summaryrefslogtreecommitdiff
path: root/Source/JavaScriptCore/b3/B3LowerToAir.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Source/JavaScriptCore/b3/B3LowerToAir.cpp')
-rw-r--r--Source/JavaScriptCore/b3/B3LowerToAir.cpp2505
1 files changed, 2505 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/b3/B3LowerToAir.cpp b/Source/JavaScriptCore/b3/B3LowerToAir.cpp
new file mode 100644
index 000000000..ae2470362
--- /dev/null
+++ b/Source/JavaScriptCore/b3/B3LowerToAir.cpp
@@ -0,0 +1,2505 @@
+/*
+ * Copyright (C) 2015-2016 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "config.h"
+#include "B3LowerToAir.h"
+
+#if ENABLE(B3_JIT)
+
+#include "AirCCallSpecial.h"
+#include "AirCode.h"
+#include "AirInsertionSet.h"
+#include "AirInstInlines.h"
+#include "AirStackSlot.h"
+#include "B3ArgumentRegValue.h"
+#include "B3BasicBlockInlines.h"
+#include "B3BlockWorklist.h"
+#include "B3CCallValue.h"
+#include "B3CheckSpecial.h"
+#include "B3Commutativity.h"
+#include "B3Dominators.h"
+#include "B3IndexMap.h"
+#include "B3IndexSet.h"
+#include "B3MemoryValue.h"
+#include "B3PatchpointSpecial.h"
+#include "B3PatchpointValue.h"
+#include "B3PhaseScope.h"
+#include "B3PhiChildren.h"
+#include "B3Procedure.h"
+#include "B3SlotBaseValue.h"
+#include "B3StackSlot.h"
+#include "B3UpsilonValue.h"
+#include "B3UseCounts.h"
+#include "B3ValueInlines.h"
+#include "B3Variable.h"
+#include "B3VariableValue.h"
+#include <wtf/ListDump.h>
+
+#if COMPILER(GCC) && ASSERT_DISABLED
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wreturn-type"
+#endif // COMPILER(GCC) && ASSERT_DISABLED
+
+namespace JSC { namespace B3 {
+
+using namespace Air;
+
+namespace {
+
+const bool verbose = false;
+
+class LowerToAir {
+public:
+ LowerToAir(Procedure& procedure)
+ : m_valueToTmp(procedure.values().size())
+ , m_phiToTmp(procedure.values().size())
+ , m_blockToBlock(procedure.size())
+ , m_useCounts(procedure)
+ , m_phiChildren(procedure)
+ , m_dominators(procedure.dominators())
+ , m_procedure(procedure)
+ , m_code(procedure.code())
+ {
+ }
+
+ void run()
+ {
+ for (B3::BasicBlock* block : m_procedure)
+ m_blockToBlock[block] = m_code.addBlock(block->frequency());
+
+ for (Value* value : m_procedure.values()) {
+ switch (value->opcode()) {
+ case Phi: {
+ m_phiToTmp[value] = m_code.newTmp(Arg::typeForB3Type(value->type()));
+ if (verbose)
+ dataLog("Phi tmp for ", *value, ": ", m_phiToTmp[value], "\n");
+ break;
+ }
+ default:
+ break;
+ }
+ }
+
+ for (B3::StackSlot* stack : m_procedure.stackSlots())
+ m_stackToStack.add(stack, m_code.addStackSlot(stack));
+ for (Variable* variable : m_procedure.variables())
+ m_variableToTmp.add(variable, m_code.newTmp(Arg::typeForB3Type(variable->type())));
+
+ // Figure out which blocks are not rare.
+ m_fastWorklist.push(m_procedure[0]);
+ while (B3::BasicBlock* block = m_fastWorklist.pop()) {
+ for (B3::FrequentedBlock& successor : block->successors()) {
+ if (!successor.isRare())
+ m_fastWorklist.push(successor.block());
+ }
+ }
+
+ m_procedure.resetValueOwners(); // Used by crossesInterference().
+
+ // Lower defs before uses on a global level. This is a good heuristic to lock down a
+ // hoisted address expression before we duplicate it back into the loop.
+ for (B3::BasicBlock* block : m_procedure.blocksInPreOrder()) {
+ m_block = block;
+ // Reset some state.
+ m_insts.resize(0);
+
+ m_isRare = !m_fastWorklist.saw(block);
+
+ if (verbose)
+ dataLog("Lowering Block ", *block, ":\n");
+
+ // Process blocks in reverse order so we see uses before defs. That's what allows us
+ // to match patterns effectively.
+ for (unsigned i = block->size(); i--;) {
+ m_index = i;
+ m_value = block->at(i);
+ if (m_locked.contains(m_value))
+ continue;
+ m_insts.append(Vector<Inst>());
+ if (verbose)
+ dataLog("Lowering ", deepDump(m_procedure, m_value), ":\n");
+ lower();
+ if (verbose) {
+ for (Inst& inst : m_insts.last())
+ dataLog(" ", inst, "\n");
+ }
+ }
+
+ // Now append the instructions. m_insts contains them in reverse order, so we process
+ // it in reverse.
+ for (unsigned i = m_insts.size(); i--;) {
+ for (Inst& inst : m_insts[i])
+ m_blockToBlock[block]->appendInst(WTFMove(inst));
+ }
+
+ // Make sure that the successors are set up correctly.
+ ASSERT(block->successors().size() <= 2);
+ for (B3::FrequentedBlock successor : block->successors()) {
+ m_blockToBlock[block]->successors().append(
+ Air::FrequentedBlock(m_blockToBlock[successor.block()], successor.frequency()));
+ }
+ }
+
+ Air::InsertionSet insertionSet(m_code);
+ for (Inst& inst : m_prologue)
+ insertionSet.insertInst(0, WTFMove(inst));
+ insertionSet.execute(m_code[0]);
+ }
+
+private:
+ bool shouldCopyPropagate(Value* value)
+ {
+ switch (value->opcode()) {
+ case Trunc:
+ case Identity:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ class ArgPromise {
+ public:
+ ArgPromise() { }
+
+ ArgPromise(const Arg& arg, Value* valueToLock = nullptr)
+ : m_arg(arg)
+ , m_value(valueToLock)
+ {
+ }
+
+ static ArgPromise tmp(Value* value)
+ {
+ ArgPromise result;
+ result.m_value = value;
+ return result;
+ }
+
+ explicit operator bool() const { return m_arg || m_value; }
+
+ Arg::Kind kind() const
+ {
+ if (!m_arg && m_value)
+ return Arg::Tmp;
+ return m_arg.kind();
+ }
+
+ const Arg& peek() const
+ {
+ return m_arg;
+ }
+
+ Arg consume(LowerToAir& lower) const
+ {
+ if (!m_arg && m_value)
+ return lower.tmp(m_value);
+ if (m_value)
+ lower.commitInternal(m_value);
+ return m_arg;
+ }
+
+ private:
+ // Three forms:
+ // Everything null: invalid.
+ // Arg non-null, value null: just use the arg, nothing special.
+ // Arg null, value non-null: it's a tmp, pin it when necessary.
+ // Arg non-null, value non-null: use the arg, lock the value.
+ Arg m_arg;
+ Value* m_value;
+ };
+
+ // Consider using tmpPromise() in cases where you aren't sure that you want to pin the value yet.
+ // Here are three canonical ways of using tmp() and tmpPromise():
+ //
+ // Idiom #1: You know that you want a tmp() and you know that it will be valid for the
+ // instruction you're emitting.
+ //
+ // append(Foo, tmp(bar));
+ //
+ // Idiom #2: You don't know if you want to use a tmp() because you haven't determined if the
+ // instruction will accept it, so you query first. Note that the call to tmp() happens only after
+ // you are sure that you will use it.
+ //
+ // if (isValidForm(Foo, Arg::Tmp))
+ // append(Foo, tmp(bar))
+ //
+ // Idiom #3: Same as Idiom #2, but using tmpPromise. Notice that this calls consume() only after
+ // it's sure it will use the tmp. That's deliberate.
+ //
+ // ArgPromise promise = tmpPromise(bar);
+ // if (isValidForm(Foo, promise.kind()))
+ // append(Foo, promise.consume(*this))
+ //
+ // In both idiom #2 and idiom #3, we don't pin the value to a temporary except when we actually
+ // emit the instruction. Both tmp() and tmpPromise().consume(*this) will pin it. Pinning means
+ // that we will henceforth require that the value of 'bar' is generated as a separate
+ // instruction. We don't want to pin the value to a temporary if we might change our minds, and
+ // pass an address operand representing 'bar' to Foo instead.
+ //
+ // Because tmp() pins, the following is not an idiom you should use:
+ //
+ // Tmp tmp = this->tmp(bar);
+ // if (isValidForm(Foo, tmp.kind()))
+ // append(Foo, tmp);
+ //
+ // That's because if isValidForm() returns false, you will have already pinned the 'bar' to a
+ // temporary. You might later want to try to do something like loadPromise(), and that will fail.
+ // This arises in operations that have both a Addr,Tmp and Tmp,Addr forms. The following code
+ // seems right, but will actually fail to ever match the Tmp,Addr form because by then, the right
+ // value is already pinned.
+ //
+ // auto tryThings = [this] (const Arg& left, const Arg& right) {
+ // if (isValidForm(Foo, left.kind(), right.kind()))
+ // return Inst(Foo, m_value, left, right);
+ // return Inst();
+ // };
+ // if (Inst result = tryThings(loadAddr(left), tmp(right)))
+ // return result;
+ // if (Inst result = tryThings(tmp(left), loadAddr(right))) // this never succeeds.
+ // return result;
+ // return Inst(Foo, m_value, tmp(left), tmp(right));
+ //
+ // If you imagine that loadAddr(value) is just loadPromise(value).consume(*this), then this code
+ // will run correctly - it will generate OK code - but the second form is never matched.
+ // loadAddr(right) will never succeed because it will observe that 'right' is already pinned.
+ // Of course, it's exactly because of the risky nature of such code that we don't have a
+ // loadAddr() helper and require you to balance ArgPromise's in code like this. Such code will
+ // work fine if written as:
+ //
+ // auto tryThings = [this] (const ArgPromise& left, const ArgPromise& right) {
+ // if (isValidForm(Foo, left.kind(), right.kind()))
+ // return Inst(Foo, m_value, left.consume(*this), right.consume(*this));
+ // return Inst();
+ // };
+ // if (Inst result = tryThings(loadPromise(left), tmpPromise(right)))
+ // return result;
+ // if (Inst result = tryThings(tmpPromise(left), loadPromise(right)))
+ // return result;
+ // return Inst(Foo, m_value, tmp(left), tmp(right));
+ //
+ // Notice that we did use tmp in the fall-back case at the end, because by then, we know for sure
+ // that we want a tmp. But using tmpPromise in the tryThings() calls ensures that doing so
+ // doesn't prevent us from trying loadPromise on the same value.
+ Tmp tmp(Value* value)
+ {
+ Tmp& tmp = m_valueToTmp[value];
+ if (!tmp) {
+ while (shouldCopyPropagate(value))
+ value = value->child(0);
+
+ if (value->opcode() == FramePointer)
+ return Tmp(GPRInfo::callFrameRegister);
+
+ Tmp& realTmp = m_valueToTmp[value];
+ if (!realTmp) {
+ realTmp = m_code.newTmp(Arg::typeForB3Type(value->type()));
+ if (m_procedure.isFastConstant(value->key()))
+ m_code.addFastTmp(realTmp);
+ if (verbose)
+ dataLog("Tmp for ", *value, ": ", realTmp, "\n");
+ }
+ tmp = realTmp;
+ }
+ return tmp;
+ }
+
+ ArgPromise tmpPromise(Value* value)
+ {
+ return ArgPromise::tmp(value);
+ }
+
+ bool canBeInternal(Value* value)
+ {
+ // If one of the internal things has already been computed, then we don't want to cause
+ // it to be recomputed again.
