FIELD:
      return isolate->factory()->group_string();
    case UNUM_CURRENCY_FIELD:
      return isolate->factory()->currency_string();
    case UNUM_PERCENT_FIELD:
      return isolate->factory()->percentSign_string();
    case UNUM_SIGN_FIELD:
      return number < 0 ? isolate->factory()->minusSign_string()
                        : isolate->factory()->plusSign_string();

    case UNUM_EXPONENT_SYMBOL_FIELD:
    case UNUM_EXPONENT_SIGN_FIELD:
    case UNUM_EXPONENT_FIELD:
      // We should never get these because we're not using any scientific
      // formatter.
      UNREACHABLE();
      return Handle<String>();

    case UNUM_PERMILL_FIELD:
      // We're not creating any permill formatter, and it's not even clear how
      // that would be possible with the ICU API.
      UNREACHABLE();
      return Handle<String>();

    default:
      UNREACHABLE();
      return Handle<String>();
  }
}

bool AddElement(Handle<JSArray> array, int index,
                Handle<String> field_type_string,
                const icu::UnicodeString& formatted, int32_t begin, int32_t end,
                Isolate* isolate) {
  HandleScope scope(isolate);
  Factory* factory = isolate->factory();
  Handle<JSObject> element = factory->NewJSObject(isolate->object_function());
  Handle<String> value;
  JSObject::AddProperty(element, factory->type_string(), field_type_string,
                        NONE);

  icu::UnicodeString field(formatted.tempSubStringBetween(begin, end));
  ASSIGN_RETURN_ON_EXCEPTION_VALUE(
      isolate, value,
      factory->NewStringFromTwoByte(Vector<const uint16_t>(
          reinterpret_cast<const uint16_t*>(field.getBuffer()),
          field.length())),
      false);

  JSObject::AddProperty(element, factory->value_string(), value, NONE);
  RETURN_ON_EXCEPTION_VALUE(
      isolate, JSObject::AddDataElement(array, index, element, NONE), false);
  return true;
}

bool cmp_NumberFormatSpan(const NumberFormatSpan& a,
                          const NumberFormatSpan& b) {
  // Regions that start earlier should be encountered earlier.
  if (a.begin_pos < b.begin_pos) return true;
  if (a.begin_pos > b.begin_pos) return false;
  // For regions that start in the same place, regions that last longer should
  // be encountered earlier.
  if (a.end_pos < b.end_pos) return false;
  if (a.end_pos > b.end_pos) return true;
  // For regions that are exactly the same, one of them must be the "literal"
  // backdrop we added, which has a field_id of -1, so consider higher field_ids
  // to be later.
  return a.field_id < b.field_id;
}

Object* FormatNumberToParts(Isolate* isolate, icu::NumberFormat* fmt,
                            double number) {
  Factory* factory = isolate->factory();

  icu::UnicodeString formatted;
  icu::FieldPositionIterator fp_iter;
  UErrorCode status = U_ZERO_ERROR;
  fmt->format(number, formatted, &fp_iter, status);
  if (U_FAILURE(status)) return isolate->heap()->undefined_value();

  Handle<JSArray> result = factory->NewJSArray(0);
  int32_t length = formatted.length();
  if (length == 0) return *result;

  std::vector<NumberFormatSpan> regions;
  // Add a "literal" backdrop for the entire string. This will be used if no
  // other region covers some part of the formatted string. It's possible
  // there's another field with exactly the same begin and end as this backdrop,
  // in which case the backdrop's field_id of -1 will give it lower priority.
  regions.push_back(NumberFormatSpan(-1, 0, formatted.length()));

  {
    icu::FieldPosition fp;
    while (fp_iter.next(fp)) {
      regions.push_back(NumberFormatSpan(fp.getField(), fp.getBeginIndex(),
                                         fp.getEndIndex()));
    }
  }

  std::vector<NumberFormatSpan> parts = FlattenRegionsToParts(&regions);

  int index = 0;
  for (auto it = parts.begin(); it < parts.end(); it++) {
    NumberFormatSpan part = *it;
    Handle<String> field_type_string =
        part.field_id == -1
            ? isolate->factory()->literal_string()
            : IcuNumberFieldIdToNumberType(part.field_id, number, isolate);
    if (!AddElement(result, index, field_type_string, formatted, part.begin_pos,
                    part.end_pos, isolate)) {
      return isolate->heap()->undefined_value();
    }
    ++index;
  }
  JSObject::ValidateElements(*result);

  return *result;
}
}  // namespace

// Flattens a list of possibly-overlapping "regions" to a list of
// non-overlapping "parts". At least one of the input regions must span the
// entire space of possible indexes. The regions parameter will sorted in-place
// according to some criteria; this is done for performance to avoid copying the
// input.
std::vector<NumberFormatSpan> FlattenRegionsToParts(
    std::vector<NumberFormatSpan>* regions) {
  // The intention of this algorithm is that it's used to translate ICU "fields"
  // to JavaScript "parts" of a formatted string. Each ICU field and JavaScript
  // part has an integer field_id, which corresponds to something like "grouping
  // separator", "fraction", or "percent sign", and has a begin and end
  // position. Here's a diagram of:

  // var nf = new Intl.NumberFormat(['de'], {style:'currency',currency:'EUR'});
  // nf.formatToParts(123456.78);

  //               :       6
  //  input regions:    0000000211 7
  // ('-' means -1):    ------------
  // formatted string: "123.456,78 €"
  // output parts:      0006000211-7

  // To illustrate the requirements of this algorithm, here's a contrived and
  // convoluted example of inputs and expected outputs:

  //              :          4
  //              :      22 33    3
  //              :      11111   22
  // input regions:     0000000  111
  //              :     ------------
  // formatted string: "abcdefghijkl"
  // output parts:      0221340--231
  // (The characters in the formatted string are irrelevant to this function.)

  // We arrange the overlapping input regions like a mountain range where
  // smaller regions are "on top" of larger regions, and we output a birds-eye
  // view of the mountains, so that smaller regions take priority over larger
  // regions.
  std::sort(regions->begin(), regions->end(), cmp_NumberFormatSpan);
  std::vector<size_t> overlapping_region_index_stack;
  // At least one item in regions must be a region spanning the entire string.
  // Due to the sorting above, the first item in the vector will be one of them.
  overlapping_region_index_stack.push_back(0);
  NumberFormatSpan top_region = regions->at(0);
  size_t region_iterator = 1;
  int32_t entire_size = top_region.end_pos;

  std::vector<NumberFormatSpan> out_parts;

  // The "climber" is a cursor that advances from left to right climbing "up"
  // and "down" the mountains. Whenever the climber moves to the right, that
  // represents an item of output.
  int32_t climber = 0;
  while (climber < entire_size) {
    int32_t next_region_begin_pos;
    if (region_iterator < regions->size()) {
      next_region_begin_pos = regions->at(region_iterator).begin_pos;
    } else {
      // finish off the rest of the input by proceeding to the end.
      next_region_begin_pos = entire_size;
    }

    if (climber < next_region_begin_pos) {
      while (top_region.end_pos < next_region_begin_pos) {
        if (climber < top_region.end_pos) {
          // step down
          out_parts.push_back(NumberFormatSpan(top_region.field_id, climber,
                                               top_region.end_pos));
          climber = top_region.end_pos;
        } else {
          // drop down
        }
        overlapping_region_index_stack.pop_back();
        top_region = regions->at(overlapping_region_index_stack.back());
      }
      if (climber < next_region_begin_pos) {
        // cross a plateau/mesa/valley
        out_parts.push_back(NumberFormatSpan(top_region.field_id, climber,
                                             next_region_begin_pos));
        climber = next_region_begin_pos;
      }
    }
    if (region_iterator < regions->size()) {
      overlapping_region_index_stack.push_back(region_iterator++);
      top_region = regions->at(overlapping_region_index_stack.back());
    }
  }
  return out_parts;
}

BUILTIN(NumberFormatPrototypeFormatToParts) {
  const char* const method = "Intl.NumberFormat.prototype.formatToParts";
  HandleScope handle_scope(isolate);
  CHECK_RECEIVER(JSObject, number_format_holder, method);

  Handle<Symbol> marker = isolate->factory()->intl_initialized_marker_symbol();
  Handle<Object> tag =
      JSReceiver::GetDataProperty(number_format_holder, marker);
  Handle<String> expected_tag =
      isolate->factory()->NewStringFromStaticChars("numberformat");
  if (!(tag->IsString() && String::cast(*tag)->Equals(*expected_tag))) {
    THROW_NEW_ERROR_RETURN_FAILURE(
        isolate,
        NewTypeError(MessageTemplate::kIncompatibleMethodReceiver,
                     isolate->factory()->NewStringFromAsciiChecked(method),
                     number_format_holder));
  }

  Handle<Object> x;
  if (args.length() >= 2) {
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, x,
                                       Object::ToNumber(args.at(1)));
  } else {
    x = isolate->factory()->nan_value();
  }

  icu::DecimalFormat* number_format =
      NumberFormat::UnpackNumberFormat(isolate, number_format_holder);
  CHECK_NOT_NULL(number_format);

  Object* result = FormatNumberToParts(isolate, number_format, x->Number());
  return result;
}

}  // namespace internal
}  // namespace v8