+ if (m_valueToTmp[value])
+ return false;
+
+ // We require internals to have only one use - us. It's not clear if this should be numUses() or
+ // numUsingInstructions(). Ideally, it would be numUsingInstructions(), except that it's not clear
+ // if we'd actually do the right thing when matching over such a DAG pattern. For now, it simply
+ // doesn't matter because we don't implement patterns that would trigger this.
+ if (m_useCounts.numUses(value) != 1)
+ return false;
+
+ return true;
+ }
+
+ // If you ask canBeInternal() and then construct something from that, and you commit to emitting
+ // that code, then you must commitInternal() on that value. This is tricky, and you only need to
+ // do it if you're pattern matching by hand rather than using the patterns language. Long story
+ // short, you should avoid this by using the pattern matcher to match patterns.
+ void commitInternal(Value* value)
+ {
+ m_locked.add(value);
+ }
+
+ bool crossesInterference(Value* value)
+ {
+ // If it's in a foreign block, then be conservative. We could handle this if we were
+ // willing to do heavier analysis. For example, if we had liveness, then we could label
+ // values as "crossing interference" if they interfere with anything that they are live
+ // across. But, it's not clear how useful this would be.
+ if (value->owner != m_value->owner)
+ return true;
+
+ Effects effects = value->effects();
+
+ for (unsigned i = m_index; i--;) {
+ Value* otherValue = m_block->at(i);
+ if (otherValue == value)
+ return false;
+ if (effects.interferes(otherValue->effects()))
+ return true;
+ }
+
+ ASSERT_NOT_REACHED();
+ return true;
+ }
+
+ // This turns the given operand into an address.
+ Arg effectiveAddr(Value* address, int32_t offset, Arg::Width width)
+ {
+ ASSERT(Arg::isValidAddrForm(offset, width));
+
+ auto fallback = [&] () -> Arg {
+ return Arg::addr(tmp(address), offset);
+ };
+
+ static const unsigned lotsOfUses = 10; // This is arbitrary and we should tune it eventually.
+
+ // Only match if the address value isn't used in some large number of places.
+ if (m_useCounts.numUses(address) > lotsOfUses)
+ return fallback();
+
+ switch (address->opcode()) {
+ case Add: {
+ Value* left = address->child(0);
+ Value* right = address->child(1);
+
+ auto tryIndex = [&] (Value* index, Value* base) -> Arg {
+ if (index->opcode() != Shl)
+ return Arg();
+ if (m_locked.contains(index->child(0)) || m_locked.contains(base))
+ return Arg();
+ if (!index->child(1)->hasInt32())
+ return Arg();
+
+ unsigned scale = 1 << (index->child(1)->asInt32() & 31);
+ if (!Arg::isValidIndexForm(scale, offset, width))
+ return Arg();
+
+ return Arg::index(tmp(base), tmp(index->child(0)), scale, offset);
+ };
+
+ if (Arg result = tryIndex(left, right))
+ return result;
+ if (Arg result = tryIndex(right, left))
+ return result;
+
+ if (m_locked.contains(left) || m_locked.contains(right)
+ || !Arg::isValidIndexForm(1, offset, width))
+ return fallback();
+
+ return Arg::index(tmp(left), tmp(right), 1, offset);
+ }
+
+ case Shl: {
+ Value* left = address->child(0);
+
+ // We'll never see child(1)->isInt32(0), since that would have been reduced. If the shift
+ // amount is greater than 1, then there isn't really anything smart that we could do here.
+ // We avoid using baseless indexes because their encoding isn't particularly efficient.
+ if (m_locked.contains(left) || !address->child(1)->isInt32(1)
+ || !Arg::isValidIndexForm(1, offset, width))
+ return fallback();
+
+ return Arg::index(tmp(left), tmp(left), 1, offset);
+ }
+
+ case FramePointer:
+ return Arg::addr(Tmp(GPRInfo::callFrameRegister), offset);
+
+ case SlotBase:
+ return Arg::stack(m_stackToStack.get(address->as<SlotBaseValue>()->slot()), offset);
+
+ default:
+ return fallback();
+ }
+ }
+
+ // This gives you the address of the given Load or Store. If it's not a Load or Store, then
+ // it returns Arg().
+ Arg addr(Value* memoryValue)
+ {
+ MemoryValue* value = memoryValue->as<MemoryValue>();
+ if (!value)
+ return Arg();
+
+ int32_t offset = value->offset();
+ Arg::Width width = Arg::widthForBytes(value->accessByteSize());
+
+ Arg result = effectiveAddr(value->lastChild(), offset, width);
+ ASSERT(result.isValidForm(width));
+
+ return result;
+ }
+
+ ArgPromise loadPromiseAnyOpcode(Value* loadValue)
+ {
+ if (!canBeInternal(loadValue))
+ return Arg();
+ if (crossesInterference(loadValue))
+ return Arg();
+ return ArgPromise(addr(loadValue), loadValue);
+ }
+
+ ArgPromise loadPromise(Value* loadValue, B3::Opcode loadOpcode)
+ {
+ if (loadValue->opcode() != loadOpcode)
+ return Arg();
+ return loadPromiseAnyOpcode(loadValue);
+ }
+
+ ArgPromise loadPromise(Value* loadValue)
+ {
+ return loadPromise(loadValue, Load);
+ }
+
+ Arg imm(Value* value)
+ {
+ if (value->hasInt()) {
+ int64_t intValue = value->asInt();
+ if (Arg::isValidImmForm(intValue))
+ return Arg::imm(intValue);
+ }
+ return Arg();
+ }
+
+ Arg bitImm(Value* value)
+ {
+ if (value->hasInt()) {
+ int64_t intValue = value->asInt();
+ if (Arg::isValidBitImmForm(intValue))
+ return Arg::bitImm(intValue);
+ }
+ return Arg();
+ }
+
+ Arg bitImm64(Value* value)
+ {
+ if (value->hasInt()) {
+ int64_t intValue = value->asInt();
+ if (Arg::isValidBitImm64Form(intValue))
+ return Arg::bitImm64(intValue);
+ }
+ return Arg();
+ }
+
+ Arg immOrTmp(Value* value)
+ {
+ if (Arg result = imm(value))
+ return result;
+ return tmp(value);
+ }
+
+ // By convention, we use Oops to mean "I don't know".
+ Air::Opcode tryOpcodeForType(
+ Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble, Air::Opcode opcodeFloat, Type type)
+ {
+ Air::Opcode opcode;
+ switch (type) {
+ case Int32:
+ opcode = opcode32;
+ break;
+ case Int64:
+ opcode = opcode64;
+ break;
+ case Float:
+ opcode = opcodeFloat;
+ break;
+ case Double:
+ opcode = opcodeDouble;
+ break;
+ default:
+ opcode = Air::Oops;
+ break;
+ }
+
+ return opcode;
+ }
+
+ Air::Opcode tryOpcodeForType(Air::Opcode opcode32, Air::Opcode opcode64, Type type)
+ {
+ return tryOpcodeForType(opcode32, opcode64, Air::Oops, Air::Oops, type);
+ }
+
+ Air::Opcode opcodeForType(
+ Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble, Air::Opcode opcodeFloat, Type type)
+ {
+ Air::Opcode opcode = tryOpcodeForType(opcode32, opcode64, opcodeDouble, opcodeFloat, type);
+ RELEASE_ASSERT(opcode != Air::Oops);
+ return opcode;
+ }
+
+ Air::Opcode opcodeForType(Air::Opcode opcode32, Air::Opcode opcode64, Type type)
+ {
+ return tryOpcodeForType(opcode32, opcode64, Air::Oops, Air::Oops, type);
+ }
+
+ template<Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble = Air::Oops, Air::Opcode opcodeFloat = Air::Oops>
+ void appendUnOp(Value* value)
+ {
+ Air::Opcode opcode = opcodeForType(opcode32, opcode64, opcodeDouble, opcodeFloat, value->type());
+
+ Tmp result = tmp(m_value);
+
+ // Two operand forms like:
+ // Op a, b
+ // mean something like:
+ // b = Op a
+
+ ArgPromise addr = loadPromise(value);
+ if (isValidForm(opcode, addr.kind(), Arg::Tmp)) {
+ append(opcode, addr.consume(*this), result);
+ return;
+ }
+
+ if (isValidForm(opcode, Arg::Tmp, Arg::Tmp)) {
+ append(opcode, tmp(value), result);
+ return;
+ }
+
+ ASSERT(value->type() == m_value->type());
+ append(relaxedMoveForType(m_value->type()), tmp(value), result);
+ append(opcode, result);
+ }
+
+ // Call this method when doing two-operand lowering of a commutative operation. You have a choice of
+ // which incoming Value is moved into the result. This will select which one is likely to be most
+ // profitable to use as the result. Doing the right thing can have big performance consequences in tight
+ // kernels.
+ bool preferRightForResult(Value* left, Value* right)
+ {
+ // The default is to move left into result, because that's required for non-commutative instructions.
+ // The value that we want to move into result position is the one that dies here. So, if we're
+ // compiling a commutative operation and we know that actually right is the one that dies right here,
+ // then we can flip things around to help coalescing, which then kills the move instruction.
+ //
+ // But it's more complicated:
+ // - Used-once is a bad estimate of whether the variable dies here.
+ // - A child might be a candidate for coalescing with this value.
+ //
+ // Currently, we have machinery in place to recognize super obvious forms of the latter issue.
+
+ // We recognize when a child is a Phi that has this value as one of its children. We're very
+ // conservative about this; for example we don't even consider transitive Phi children.
+ bool leftIsPhiWithThis = m_phiChildren[left].transitivelyUses(m_value);
+ bool rightIsPhiWithThis = m_phiChildren[right].transitivelyUses(m_value);
+
+ if (leftIsPhiWithThis != rightIsPhiWithThis)
+ return rightIsPhiWithThis;
+
+ if (m_useCounts.numUsingInstructions(right) != 1)
+ return false;
+
+ if (m_useCounts.numUsingInstructions(left) != 1)
+ return true;
+
+ // The use count might be 1 if the variable is live around a loop. We can guarantee that we
+ // pick the the variable that is least likely to suffer this problem if we pick the one that
+ // is closest to us in an idom walk. By convention, we slightly bias this in favor of
+ // returning true.
+
+ // We cannot prefer right if right is further away in an idom walk.
+ if (m_dominators.strictlyDominates(right->owner, left->owner))
+ return false;
+
+ return true;
+ }
+
+ template<Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble, Air::Opcode opcodeFloat, Commutativity commutativity = NotCommutative>
+ void appendBinOp(Value* left, Value* right)
+ {
+ Air::Opcode opcode = opcodeForType(opcode32, opcode64, opcodeDouble, opcodeFloat, left->type());
+
+ Tmp result = tmp(m_value);
+
+ // Three-operand forms like:
+ // Op a, b, c
+ // mean something like:
+ // c = a Op b
+
+ if (isValidForm(opcode, Arg::Imm, Arg::Tmp, Arg::Tmp)) {
+ if (commutativity == Commutative) {
+ if (imm(right)) {
+ append(opcode, imm(right), tmp(left), result);
+ return;
+ }
+ } else {
+ // A non-commutative operation could have an immediate in left.
+ if (imm(left)) {
+ append(opcode, imm(left), tmp(right), result);
+ return;
+ }
+ }
+ }
+
+ if (isValidForm(opcode, Arg::BitImm, Arg::Tmp, Arg::Tmp)) {
+ if (commutativity == Commutative) {
+ if (Arg rightArg = bitImm(right)) {
+ append(opcode, rightArg, tmp(left), result);
+ return;
+ }
+ } else {
+ // A non-commutative operation could have an immediate in left.
+ if (Arg leftArg = bitImm(left)) {
+ append(opcode, leftArg, tmp(right), result);
+ return;
+ }
+ }
+ }
+
+ if (isValidForm(opcode, Arg::BitImm64, Arg::Tmp, Arg::Tmp)) {
+ if (commutativity == Commutative) {
+ if (Arg rightArg = bitImm64(right)) {
+ append(opcode, rightArg, tmp(left), result);
+ return;
+ }
+ } else {
+ // A non-commutative operation could have an immediate in left.
+ if (Arg leftArg = bitImm64(left)) {
+ append(opcode, leftArg, tmp(right), result);
+ return;
+ }
+ }
+ }
+
+ if (imm(right) && isValidForm(opcode, Arg::Tmp, Arg::Imm, Arg::Tmp)) {
+ append(opcode, tmp(left), imm(right), result);
+ return;
+ }
+
+ // Note that no extant architecture has a three-operand form of binary operations that also
+ // load from memory. If such an abomination did exist, we would handle it somewhere around
+ // here.
+
+ // Two-operand forms like:
+ // Op a, b
+ // mean something like:
+ // b = b Op a
+
+ // At this point, we prefer versions of the operation that have a fused load or an immediate
+ // over three operand forms.
+
+ if (left != right) {
+ if (commutativity == Commutative) {
+ ArgPromise leftAddr = loadPromise(left);
+ if (isValidForm(opcode, leftAddr.kind(), Arg::Tmp)) {
+ append(relaxedMoveForType(m_value->type()), tmp(right), result);
+ append(opcode, leftAddr.consume(*this), result);
+ return;
+ }
+ }
+
+ ArgPromise rightAddr = loadPromise(right);
+ if (isValidForm(opcode, rightAddr.kind(), Arg::Tmp)) {
+ append(relaxedMoveForType(m_value->type()), tmp(left), result);
+ append(opcode, rightAddr.consume(*this), result);
+ return;
+ }
+ }
+
+ if (imm(right) && isValidForm(opcode, Arg::Imm, Arg::Tmp)) {
+ append(relaxedMoveForType(m_value->type()), tmp(left), result);
+ append(opcode, imm(right), result);
+ return;
+ }
+
+ if (isValidForm(opcode, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
+ append(opcode, tmp(left), tmp(right), result);
+ return;
+ }
+
+ if (commutativity == Commutative && preferRightForResult(left, right)) {
+ append(relaxedMoveForType(m_value->type()), tmp(right), result);
+ append(opcode, tmp(left), result);
+ return;
+ }
+
+ append(relaxedMoveForType(m_value->type()), tmp(left), result);
+ append(opcode, tmp(right), result);
+ }
+
+ template<Air::Opcode opcode32, Air::Opcode opcode64, Commutativity commutativity = NotCommutative>
+ void appendBinOp(Value* left, Value* right)
+ {
+ appendBinOp<opcode32, opcode64, Air::Oops, Air::Oops, commutativity>(left, right);
+ }
+
+ template<Air::Opcode opcode32, Air::Opcode opcode64>
+ void appendShift(Value* value, Value* amount)
+ {
+ Air::Opcode opcode = opcodeForType(opcode32, opcode64, value->type());
+
+ if (imm(amount)) {
+ if (isValidForm(opcode, Arg::Tmp, Arg::Imm, Arg::Tmp)) {
+ append(opcode, tmp(value), imm(amount), tmp(m_value));
+ return;
+ }
+ if (isValidForm(opcode, Arg::Imm, Arg::Tmp)) {
+ append(Move, tmp(value), tmp(m_value));
+ append(opcode, imm(amount), tmp(m_value));
+ return;
+ }
+ }
+
+ if (isValidForm(opcode, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
+ append(opcode, tmp(value), tmp(amount), tmp(m_value));
+ return;
+ }
+
+#if CPU(X86) || CPU(X86_64)
+ append(Move, tmp(value), tmp(m_value));
+ append(Move, tmp(amount), Tmp(X86Registers::ecx));
+ append(opcode, Tmp(X86Registers::ecx), tmp(m_value));
+#endif
+ }
+
+ template<Air::Opcode opcode32, Air::Opcode opcode64>
+ bool tryAppendStoreUnOp(Value* value)
+ {
+ Air::Opcode opcode = tryOpcodeForType(opcode32, opcode64, value->type());
+ if (opcode == Air::Oops)
+ return false;
+
+ Arg storeAddr = addr(m_value);
+ ASSERT(storeAddr);
+
+ ArgPromise loadPromise = this->loadPromise(value);
+ if (loadPromise.peek() != storeAddr)
+ return false;
+
+ if (!isValidForm(opcode, storeAddr.kind()))
+ return false;
+
+ loadPromise.consume(*this);
+ append(opcode, storeAddr);
+ return true;
+ }
+
+ template<
+ Air::Opcode opcode32, Air::Opcode opcode64, Commutativity commutativity = NotCommutative>
+ bool tryAppendStoreBinOp(Value* left, Value* right)
+ {
+ Air::Opcode opcode = tryOpcodeForType(opcode32, opcode64, left->type());
+ if (opcode == Air::Oops)
+ return false;
+
+ Arg storeAddr = addr(m_value);
+ ASSERT(storeAddr);
+
+ auto getLoadPromise = [&] (Value* load) -> ArgPromise {
+ switch (m_value->opcode()) {
+ case B3::Store:
+ if (load->opcode() != B3::Load)
+ return ArgPromise();
+ break;
+ case B3::Store8:
+ if (load->opcode() != B3::Load8Z && load->opcode() != B3::Load8S)
+ return ArgPromise();
+ break;
+ case B3::Store16:
+ if (load->opcode() != B3::Load16Z && load->opcode() != B3::Load16S)
+ return ArgPromise();
+ break;
+ default:
+ return ArgPromise();
+ }
+ return loadPromiseAnyOpcode(load);
+ };
+
+ ArgPromise loadPromise;
+ Value* otherValue = nullptr;
+
+ loadPromise = getLoadPromise(left);
+ if (loadPromise.peek() == storeAddr)
+ otherValue = right;
+ else if (commutativity == Commutative) {
+ loadPromise = getLoadPromise(right);
+ if (loadPromise.peek() == storeAddr)
+ otherValue = left;
+ }
+
+ if (!otherValue)
+ return false;
+
+ if (isValidForm(opcode, Arg::Imm, storeAddr.kind()) && imm(otherValue)) {
+ loadPromise.consume(*this);
+ append(opcode, imm(otherValue), storeAddr);
+ return true;
+ }
+
+ if (!isValidForm(opcode, Arg::Tmp, storeAddr.kind()))
+ return false;
+
+ loadPromise.consume(*this);
+ append(opcode, tmp(otherValue), storeAddr);
+ return true;
+ }
+
+ Inst createStore(Air::Opcode move, Value* value, const Arg& dest)
+ {
+ if (imm(value) && isValidForm(move, Arg::Imm, dest.kind()))
+ return Inst(move, m_value, imm(value), dest);
+
+ return Inst(move, m_value, tmp(value), dest);
+ }
+
+ Inst createStore(Value* value, const Arg& dest)
+ {
+ Air::Opcode moveOpcode = moveForType(value->type());
+ return createStore(moveOpcode, value, dest);
+ }
+
+ void appendStore(Value* value, const Arg& dest)
+ {
+ m_insts.last().append(createStore(value, dest));
+ }
+
+ Air::Opcode moveForType(Type type)
+ {
+ switch (type) {
+ case Int32:
+ return Move32;
+ case Int64:
+ RELEASE_ASSERT(is64Bit());
+ return Move;
+ case Float:
+ return MoveFloat;
+ case Double:
+ return MoveDouble;
+ case Void:
+ break;
+ }
+ RELEASE_ASSERT_NOT_REACHED();
+ return Air::Oops;
+ }
+
+ Air::Opcode relaxedMoveForType(Type type)
+ {
+ switch (type) {
+ case Int32:
+ case Int64:
+ // For Int32, we could return Move or Move32. It's a trade-off.
+ //
+ // Move32: Using Move32 guarantees that we use the narrower move, but in cases where the
+ // register allocator can't prove that the variables involved are 32-bit, this will
+ // disable coalescing.
+ //
+ // Move: Using Move guarantees that the register allocator can coalesce normally, but in
+ // cases where it can't prove that the variables are 32-bit and it doesn't coalesce,
+ // this will force us to use a full 64-bit Move instead of the slightly cheaper
+ // 32-bit Move32.
+ //
+ // Coalescing is a lot more profitable than turning Move into Move32. So, it's better to
+ // use Move here because in cases where the register allocator cannot prove that
+ // everything is 32-bit, we still get coalescing.
+ return Move;
+ case Float:
+ // MoveFloat is always coalescable and we never convert MoveDouble to MoveFloat, so we
+ // should use MoveFloat when we know that the temporaries involved are 32-bit.
+ return MoveFloat;
+ case Double:
+ return MoveDouble;
+ case Void:
+ break;
+ }
+ RELEASE_ASSERT_NOT_REACHED();
+ return Air::Oops;
+ }
+
+ template<typename... Arguments>
+ void append(Air::Opcode opcode, Arguments&&... arguments)
+ {
+ m_insts.last().append(Inst(opcode, m_value, std::forward<Arguments>(arguments)...));
+ }
+
+ template<typename T, typename... Arguments>
+ T* ensureSpecial(T*& field, Arguments&&... arguments)
+ {
+ if (!field) {
+ field = static_cast<T*>(
+ m_code.addSpecial(std::make_unique<T>(std::forward<Arguments>(arguments)...)));
+ }
+ return field;
+ }
+
+ template<typename... Arguments>
+ CheckSpecial* ensureCheckSpecial(Arguments&&... arguments)
+ {
+ CheckSpecial::Key key(std::forward<Arguments>(arguments)...);
+ auto result = m_checkSpecials.add(key, nullptr);
+ return ensureSpecial(result.iterator->value, key);
+ }
+
+ void fillStackmap(Inst& inst, StackmapValue* stackmap, unsigned numSkipped)
+ {
+ for (unsigned i = numSkipped; i < stackmap->numChildren(); ++i) {
+ ConstrainedValue value = stackmap->constrainedChild(i);
+
+ Arg arg;
+ switch (value.rep().kind()) {
+ case ValueRep::WarmAny:
+ case ValueRep::ColdAny:
+ case ValueRep::LateColdAny:
+ if (imm(value.value()))
+ arg = imm(value.value());
+ else if (value.value()->hasInt64())
+ arg = Arg::bigImm(value.value()->asInt64());
+ else if (value.value()->hasDouble() && canBeInternal(value.value())) {
+ commitInternal(value.value());
+ arg = Arg::bigImm(bitwise_cast<int64_t>(value.value()->asDouble()));
+ } else
+ arg = tmp(value.value());
+ break;
+ case ValueRep::SomeRegister:
+ arg = tmp(value.value());
+ break;
+ case ValueRep::Register:
+ stackmap->earlyClobbered().clear(value.rep().reg());
+ arg = Tmp(value.rep().reg());
+ append(relaxedMoveForType(value.value()->type()), immOrTmp(value.value()), arg);
+ break;
+ case ValueRep::StackArgument:
+ arg = Arg::callArg(value.rep().offsetFromSP());
+ appendStore(value.value(), arg);
+ break;
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ break;
+ }
+ inst.args.append(arg);
+ }
+ }
+
+ // Create an Inst to do the comparison specified by the given value.
+ template<typename CompareFunctor, typename TestFunctor, typename CompareDoubleFunctor, typename CompareFloatFunctor>
+ Inst createGenericCompare(
+ Value* value,
+ const CompareFunctor& compare, // Signature: (Arg::Width, Arg relCond, Arg, Arg) -> Inst
+ const TestFunctor& test, // Signature: (Arg::Width, Arg resCond, Arg, Arg) -> Inst
+ const CompareDoubleFunctor& compareDouble, // Signature: (Arg doubleCond, Arg, Arg) -> Inst
+ const CompareFloatFunctor& compareFloat, // Signature: (Arg doubleCond, Arg, Arg) -> Inst
+ bool inverted = false)
+ {
+ // NOTE: This is totally happy to match comparisons that have already been computed elsewhere
+ // since on most architectures, the cost of branching on a previously computed comparison
+ // result is almost always higher than just doing another fused compare/branch. The only time
+ // it could be worse is if we have a binary comparison and both operands are variables (not
+ // constants), and we encounter register pressure. Even in this case, duplicating the compare
+ // so that we can fuse it to the branch will be more efficient most of the time, since
+ // register pressure is not *that* common. For this reason, this algorithm will always
+ // duplicate the comparison.
+ //
+ // However, we cannot duplicate loads. The canBeInternal() on a load will assume that we
+ // already validated canBeInternal() on all of the values that got us to the load. So, even
+ // if we are sharing a value, we still need to call canBeInternal() for the purpose of
+ // tracking whether we are still in good shape to fuse loads.
+ //
+ // We could even have a chain of compare values that we fuse, and any member of the chain
+ // could be shared. Once any of them are shared, then the shared one's transitive children
+ // cannot be locked (i.e. commitInternal()). But if none of them are shared, then we want to
+ // lock all of them because that's a prerequisite to fusing the loads so that the loads don't
+ // get duplicated. For example, we might have:
+ //
+ // @tmp1 = LessThan(@a, @b)
+ // @tmp2 = Equal(@tmp1, 0)
+ // Branch(@tmp2)
+ //
+ // If either @a or @b are loads, then we want to have locked @tmp1 and @tmp2 so that they
+ // don't emit the loads a second time. But if we had another use of @tmp2, then we cannot
+ // lock @tmp1 (or @a or @b) because then we'll get into trouble when the other values that
+ // try to share @tmp1 with us try to do their lowering.
+ //
+ // There's one more wrinkle. If we don't lock an internal value, then this internal value may
+ // have already separately locked its children. So, if we're not locking a value then we need
+ // to make sure that its children aren't locked. We encapsulate this in two ways:
+ //
+ // canCommitInternal: This variable tells us if the values that we've fused so far are
+ // locked. This means that we're not sharing any of them with anyone. This permits us to fuse
+ // loads. If it's false, then we cannot fuse loads and we also need to ensure that the
+ // children of any values we try to fuse-by-sharing are not already locked. You don't have to
+ // worry about the children locking thing if you use prepareToFuse() before trying to fuse a
+ // sharable value. But, you do need to guard any load fusion by checking if canCommitInternal
+ // is true.
+ //
+ // FusionResult prepareToFuse(value): Call this when you think that you would like to fuse
+ // some value and that value is not a load. It will automatically handle the shared-or-locked
+ // issues and it will clear canCommitInternal if necessary. This will return CannotFuse
+ // (which acts like false) if the value cannot be locked and its children are locked. That's
+ // rare, but you just need to make sure that you do smart things when this happens (i.e. just
+ // use the value rather than trying to fuse it). After you call prepareToFuse(), you can
+ // still change your mind about whether you will actually fuse the value. If you do fuse it,
+ // you need to call commitFusion(value, fusionResult).
+ //
+ // commitFusion(value, fusionResult): Handles calling commitInternal(value) if fusionResult
+ // is FuseAndCommit.
+
+ bool canCommitInternal = true;
+
+ enum FusionResult {
+ CannotFuse,
+ FuseAndCommit,
+ Fuse
+ };
+ auto prepareToFuse = [&] (Value* value) -> FusionResult {
+ if (value == m_value) {
+ // It's not actually internal. It's the root value. We're good to go.
+ return Fuse;
+ }
+
+ if (canCommitInternal && canBeInternal(value)) {
+ // We are the only users of this value. This also means that the value's children
+ // could not have been locked, since we have now proved that m_value dominates value
+ // in the data flow graph. To only other way to value is from a user of m_value. If
+ // value's children are shared with others, then they could not have been locked
+ // because their use count is greater than 1. If they are only used from value, then
+ // in order for value's children to be locked, value would also have to be locked,
+ // and we just proved that it wasn't.
+ return FuseAndCommit;
+ }
+
+ // We're going to try to share value with others. It's possible that some other basic
+ // block had already emitted code for value and then matched over its children and then
+ // locked them, in which case we just want to use value instead of duplicating it. So, we
+ // validate the children. Note that this only arises in linear chains like:
+ //
+ // BB#1:
+ // @1 = Foo(...)
+ // @2 = Bar(@1)
+ // Jump(#2)
+ // BB#2:
+ // @3 = Baz(@2)
+ //
+ // Notice how we could start by generating code for BB#1 and then decide to lock @1 when
+ // generating code for @2, if we have some way of fusing Bar and Foo into a single
+ // instruction. This is legal, since indeed @1 only has one user. The fact that @2 now
+ // has a tmp (i.e. @2 is pinned), canBeInternal(@2) will return false, which brings us
+ // here. In that case, we cannot match over @2 because then we'd hit a hazard if we end
+ // up deciding not to fuse Foo into the fused Baz/Bar.
+ //
+ // Happily, there are only two places where this kind of child validation happens is in
+ // rules that admit sharing, like this and effectiveAddress().
+ //
+ // N.B. We could probably avoid the need to do value locking if we committed to a well
+ // chosen code generation order. For example, if we guaranteed that all of the users of
+ // a value get generated before that value, then there's no way for the lowering of @3 to
+ // see @1 locked. But we don't want to do that, since this is a greedy instruction
+ // selector and so we want to be able to play with order.
+ for (Value* child : value->children()) {
+ if (m_locked.contains(child))
+ return CannotFuse;
+ }
+
+ // It's safe to share value, but since we're sharing, it means that we aren't locking it.
+ // If we don't lock it, then fusing loads is off limits and all of value's children will
+ // have to go through the sharing path as well.
+ canCommitInternal = false;
+
+ return Fuse;
+ };
+
+ auto commitFusion = [&] (Value* value, FusionResult result) {
+ if (result == FuseAndCommit)
+ commitInternal(value);
+ };
+
+ // Chew through any inversions. This loop isn't necessary for comparisons and branches, but
+ // we do need at least one iteration of it for Check.
+ for (;;) {
+ bool shouldInvert =
+ (value->opcode() == BitXor && value->child(1)->hasInt() && (value->child(1)->asInt() & 1) && value->child(0)->returnsBool())
+ || (value->opcode() == Equal && value->child(1)->isInt(0));
+ if (!shouldInvert)
+ break;
+
+ FusionResult fusionResult = prepareToFuse(value);
+ if (fusionResult == CannotFuse)
+ break;
+ commitFusion(value, fusionResult);
+
+ value = value->child(0);
+ inverted = !inverted;
+ }
+
+ auto createRelCond = [&] (
+ MacroAssembler::RelationalCondition relationalCondition,
+ MacroAssembler::DoubleCondition doubleCondition) {
+ Arg relCond = Arg::relCond(relationalCondition).inverted(inverted);
+ Arg doubleCond = Arg::doubleCond(doubleCondition).inverted(inverted);
+ Value* left = value->child(0);
+ Value* right = value->child(1);
+
+ if (isInt(value->child(0)->type())) {
+ // FIXME: We wouldn't have to worry about leftImm if we canonicalized integer
+ // comparisons.
+ // https://bugs.webkit.org/show_bug.cgi?id=150958
+
+ Arg leftImm = imm(left);
+ Arg rightImm = imm(right);
+
+ auto tryCompare = [&] (
+ Arg::Width width, const ArgPromise& left, const ArgPromise& right) -> Inst {
+ if (Inst result = compare(width, relCond, left, right))
+ return result;
+ if (Inst result = compare(width, relCond.flipped(), right, left))
+ return result;
+ return Inst();
+ };
+
+ auto tryCompareLoadImm = [&] (
+ Arg::Width width, B3::Opcode loadOpcode, Arg::Signedness signedness) -> Inst {
+ if (rightImm && rightImm.isRepresentableAs(width, signedness)) {
+ if (Inst result = tryCompare(width, loadPromise(left, loadOpcode), rightImm)) {
+ commitInternal(left);
+ return result;
+ }
+ }
+ if (leftImm && leftImm.isRepresentableAs(width, signedness)) {
+ if (Inst result = tryCompare(width, leftImm, loadPromise(right, loadOpcode))) {
+ commitInternal(right);
+ return result;
+ }
+ }
+ return Inst();
+ };
+
+ Arg::Width width = Arg::widthForB3Type(value->child(0)->type());
+
+ if (canCommitInternal) {
+ // First handle compares that involve fewer bits than B3's type system supports.
+ // This is pretty important. For example, we want this to be a single
+ // instruction:
+ //
+ // @1 = Load8S(...)
+ // @2 = Const32(...)
+ // @3 = LessThan(@1, @2)
+ // Branch(@3)
+
+ if (relCond.isSignedCond()) {
+ if (Inst result = tryCompareLoadImm(Arg::Width8, Load8S, Arg::Signed))
+ return result;
+ }
+
+ if (relCond.isUnsignedCond()) {
+ if (Inst result = tryCompareLoadImm(Arg::Width8, Load8Z, Arg::Unsigned))
+ return result;
+ }
+
+ if (relCond.isSignedCond()) {
+ if (Inst result = tryCompareLoadImm(Arg::Width16, Load16S, Arg::Signed))
+ return result;
+ }
+
+ if (relCond.isUnsignedCond()) {
+ if (Inst result = tryCompareLoadImm(Arg::Width16, Load16Z, Arg::Unsigned))
+ return result;
+ }
+
+ // Now handle compares that involve a load and an immediate.
+
+ if (Inst result = tryCompareLoadImm(width, Load, Arg::Signed))
+ return result;
+
+ // Now handle compares that involve a load. It's not obvious that it's better to
+ // handle this before the immediate cases or not. Probably doesn't matter.
+
+ if (Inst result = tryCompare(width, loadPromise(left), tmpPromise(right))) {
+ commitInternal(left);
+ return result;
+ }
+
+ if (Inst result = tryCompare(width, tmpPromise(left), loadPromise(right))) {
+ commitInternal(right);
+ return result;
+ }
+ }
+
+ // Now handle compares that involve an immediate and a tmp.
+
+ if (leftImm && leftImm.isRepresentableAs<int32_t>()) {
+ if (Inst result = tryCompare(width, leftImm, tmpPromise(right)))
+ return result;
+ }
+
+ if (rightImm && rightImm.isRepresentableAs<int32_t>()) {
+ if (Inst result = tryCompare(width, tmpPromise(left), rightImm))
+ return result;
+ }
+
+ // Finally, handle comparison between tmps.
+ return compare(width, relCond, tmpPromise(left), tmpPromise(right));
+ }
+
+ // Floating point comparisons can't really do anything smart.
+ if (value->child(0)->type() == Float)
+ return compareFloat(doubleCond, tmpPromise(left), tmpPromise(right));
+ return compareDouble(doubleCond, tmpPromise(left), tmpPromise(right));
+ };
+
+ Arg::Width width = Arg::widthForB3Type(value->type());
+ Arg resCond = Arg::resCond(MacroAssembler::NonZero).inverted(inverted);
+
+ auto tryTest = [&] (
+ Arg::Width width, const ArgPromise& left, const ArgPromise& right) -> Inst {
+ if (Inst result = test(width, resCond, left, right))
+ return result;
+ if (Inst result = test(width, resCond, right, left))
+ return result;
+ return Inst();
+ };
+
+ auto attemptFused = [&] () -> Inst {
+ switch (value->opcode()) {
+ case NotEqual:
+ return createRelCond(MacroAssembler::NotEqual, MacroAssembler::DoubleNotEqualOrUnordered);
+ case Equal:
+ return createRelCond(MacroAssembler::Equal, MacroAssembler::DoubleEqual);
+ case LessThan:
+ return createRelCond(MacroAssembler::LessThan, MacroAssembler::DoubleLessThan);
+ case GreaterThan:
+ return createRelCond(MacroAssembler::GreaterThan, MacroAssembler::DoubleGreaterThan);
+ case LessEqual:
+ return createRelCond(MacroAssembler::LessThanOrEqual, MacroAssembler::DoubleLessThanOrEqual);
+ case GreaterEqual:
+ return createRelCond(MacroAssembler::GreaterThanOrEqual, MacroAssembler::DoubleGreaterThanOrEqual);
+ case EqualOrUnordered:
+ // The integer condition is never used in this case.
+ return createRelCond(MacroAssembler::Equal, MacroAssembler::DoubleEqualOrUnordered);
+ case Above:
+ // We use a bogus double condition because these integer comparisons won't got down that
+ // path anyway.
+ return createRelCond(MacroAssembler::Above, MacroAssembler::DoubleEqual);
+ case Below:
+ return createRelCond(MacroAssembler::Below, MacroAssembler::DoubleEqual);
+ case AboveEqual:
+ return createRelCond(MacroAssembler::AboveOrEqual, MacroAssembler::DoubleEqual);
+ case BelowEqual:
+ return createRelCond(MacroAssembler::BelowOrEqual, MacroAssembler::DoubleEqual);
+ case BitAnd: {
+ Value* left = value->child(0);
+ Value* right = value->child(1);
+
+ // FIXME: We don't actually have to worry about leftImm.
+ // https://bugs.webkit.org/show_bug.cgi?id=150954
+
+ Arg leftImm = imm(left);
+ Arg rightImm = imm(right);
+
+ auto tryTestLoadImm = [&] (Arg::Width width, B3::Opcode loadOpcode) -> Inst {
+ if (rightImm && rightImm.isRepresentableAs(width, Arg::Unsigned)) {
+ if (Inst result = tryTest(width, loadPromise(left, loadOpcode), rightImm)) {
+ commitInternal(left);
+ return result;
+ }
+ }
+ if (leftImm && leftImm.isRepresentableAs(width, Arg::Unsigned)) {
+ if (Inst result = tryTest(width, leftImm, loadPromise(right, loadOpcode))) {
+ commitInternal(right);
+ return result;
+ }
+ }
+ return Inst();
+ };
+
+ if (canCommitInternal) {
+ // First handle test's that involve fewer bits than B3's type system supports.
+
+ if (Inst result = tryTestLoadImm(Arg::Width8, Load8Z))
+ return result;
+
+ if (Inst result = tryTestLoadImm(Arg::Width8, Load8S))
+ return result;
+
+ if (Inst result = tryTestLoadImm(Arg::Width16, Load16Z))
+ return result;
+
+ if (Inst result = tryTestLoadImm(Arg::Width16, Load16S))
+ return result;
+
+ // Now handle test's that involve a load and an immediate. Note that immediates
+ // are 32-bit, and we want zero-extension. Hence, the immediate form is compiled
+ // as a 32-bit test. Note that this spits on the grave of inferior endians, such
+ // as the big one.
+
+ if (Inst result = tryTestLoadImm(Arg::Width32, Load))
+ return result;
+
+ // Now handle test's that involve a load.
+
+ Arg::Width width = Arg::widthForB3Type(value->child(0)->type());
+ if (Inst result = tryTest(width, loadPromise(left), tmpPromise(right))) {
+ commitInternal(left);
+ return result;
+ }
+
+ if (Inst result = tryTest(width, tmpPromise(left), loadPromise(right))) {
+ commitInternal(right);
+ return result;
+ }
+ }
+
+ // Now handle test's that involve an immediate and a tmp.
+
+ if (leftImm) {
+ if ((width == Arg::Width32 && leftImm.value() == 0xffffffff)
+ || (width == Arg::Width64 && leftImm.value() == -1)) {
+ ArgPromise argPromise = tmpPromise(right);
+ if (Inst result = tryTest(width, argPromise, argPromise))
+ return result;
+ }
+ if (leftImm.isRepresentableAs<uint32_t>()) {
+ if (Inst result = tryTest(Arg::Width32, leftImm, tmpPromise(right)))
+ return result;
+ }
+ }
+
+ if (rightImm) {
+ if ((width == Arg::Width32 && rightImm.value() == 0xffffffff)
+ || (width == Arg::Width64 && rightImm.value() == -1)) {
+ ArgPromise argPromise = tmpPromise(left);
+ if (Inst result = tryTest(width, argPromise, argPromise))
+ return result;
+ }
+ if (rightImm.isRepresentableAs<uint32_t>()) {
+ if (Inst result = tryTest(Arg::Width32, tmpPromise(left), rightImm))
+ return result;
+ }
+ }
+
+ // Finally, just do tmp's.
+ return tryTest(width, tmpPromise(left), tmpPromise(right));
+ }
+ default:
+ return Inst();
+ }
+ };
+
+ if (FusionResult fusionResult = prepareToFuse(value)) {
+ if (Inst result = attemptFused()) {
+ commitFusion(value, fusionResult);
+ return result;
+ }
+ }
+
+ if (Arg::isValidImmForm(-1)) {
+ if (canCommitInternal && value->as<MemoryValue>()) {
+ // Handle things like Branch(Load8Z(value))
+
+ if (Inst result = tryTest(Arg::Width8, loadPromise(value, Load8Z), Arg::imm(-1))) {
+ commitInternal(value);
+ return result;
+ }
+
+ if (Inst result = tryTest(Arg::Width8, loadPromise(value, Load8S), Arg::imm(-1))) {
+ commitInternal(value);
+ return result;
+ }
+
+ if (Inst result = tryTest(Arg::Width16, loadPromise(value, Load16Z), Arg::imm(-1))) {
+ commitInternal(value);
+ return result;
+ }
+
+ if (Inst result = tryTest(Arg::Width16, loadPromise(value, Load16S), Arg::imm(-1))) {
+ commitInternal(value);
+ return result;
+ }
+
+ if (Inst result = tryTest(width, loadPromise(value), Arg::imm(-1))) {
+ commitInternal(value);
+ return result;
+ }
+ }
+
+ if (Inst result = test(width, resCond, tmpPromise(value), Arg::imm(-1)))
+ return result;
+ }
+
+ // Sometimes this is the only form of test available. We prefer not to use this because
+ // it's less canonical.
+ return test(width, resCond, tmpPromise(value), tmpPromise(value));
+ }
+
+ Inst createBranch(Value* value, bool inverted = false)
+ {
+ return createGenericCompare(
+ value,
+ [this] (
+ Arg::Width width, const Arg& relCond,
+ const ArgPromise& left, const ArgPromise& right) -> Inst {
+ switch (width) {
+ case Arg::Width8:
+ if (isValidForm(Branch8, Arg::RelCond, left.kind(), right.kind())) {
+ return Inst(
+ Branch8, m_value, relCond,
+ left.consume(*this), right.consume(*this));
+ }
+ return Inst();
+ case Arg::Width16:
+ return Inst();
+ case Arg::Width32:
+ if (isValidForm(Branch32, Arg::RelCond, left.kind(), right.kind())) {
+ return Inst(
+ Branch32, m_value, relCond,
+ left.consume(*this), right.consume(*this));
+ }
+ return Inst();
+ case Arg::Width64:
+ if (isValidForm(Branch64, Arg::RelCond, left.kind(), right.kind())) {
+ return Inst(
+ Branch64, m_value, relCond,
+ left.consume(*this), right.consume(*this));
+ }
+ return Inst();
+ }
+ ASSERT_NOT_REACHED();
+ },
+ [this] (
+ Arg::Width width, const Arg& resCond,
+ const ArgPromise& left, const ArgPromise& right) -> Inst {
+ switch (width) {
+ case Arg::Width8:
+ if (isValidForm(BranchTest8, Arg::ResCond, left.kind(), right.kind())) {
+ return Inst(
+ BranchTest8, m_value, resCond,
+ left.consume(*this), right.consume(*this));
+ }
+ return Inst();
+ case Arg::Width16:
+ return Inst();
+ case Arg::Width32:
+ if (isValidForm(BranchTest32, Arg::ResCond, left.kind(), right.kind())) {
+ return Inst(
+ BranchTest32, m_value, resCond,
+ left.consume(*this), right.consume(*this));
+ }
+ return Inst();
+ case Arg::Width64:
+ if (isValidForm(BranchTest64, Arg::ResCond, left.kind(), right.kind())) {
+ return Inst(
+ BranchTest64, m_value, resCond,
+ left.consume(*this), right.consume(*this));
+ }
+ return Inst();
+ }
+ ASSERT_NOT_REACHED();
+ },
+ [this] (Arg doubleCond, const ArgPromise& left, const ArgPromise& right) -> Inst {
+ if (isValidForm(BranchDouble, Arg::DoubleCond, left.kind(), right.kind())) {
+ return Inst(
+ BranchDouble, m_value, doubleCond,
+ left.consume(*this), right.consume(*this));
+ }
+ return Inst();
+ },
+ [this] (Arg doubleCond, const ArgPromise& left, const ArgPromise& right) -> Inst {
+ if (isValidForm(BranchFloat, Arg::DoubleCond, left.kind(), right.kind())) {
+ return Inst(
+ BranchFloat, m_value, doubleCond,
+ left.consume(*this), right.consume(*this));
+ }
+ return Inst();
+ },
+ inverted);
+ }
+
+ Inst createCompare(Value* value, bool inverted = false)
+ {
+ return createGenericCompare(
+ value,
+ [this] (
+ Arg::Width width, const Arg& relCond,
+ const ArgPromise& left, const ArgPromise& right) -> Inst {
+ switch (width) {
+ case Arg::Width8:
+ case Arg::Width16:
+ return Inst();
+ case Arg::Width32:
+ if (isValidForm(Compare32, Arg::RelCond, left.kind(), right.kind(), Arg::Tmp)) {
+ return Inst(
+ Compare32, m_value, relCond,
+ left.consume(*this), right.consume(*this), tmp(m_value));
+ }
+ return Inst();
+ case Arg::Width64:
+ if (isValidForm(Compare64, Arg::RelCond, left.kind(), right.kind(), Arg::Tmp)) {
+ return Inst(
+ Compare64, m_value, relCond,
+ left.consume(*this), right.consume(*this), tmp(m_value));
+ }
+ return Inst();
+ }
+ ASSERT_NOT_REACHED();
+ },
+ [this] (
+ Arg::Width width, const Arg& resCond,
+ const ArgPromise& left, const ArgPromise& right) -> Inst {
+ switch (width) {
+ case Arg::Width8:
+ case Arg::Width16:
+ return Inst();
+ case Arg::Width32:
+ if (isValidForm(Test32, Arg::ResCond, left.kind(), right.kind(), Arg::Tmp)) {
+ return Inst(
+ Test32, m_value, resCond,
+ left.consume(*this), right.consume(*this), tmp(m_value));
+ }
+ return Inst();
+ case Arg::Width64:
+ if (isValidForm(Test64, Arg::ResCond, left.kind(), right.kind(), Arg::Tmp)) {
+ return Inst(
+ Test64, m_value, resCond,
+ left.consume(*this), right.consume(*this), tmp(m_value));
+ }
+ return Inst();
+ }
+ ASSERT_NOT_REACHED();
+ },
+ [this] (const Arg& doubleCond, const ArgPromise& left, const ArgPromise& right) -> Inst {
+ if (isValidForm(CompareDouble, Arg::DoubleCond, left.kind(), right.kind(), Arg::Tmp)) {
+ return Inst(
+ CompareDouble, m_value, doubleCond,
+ left.consume(*this), right.consume(*this), tmp(m_value));
+ }
+ return Inst();
+ },
+ [this] (const Arg& doubleCond, const ArgPromise& left, const ArgPromise& right) -> Inst {
+ if (isValidForm(CompareFloat, Arg::DoubleCond, left.kind(), right.kind(), Arg::Tmp)) {
+ return Inst(
+ CompareFloat, m_value, doubleCond,
+ left.consume(*this), right.consume(*this), tmp(m_value));
+ }
+ return Inst();
+ },
+ inverted);
+ }
+
+ struct MoveConditionallyConfig {
+ Air::Opcode moveConditionally32;
+ Air::Opcode moveConditionally64;
+ Air::Opcode moveConditionallyTest32;
+ Air::Opcode moveConditionallyTest64;
+ Air::Opcode moveConditionallyDouble;
+ Air::Opcode moveConditionallyFloat;
+ };
+ Inst createSelect(const MoveConditionallyConfig& config)
+ {
+ auto createSelectInstruction = [&] (Air::Opcode opcode, const Arg& condition, const ArgPromise& left, const ArgPromise& right) -> Inst {
+ if (isValidForm(opcode, condition.kind(), left.kind(), right.kind(), Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
+ Tmp result = tmp(m_value);
+ Tmp thenCase = tmp(m_value->child(1));
+ Tmp elseCase = tmp(m_value->child(2));
+ return Inst(
+ opcode, m_value, condition,
+ left.consume(*this), right.consume(*this), thenCase, elseCase, result);
+ }
+ if (isValidForm(opcode, condition.kind(), left.kind(), right.kind(), Arg::Tmp, Arg::Tmp)) {
+ Tmp result = tmp(m_value);
+ Tmp source = tmp(m_value->child(1));
+ append(relaxedMoveForType(m_value->type()), tmp(m_value->child(2)), result);
+ return Inst(
+ opcode, m_value, condition,
+ left.consume(*this), right.consume(*this), source, result);
+ }
+ return Inst();
+ };
+
+ return createGenericCompare(
+ m_value->child(0),
+ [&] (
+ Arg::Width width, const Arg& relCond,
+ const ArgPromise& left, const ArgPromise& right) -> Inst {
+ switch (width) {
+ case Arg::Width8:
+ // FIXME: Support these things.
+ // https://bugs.webkit.org/show_bug.cgi?id=151504
+ return Inst();
+ case Arg::Width16:
+ return Inst();
+ case Arg::Width32:
+ return createSelectInstruction(config.moveConditionally32, relCond, left, right);
+ case Arg::Width64:
+ return createSelectInstruction(config.moveConditionally64, relCond, left, right);
+ }
+ ASSERT_NOT_REACHED();
+ },
+ [&] (
+ Arg::Width width, const Arg& resCond,
+ const ArgPromise& left, const ArgPromise& right) -> Inst {
+ switch (width) {
+ case Arg::Width8:
+ // FIXME: Support more things.
+ // https://bugs.webkit.org/show_bug.cgi?id=151504
+ return Inst();
+ case Arg::Width16:
+ return Inst();
+ case Arg::Width32:
+ return createSelectInstruction(config.moveConditionallyTest32, resCond, left, right);
+ case Arg::Width64:
+ return createSelectInstruction(config.moveConditionallyTest64, resCond, left, right);
+ }
+ ASSERT_NOT_REACHED();
+ },
+ [&] (Arg doubleCond, const ArgPromise& left, const ArgPromise& right) -> Inst {
+ return createSelectInstruction(config.moveConditionallyDouble, doubleCond, left, right);
+ },
+ [&] (Arg doubleCond, const ArgPromise& left, const ArgPromise& right) -> Inst {
+ return createSelectInstruction(config.moveConditionallyFloat, doubleCond, left, right);
+ },
+ false);
+ }
+
+ void lower()
+ {
+ switch (m_value->opcode()) {
+ case B3::Nop: {
+ // Yes, we will totally see Nop's because some phases will replaceWithNop() instead of
+ // properly removing things.
+ return;
+ }
+
+ case Load: {
+ append(
+ moveForType(m_value->type()),
+ addr(m_value), tmp(m_value));
+ return;
+ }
+
+ case Load8S: {
+ append(Load8SignedExtendTo32, addr(m_value), tmp(m_value));
+ return;
+ }
+
+ case Load8Z: {
+ append(Load8, addr(m_value), tmp(m_value));
+ return;
+ }
+
+ case Load16S: {
+ append(Load16SignedExtendTo32, addr(m_value), tmp(m_value));
+ return;
+ }
+
+ case Load16Z: {
+ append(Load16, addr(m_value), tmp(m_value));
+ return;
+ }
+
+ case Add: {
+ Air::Opcode multiplyAddOpcode = tryOpcodeForType(MultiplyAdd32, MultiplyAdd64, m_value->type());
+ if (multiplyAddOpcode != Air::Oops
+ && isValidForm(multiplyAddOpcode, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
+ Value* left = m_value->child(0);
+ Value* right = m_value->child(1);
+ if (!imm(right) || m_valueToTmp[right]) {
+ auto tryAppendMultiplyAdd = [&] (Value* left, Value* right) -> bool {
+ if (left->opcode() != Mul || !canBeInternal(left))
+ return false;
+
+ Value* multiplyLeft = left->child(0);
+ Value* multiplyRight = left->child(1);
+ if (m_locked.contains(multiplyLeft) || m_locked.contains(multiplyRight))
+ return false;
+
+ append(multiplyAddOpcode, tmp(multiplyLeft), tmp(multiplyRight), tmp(right), tmp(m_value));
+ commitInternal(left);
+
+ return true;
+ };
+
+ if (tryAppendMultiplyAdd(left, right))
+ return;
+ if (tryAppendMultiplyAdd(right, left))
+ return;
+ }
+ }
+
+ appendBinOp<Add32, Add64, AddDouble, AddFloat, Commutative>(
+ m_value->child(0), m_value->child(1));
+ return;
+ }
+
+ case Sub: {
+ Air::Opcode multiplySubOpcode = tryOpcodeForType(MultiplySub32, MultiplySub64, m_value->type());
+ if (multiplySubOpcode != Air::Oops
+ && isValidForm(multiplySubOpcode, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
+ Value* left = m_value->child(0);
+ Value* right = m_value->child(1);
+ if (!imm(right) || m_valueToTmp[right]) {
+ auto tryAppendMultiplySub = [&] () -> bool {
+ if (right->opcode() != Mul || !canBeInternal(right))
+ return false;
+
+ Value* multiplyLeft = right->child(0);
+ Value* multiplyRight = right->child(1);
+ if (m_locked.contains(multiplyLeft) || m_locked.contains(multiplyRight))
+ return false;
+
+ append(multiplySubOpcode, tmp(multiplyLeft), tmp(multiplyRight), tmp(left), tmp(m_value));
+ commitInternal(right);
+
+ return true;
+ };
+
+ if (tryAppendMultiplySub())
+ return;
+ }
+ }
+
+ appendBinOp<Sub32, Sub64, SubDouble, SubFloat>(m_value->child(0), m_value->child(1));
+ return;
+ }
+
+ case Neg: {
+ Air::Opcode multiplyNegOpcode = tryOpcodeForType(MultiplyNeg32, MultiplyNeg64, m_value->type());
+ if (multiplyNegOpcode != Air::Oops
+ && isValidForm(multiplyNegOpcode, Arg::Tmp, Arg::Tmp, Arg::Tmp)
+ && m_value->child(0)->opcode() == Mul
+ && canBeInternal(m_value->child(0))) {
+ Value* multiplyOperation = m_value->child(0);
+ Value* multiplyLeft = multiplyOperation->child(0);
+ Value* multiplyRight = multiplyOperation->child(1);
+ if (!m_locked.contains(multiplyLeft) && !m_locked.contains(multiplyRight)) {
+ append(multiplyNegOpcode, tmp(multiplyLeft), tmp(multiplyRight), tmp(m_value));
+ commitInternal(multiplyOperation);
+ return;
+ }
+ }
+
+ appendUnOp<Neg32, Neg64, NegateDouble, Air::Oops>(m_value->child(0));
+ return;
+ }
+
+ case Mul: {
+ appendBinOp<Mul32, Mul64, MulDouble, MulFloat, Commutative>(
+ m_value->child(0), m_value->child(1));
+ return;
+ }
+
+ case ChillDiv:
+ RELEASE_ASSERT(isARM64());
+ FALLTHROUGH;
+ case Div: {
+#if CPU(X86) || CPU(X86_64)
+ if (isInt(m_value->type())) {
+ lowerX86Div();
+ append(Move, Tmp(X86Registers::eax), tmp(m_value));
+ return;
+ }
+#endif
+ ASSERT(!isX86() || isFloat(m_value->type()));
+
+ appendBinOp<Div32, Div64, DivDouble, DivFloat>(m_value->child(0), m_value->child(1));
+ return;
+ }
+
+ case Mod: {
+ RELEASE_ASSERT(isX86());
+#if CPU(X86) || CPU(X86_64)
+ lowerX86Div();
+ append(Move, Tmp(X86Registers::edx), tmp(m_value));
+#endif
+ return;
+ }
+
+ case BitAnd: {
+ if (m_value->child(1)->isInt(0xff)) {
+ appendUnOp<ZeroExtend8To32, ZeroExtend8To32>(m_value->child(0));
+ return;
+ }
+
+ if (m_value->child(1)->isInt(0xffff)) {
+ appendUnOp<ZeroExtend16To32, ZeroExtend16To32>(m_value->child(0));
+ return;
+ }
+
+ if (m_value->child(1)->isInt(0xffffffff)) {
+ appendUnOp<Move32, Move32>(m_value->child(0));
+ return;
+ }
+
+ appendBinOp<And32, And64, AndDouble, AndFloat, Commutative>(
+ m_value->child(0), m_value->child(1));
+ return;
+ }
+
+ case BitOr: {
+ appendBinOp<Or32, Or64, Commutative>(
+ m_value->child(0), m_value->child(1));
+ return;
+ }
+
+ case BitXor: {
+ // FIXME: If canBeInternal(child), we should generate this using the comparison path.
+ // https://bugs.webkit.org/show_bug.cgi?id=152367
+
+ if (m_value->child(1)->isInt(-1)) {
+ appendUnOp<Not32, Not64>(m_value->child(0));
+ return;
+ }
+ appendBinOp<Xor32, Xor64, XorDouble, XorFloat, Commutative>(
+ m_value->child(0), m_value->child(1));
+ return;
+ }
+
+ case Shl: {
+ if (m_value->child(1)->isInt32(1)) {
+ appendBinOp<Add32, Add64, AddDouble, AddFloat, Commutative>(m_value->child(0), m_value->child(0));
+ return;
+ }
+
+ appendShift<Lshift32, Lshift64>(m_value->child(0), m_value->child(1));
+ return;
+ }
+
+ case SShr: {
+ appendShift<Rshift32, Rshift64>(m_value->child(0), m_value->child(1));
+ return;
+ }
+
+ case ZShr: {
+ appendShift<Urshift32, Urshift64>(m_value->child(0), m_value->child(1));
+ return;
+ }
+
+ case Clz: {
+ appendUnOp<CountLeadingZeros32, CountLeadingZeros64>(m_value->child(0));
+ return;
+ }
+
+ case Abs: {
+ RELEASE_ASSERT_WITH_MESSAGE(!isX86(), "Abs is not supported natively on x86. It must be replaced before generation.");
+ appendUnOp<Air::Oops, Air::Oops, AbsDouble, AbsFloat>(m_value->child(0));
+ return;
+ }
+
+ case Ceil: {
+ appendUnOp<Air::Oops, Air::Oops, CeilDouble, CeilFloat>(m_value->child(0));
+ return;
+ }
+
+ case Floor: {
+ appendUnOp<Air::Oops, Air::Oops, FloorDouble, FloorFloat>(m_value->child(0));
+ return;
+ }
+
+ case Sqrt: {
+ appendUnOp<Air::Oops, Air::Oops, SqrtDouble, SqrtFloat>(m_value->child(0));
+ return;
+ }
+
+ case BitwiseCast: {
+ appendUnOp<Move32ToFloat, Move64ToDouble, MoveDoubleTo64, MoveFloatTo32>(m_value->child(0));
+ return;
+ }
+
+ case Store: {
+ Value* valueToStore = m_value->child(0);
+ if (canBeInternal(valueToStore)) {
+ bool matched = false;
+ switch (valueToStore->opcode()) {
+ case Add:
+ matched = tryAppendStoreBinOp<Add32, Add64, Commutative>(
+ valueToStore->child(0), valueToStore->child(1));
+ break;
+ case Sub:
+ if (valueToStore->child(0)->isInt(0)) {
+ matched = tryAppendStoreUnOp<Neg32, Neg64>(valueToStore->child(1));
+ break;
+ }
+ matched = tryAppendStoreBinOp<Sub32, Sub64>(
+ valueToStore->child(0), valueToStore->child(1));
+ break;
+ case BitAnd:
+ matched = tryAppendStoreBinOp<And32, And64, Commutative>(
+ valueToStore->child(0), valueToStore->child(1));
+ break;
+ case BitXor:
+ if (valueToStore->child(1)->isInt(-1)) {
+ matched = tryAppendStoreUnOp<Not32, Not64>(valueToStore->child(0));
+ break;
+ }
+ matched = tryAppendStoreBinOp<Xor32, Xor64, Commutative>(
+ valueToStore->child(0), valueToStore->child(1));
+ break;
+ default:
+ break;
+ }
+ if (matched) {
+ commitInternal(valueToStore);
+ return;
+ }
+ }
+
+ appendStore(valueToStore, addr(m_value));
+ return;
+ }
+
+ case B3::Store8: {
+ Value* valueToStore = m_value->child(0);
+ if (canBeInternal(valueToStore)) {
+ bool matched = false;
+ switch (valueToStore->opcode()) {
+ case Add:
+ matched = tryAppendStoreBinOp<Add8, Air::Oops, Commutative>(
+ valueToStore->child(0), valueToStore->child(1));
+ break;
+ default:
+ break;
+ }
+ if (matched) {
+ commitInternal(valueToStore);
+ return;
+ }
+ }
+ m_insts.last().append(createStore(Air::Store8, valueToStore, addr(m_value)));
+ return;
+ }
+
+ case B3::Store16: {
+ Value* valueToStore = m_value->child(0);
+ if (canBeInternal(valueToStore)) {
+ bool matched = false;
+ switch (valueToStore->opcode()) {
+ case Add:
+ matched = tryAppendStoreBinOp<Add16, Air::Oops, Commutative>(
+ valueToStore->child(0), valueToStore->child(1));
+ break;
+ default:
+ break;
+ }
+ if (matched) {
+ commitInternal(valueToStore);
+ return;
+ }
+ }
+ m_insts.last().append(createStore(Air::Store16, valueToStore, addr(m_value)));
+ return;
+ }
+
+ case Trunc: {
+ ASSERT(tmp(m_value->child(0)) == tmp(m_value));
+ return;
+ }
+
+ case SExt8: {
+ appendUnOp<SignExtend8To32, Air::Oops>(m_value->child(0));
+ return;
+ }
+
+ case SExt16: {
+ appendUnOp<SignExtend16To32, Air::Oops>(m_value->child(0));
+ return;
+ }
+
+ case ZExt32: {
+ appendUnOp<Move32, Air::Oops>(m_value->child(0));
+ return;
+ }
+
+ case SExt32: {
+ // FIXME: We should have support for movsbq/movswq
+ // https://bugs.webkit.org/show_bug.cgi?id=152232
+
+ appendUnOp<SignExtend32ToPtr, Air::Oops>(m_value->child(0));
+ return;
+ }
+
+ case FloatToDouble: {
+ appendUnOp<Air::Oops, Air::Oops, Air::Oops, ConvertFloatToDouble>(m_value->child(0));
+ return;
+ }
+
+ case DoubleToFloat: {
+ appendUnOp<Air::Oops, Air::Oops, ConvertDoubleToFloat>(m_value->child(0));
+ return;
+ }
+
+ case ArgumentReg: {
+ m_prologue.append(Inst(
+ moveForType(m_value->type()), m_value,
+ Tmp(m_value->as<ArgumentRegValue>()->argumentReg()),
+ tmp(m_value)));
+ return;
+ }
+
+ case Const32:
+ case Const64: {
+ if (imm(m_value))
+ append(Move, imm(m_value), tmp(m_value));
+ else
+ append(Move, Arg::bigImm(m_value->asInt()), tmp(m_value));
+ return;
+ }
+
+ case ConstDouble:
+ case ConstFloat: {
+ // We expect that the moveConstants() phase has run, and any doubles referenced from
+ // stackmaps get fused.
+ RELEASE_ASSERT(m_value->opcode() == ConstFloat || isIdentical(m_value->asDouble(), 0.0));
+ RELEASE_ASSERT(m_value->opcode() == ConstDouble || isIdentical(m_value->asFloat(), 0.0));
+ append(MoveZeroToDouble, tmp(m_value));
+ return;
+ }
+
+ case FramePointer: {
+ ASSERT(tmp(m_value) == Tmp(GPRInfo::callFrameRegister));
+ return;
+ }
+
+ case SlotBase: {
+ append(
+ Lea,
+ Arg::stack(m_stackToStack.get(m_value->as<SlotBaseValue>()->slot())),
+ tmp(m_value));
+ return;
+ }
+
+ case Equal:
+ case NotEqual:
+ case LessThan:
+ case GreaterThan:
+ case LessEqual:
+ case GreaterEqual:
+ case Above:
+ case Below:
+ case AboveEqual:
+ case BelowEqual:
+ case EqualOrUnordered: {
+ m_insts.last().append(createCompare(m_value));
+ return;
+ }
+
+ case Select: {
+ MoveConditionallyConfig config;
+ if (isInt(m_value->type())) {
+ config.moveConditionally32 = MoveConditionally32;
+ config.moveConditionally64 = MoveConditionally64;
+ config.moveConditionallyTest32 = MoveConditionallyTest32;
+ config.moveConditionallyTest64 = MoveConditionallyTest64;
+ config.moveConditionallyDouble = MoveConditionallyDouble;
+ config.moveConditionallyFloat = MoveConditionallyFloat;
+ } else {
+ // FIXME: it's not obvious that these are particularly efficient.
+ config.moveConditionally32 = MoveDoubleConditionally32;
+ config.moveConditionally64 = MoveDoubleConditionally64;
+ config.moveConditionallyTest32 = MoveDoubleConditionallyTest32;
+ config.moveConditionallyTest64 = MoveDoubleConditionallyTest64;
+ config.moveConditionallyDouble = MoveDoubleConditionallyDouble;
+ config.moveConditionallyFloat = MoveDoubleConditionallyFloat;
+ }
+
+ m_insts.last().append(createSelect(config));
+ return;
+ }
+
+ case IToD: {
+ appendUnOp<ConvertInt32ToDouble, ConvertInt64ToDouble>(m_value->child(0));
+ return;
+ }
+
+ case B3::CCall: {
+ CCallValue* cCall = m_value->as<CCallValue>();
+
+ Inst inst(m_isRare ? Air::ColdCCall : Air::CCall, cCall);
+
+ // We have a ton of flexibility regarding the callee argument, but currently, we don't
+ // use it yet. It gets weird for reasons:
+ // 1) We probably will never take advantage of this. We don't have C calls to locations
+ // loaded from addresses. We have JS calls like that, but those use Patchpoints.
+ // 2) On X86_64 we still don't support call with BaseIndex.
+ // 3) On non-X86, we don't natively support any kind of loading from address.
+ // 4) We don't have an isValidForm() for the CCallSpecial so we have no smart way to
+ // decide.
+ // FIXME: https://bugs.webkit.org/show_bug.cgi?id=151052
+ inst.args.append(tmp(cCall->child(0)));
+
+ if (cCall->type() != Void)
+ inst.args.append(tmp(cCall));
+
+ for (unsigned i = 1; i < cCall->numChildren(); ++i)
+ inst.args.append(immOrTmp(cCall->child(i)));
+
+ m_insts.last().append(WTFMove(inst));
+ return;
+ }
+
+ case Patchpoint: {
+ PatchpointValue* patchpointValue = m_value->as<PatchpointValue>();
+ ensureSpecial(m_patchpointSpecial);
+
+ Inst inst(Patch, patchpointValue, Arg::special(m_patchpointSpecial));
+
+ Vector<Inst> after;
+ if (patchpointValue->type() != Void) {
+ switch (patchpointValue->resultConstraint.kind()) {
+ case ValueRep::WarmAny:
+ case ValueRep::ColdAny:
+ case ValueRep::LateColdAny:
+ case ValueRep::SomeRegister:
+ inst.args.append(tmp(patchpointValue));
+ break;
+ case ValueRep::Register: {
+ Tmp reg = Tmp(patchpointValue->resultConstraint.reg());
+ inst.args.append(reg);
+ after.append(Inst(
+ relaxedMoveForType(patchpointValue->type()), m_value, reg, tmp(patchpointValue)));
+ break;
+ }
+ case ValueRep::StackArgument: {
+ Arg arg = Arg::callArg(patchpointValue->resultConstraint.offsetFromSP());
+ inst.args.append(arg);
+ after.append(Inst(
+ moveForType(patchpointValue->type()), m_value, arg, tmp(patchpointValue)));
+ break;
+ }
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ break;
+ }
+ }
+
+ fillStackmap(inst, patchpointValue, 0);
+
+ if (patchpointValue->resultConstraint.isReg())
+ patchpointValue->lateClobbered().clear(patchpointValue->resultConstraint.reg());
+
+ for (unsigned i = patchpointValue->numGPScratchRegisters; i--;)
+ inst.args.append(m_code.newTmp(Arg::GP));
+ for (unsigned i = patchpointValue->numFPScratchRegisters; i--;)
+ inst.args.append(m_code.newTmp(Arg::FP));
+
+ m_insts.last().append(WTFMove(inst));
+ m_insts.last().appendVector(after);
+ return;
+ }
+
+ case CheckAdd:
+ case CheckSub:
+ case CheckMul: {
+ CheckValue* checkValue = m_value->as<CheckValue>();
+
+ Value* left = checkValue->child(0);
+ Value* right = checkValue->child(1);
+
+ Tmp result = tmp(m_value);
+
+ // Handle checked negation.
+ if (checkValue->opcode() == CheckSub && left->isInt(0)) {
+ append(Move, tmp(right), result);
+
+ Air::Opcode opcode =
+ opcodeForType(BranchNeg32, BranchNeg64, checkValue->type());
+ CheckSpecial* special = ensureCheckSpecial(opcode, 2);
+
+ Inst inst(Patch, checkValue, Arg::special(special));
+ inst.args.append(Arg::resCond(MacroAssembler::Overflow));
+ inst.args.append(result);
+
+ fillStackmap(inst, checkValue, 2);
+
+ m_insts.last().append(WTFMove(inst));
+ return;
+ }
+
+ Air::Opcode opcode = Air::Oops;
+ Commutativity commutativity = NotCommutative;
+ StackmapSpecial::RoleMode stackmapRole = StackmapSpecial::SameAsRep;
+ switch (m_value->opcode()) {
+ case CheckAdd:
+ opcode = opcodeForType(BranchAdd32, BranchAdd64, m_value->type());
+ stackmapRole = StackmapSpecial::ForceLateUseUnlessRecoverable;
+ commutativity = Commutative;
+ break;
+ case CheckSub:
+ opcode = opcodeForType(BranchSub32, BranchSub64, m_value->type());
+ break;
+ case CheckMul:
+ opcode = opcodeForType(BranchMul32, BranchMul64, checkValue->type());
+ stackmapRole = StackmapSpecial::ForceLateUse;
+ break;
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ break;
+ }
+
+ // FIXME: It would be great to fuse Loads into these. We currently don't do it because the
+ // rule for stackmaps is that all addresses are just stack addresses. Maybe we could relax
+ // this rule here.
+ // https://bugs.webkit.org/show_bug.cgi?id=151228
+
+ Vector<Arg, 2> sources;
+ if (imm(right) && isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Imm, Arg::Tmp)) {
+ sources.append(tmp(left));
+ sources.append(imm(right));
+ } else if (imm(right) && isValidForm(opcode, Arg::ResCond, Arg::Imm, Arg::Tmp)) {
+ sources.append(imm(right));
+ append(Move, tmp(left), result);
+ } else if (isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
+ sources.append(tmp(left));
+ sources.append(tmp(right));
+ } else if (isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Tmp)) {
+ if (commutativity == Commutative && preferRightForResult(left, right)) {
+ sources.append(tmp(left));
+ append(Move, tmp(right), result);
+ } else {
+ sources.append(tmp(right));
+ append(Move, tmp(left), result);
+ }
+ } else if (isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
+ sources.append(tmp(left));
+ sources.append(tmp(right));
+ sources.append(m_code.newTmp(Arg::typeForB3Type(m_value->type())));
+ sources.append(m_code.newTmp(Arg::typeForB3Type(m_value->type())));
+ }
+
+ // There is a really hilarious case that arises when we do BranchAdd32(%x, %x). We won't emit
+ // such code, but the coalescing in our register allocator also does copy propagation, so
+ // although we emit:
+ //
+ // Move %tmp1, %tmp2
+ // BranchAdd32 %tmp1, %tmp2
+ //
+ // The register allocator may turn this into:
+ //
+ // BranchAdd32 %rax, %rax
+ //
+ // Currently we handle this by ensuring that even this kind of addition can be undone. We can
+ // undo it by using the carry flag. It's tempting to get rid of that code and just "fix" this
+ // here by forcing LateUse on the stackmap. If we did that unconditionally, we'd lose a lot of
+ // performance. So it's tempting to do it only if left == right. But that creates an awkward
+ // constraint on Air: it means that Air would not be allowed to do any copy propagation.
+ // Notice that the %rax,%rax situation happened after Air copy-propagated the Move we are
+ // emitting. We know that copy-propagating over that Move causes add-to-self. But what if we
+ // emit something like a Move - or even do other kinds of copy-propagation on tmp's -
+ // somewhere else in this code. The add-to-self situation may only emerge after some other Air
+ // optimizations remove other Move's or identity-like operations. That's why we don't use
+ // LateUse here to take care of add-to-self.
+
+ CheckSpecial* special = ensureCheckSpecial(opcode, 2 + sources.size(), stackmapRole);
+
+ Inst inst(Patch, checkValue, Arg::special(special));
+
+ inst.args.append(Arg::resCond(MacroAssembler::Overflow));
+
+ inst.args.appendVector(sources);
+ inst.args.append(result);
+
+ fillStackmap(inst, checkValue, 2);
+
+ m_insts.last().append(WTFMove(inst));
+ return;
+ }
+
+ case Check: {
+ Inst branch = createBranch(m_value->child(0));
+
+ CheckSpecial* special = ensureCheckSpecial(branch);
+
+ CheckValue* checkValue = m_value->as<CheckValue>();
+
+ Inst inst(Patch, checkValue, Arg::special(special));
+ inst.args.appendVector(branch.args);
+
+ fillStackmap(inst, checkValue, 1);
+
+ m_insts.last().append(WTFMove(inst));
+ return;
+ }
+
+ case Upsilon: {
+ Value* value = m_value->child(0);
+ append(
+ relaxedMoveForType(value->type()), immOrTmp(value),
+ m_phiToTmp[m_value->as<UpsilonValue>()->phi()]);
+ return;
+ }
+
+ case Phi: {
+ // Snapshot the value of the Phi. It may change under us because you could do:
+ // a = Phi()
+ // Upsilon(@x, ^a)
+ // @a => this should get the value of the Phi before the Upsilon, i.e. not @x.
+
+ append(relaxedMoveForType(m_value->type()), m_phiToTmp[m_value], tmp(m_value));
+ return;
+ }
+
+ case Set: {
+ Value* value = m_value->child(0);
+ append(
+ relaxedMoveForType(value->type()), immOrTmp(value),
+ m_variableToTmp.get(m_value->as<VariableValue>()->variable()));
+ return;
+ }
+
+ case Get: {
+ append(
+ relaxedMoveForType(m_value->type()),
+ m_variableToTmp.get(m_value->as<VariableValue>()->variable()), tmp(m_value));
+ return;
+ }
+
+ case Branch: {
+ m_insts.last().append(createBranch(m_value->child(0)));
+ return;
+ }
+
+ case B3::Jump: {
+ append(Air::Jump);
+ return;
+ }
+
+ case Identity: {
+ ASSERT(tmp(m_value->child(0)) == tmp(m_value));
+ return;
+ }
+
+ case Return: {
+ Value* value = m_value->child(0);
+ Tmp returnValueGPR = Tmp(GPRInfo::returnValueGPR);
+ Tmp returnValueFPR = Tmp(FPRInfo::returnValueFPR);
+ switch (value->type()) {
+ case Void:
+ // It's impossible for a void value to be used as a child. If we did want to have a
+ // void return, we'd introduce a different opcode, like ReturnVoid.
+ RELEASE_ASSERT_NOT_REACHED();
+ break;
+ case Int32:
+ append(Move, immOrTmp(value), returnValueGPR);
+ append(Ret32, returnValueGPR);
+ break;
+ case Int64:
+ append(Move, immOrTmp(value), returnValueGPR);
+ append(Ret64, returnValueGPR);
+ break;
+ case Float:
+ append(MoveFloat, tmp(value), returnValueFPR);
+ append(RetFloat, returnValueFPR);
+ break;
+ case Double:
+ append(MoveDouble, tmp(value), returnValueFPR);
+ append(RetDouble, returnValueFPR);
+ break;
+ }
+ return;
+ }
+
+ case B3::Oops: {
+ append(Air::Oops);
+ return;
+ }
+
+ default:
+ break;
+ }
+
+ dataLog("FATAL: could not lower ", deepDump(m_procedure, m_value), "\n");
+ RELEASE_ASSERT_NOT_REACHED();
+ }
+
+#if CPU(X86) || CPU(X86_64)
+ void lowerX86Div()
+ {
+ Tmp eax = Tmp(X86Registers::eax);
+ Tmp edx = Tmp(X86Registers::edx);
+
+ Air::Opcode convertToDoubleWord;
+ Air::Opcode div;
+ switch (m_value->type()) {
+ case Int32:
+ convertToDoubleWord = X86ConvertToDoubleWord32;
+ div = X86Div32;
+ break;
+ case Int64:
+ convertToDoubleWord = X86ConvertToQuadWord64;
+ div = X86Div64;
+ break;
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ return;
+ }
+
+ append(Move, tmp(m_value->child(0)), eax);
+ append(convertToDoubleWord, eax, edx);
+ append(div, eax, edx, tmp(m_value->child(1)));
+ }
+#endif
+
+ IndexSet<Value> m_locked; // These are values that will have no Tmp in Air.
+ IndexMap<Value, Tmp> m_valueToTmp; // These are values that must have a Tmp in Air. We say that a Value* with a non-null Tmp is "pinned".
+ IndexMap<Value, Tmp> m_phiToTmp; // Each Phi gets its own Tmp.
+ IndexMap<B3::BasicBlock, Air::BasicBlock*> m_blockToBlock;
+ HashMap<B3::StackSlot*, Air::StackSlot*> m_stackToStack;
+ HashMap<Variable*, Tmp> m_variableToTmp;
+
+ UseCounts m_useCounts;
+ PhiChildren m_phiChildren;
+ BlockWorklist m_fastWorklist;
+ Dominators& m_dominators;
+
+ Vector<Vector<Inst, 4>> m_insts;
+ Vector<Inst> m_prologue;
+
+ B3::BasicBlock* m_block;
+ bool m_isRare;
+ unsigned m_index;
+ Value* m_value;
+
+ PatchpointSpecial* m_patchpointSpecial { nullptr };
+ HashMap<CheckSpecial::Key, CheckSpecial*> m_checkSpecials;
+
+ Procedure& m_procedure;
+ Code& m_code;
+};
+
+} // anonymous namespace
+
+void lowerToAir(Procedure& procedure)
+{
+ PhaseScope phaseScope(procedure, "lowerToAir");
+ LowerToAir lowerToAir(procedure);
+ lowerToAir.run();
+}
+
+} } // namespace JSC::B3
+
+#if COMPILER(GCC) && ASSERT_DISABLED
+#pragma GCC diagnostic pop
+#endif // COMPILER(GCC) && ASSERT_DISABLED
+
+#endif // ENABLE(B3_JIT)