diff options
Diffstat (limited to 'Source/ThirdParty/ANGLE/src/libGLESv2/ProgramBinary.cpp')
-rw-r--r-- | Source/ThirdParty/ANGLE/src/libGLESv2/ProgramBinary.cpp | 2480 |
1 files changed, 2480 insertions, 0 deletions
diff --git a/Source/ThirdParty/ANGLE/src/libGLESv2/ProgramBinary.cpp b/Source/ThirdParty/ANGLE/src/libGLESv2/ProgramBinary.cpp new file mode 100644 index 000000000..ac28e5181 --- /dev/null +++ b/Source/ThirdParty/ANGLE/src/libGLESv2/ProgramBinary.cpp @@ -0,0 +1,2480 @@ +// +// Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. +// + +// Program.cpp: Implements the gl::Program class. Implements GL program objects +// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28. + +#include "libGLESv2/Program.h" +#include "libGLESv2/ProgramBinary.h" + +#include "common/debug.h" + +#include "libGLESv2/main.h" +#include "libGLESv2/Shader.h" +#include "libGLESv2/utilities.h" + +#include <string> + +#if !defined(ANGLE_COMPILE_OPTIMIZATION_LEVEL) +#define ANGLE_COMPILE_OPTIMIZATION_LEVEL D3DCOMPILE_OPTIMIZATION_LEVEL3 +#endif + +namespace gl +{ +std::string str(int i) +{ + char buffer[20]; + snprintf(buffer, sizeof(buffer), "%d", i); + return buffer; +} + +Uniform::Uniform(GLenum type, const std::string &_name, unsigned int arraySize) + : type(type), _name(_name), name(ProgramBinary::undecorateUniform(_name)), arraySize(arraySize) +{ + int bytes = UniformInternalSize(type) * arraySize; + data = new unsigned char[bytes]; + memset(data, 0, bytes); + dirty = true; +} + +Uniform::~Uniform() +{ + delete[] data; +} + +bool Uniform::isArray() +{ + return _name.compare(0, 3, "ar_") == 0; +} + +UniformLocation::UniformLocation(const std::string &_name, unsigned int element, unsigned int index) + : name(ProgramBinary::undecorateUniform(_name)), element(element), index(index) +{ +} + +ProgramBinary::ProgramBinary() +{ + mDevice = getDevice(); + + mPixelExecutable = NULL; + mVertexExecutable = NULL; + mConstantTablePS = NULL; + mConstantTableVS = NULL; + + mValidated = false; + + for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) + { + mSemanticIndex[index] = -1; + } + + for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++) + { + mSamplersPS[index].active = false; + } + + for (int index = 0; index < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; index++) + { + mSamplersVS[index].active = false; + } + + mUsedVertexSamplerRange = 0; + mUsedPixelSamplerRange = 0; + + mDxDepthRangeLocation = -1; + mDxDepthLocation = -1; + mDxCoordLocation = -1; + mDxHalfPixelSizeLocation = -1; + mDxFrontCCWLocation = -1; + mDxPointsOrLinesLocation = -1; +} + +ProgramBinary::~ProgramBinary() +{ + if (mPixelExecutable) + { + mPixelExecutable->Release(); + } + + if (mVertexExecutable) + { + mVertexExecutable->Release(); + } + + if (mConstantTablePS) + { + mConstantTablePS->Release(); + } + + if (mConstantTableVS) + { + mConstantTableVS->Release(); + } + + while (!mUniforms.empty()) + { + delete mUniforms.back(); + mUniforms.pop_back(); + } +} + +IDirect3DPixelShader9 *ProgramBinary::getPixelShader() +{ + return mPixelExecutable; +} + +IDirect3DVertexShader9 *ProgramBinary::getVertexShader() +{ + return mVertexExecutable; +} + +GLuint ProgramBinary::getAttributeLocation(const char *name) +{ + if (name) + { + for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) + { + if (mLinkedAttribute[index].name == std::string(name)) + { + return index; + } + } + } + + return -1; +} + +int ProgramBinary::getSemanticIndex(int attributeIndex) +{ + ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS); + + return mSemanticIndex[attributeIndex]; +} + +// Returns one more than the highest sampler index used. +GLint ProgramBinary::getUsedSamplerRange(SamplerType type) +{ + switch (type) + { + case SAMPLER_PIXEL: + return mUsedPixelSamplerRange; + case SAMPLER_VERTEX: + return mUsedVertexSamplerRange; + default: + UNREACHABLE(); + return 0; + } +} + +// Returns the index of the texture image unit (0-19) corresponding to a Direct3D 9 sampler +// index (0-15 for the pixel shader and 0-3 for the vertex shader). +GLint ProgramBinary::getSamplerMapping(SamplerType type, unsigned int samplerIndex) +{ + GLint logicalTextureUnit = -1; + + switch (type) + { + case SAMPLER_PIXEL: + ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0])); + + if (mSamplersPS[samplerIndex].active) + { + logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit; + } + break; + case SAMPLER_VERTEX: + ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0])); + + if (mSamplersVS[samplerIndex].active) + { + logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit; + } + break; + default: UNREACHABLE(); + } + + if (logicalTextureUnit >= 0 && logicalTextureUnit < (GLint)getContext()->getMaximumCombinedTextureImageUnits()) + { + return logicalTextureUnit; + } + + return -1; +} + +// Returns the texture type for a given Direct3D 9 sampler type and +// index (0-15 for the pixel shader and 0-3 for the vertex shader). +TextureType ProgramBinary::getSamplerTextureType(SamplerType type, unsigned int samplerIndex) +{ + switch (type) + { + case SAMPLER_PIXEL: + ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0])); + ASSERT(mSamplersPS[samplerIndex].active); + return mSamplersPS[samplerIndex].textureType; + case SAMPLER_VERTEX: + ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0])); + ASSERT(mSamplersVS[samplerIndex].active); + return mSamplersVS[samplerIndex].textureType; + default: UNREACHABLE(); + } + + return TEXTURE_2D; +} + +GLint ProgramBinary::getUniformLocation(std::string name) +{ + unsigned int subscript = 0; + + // Strip any trailing array operator and retrieve the subscript + size_t open = name.find_last_of('['); + size_t close = name.find_last_of(']'); + if (open != std::string::npos && close == name.length() - 1) + { + subscript = atoi(name.substr(open + 1).c_str()); + name.erase(open); + } + + unsigned int numUniforms = mUniformIndex.size(); + for (unsigned int location = 0; location < numUniforms; location++) + { + if (mUniformIndex[location].name == name && + mUniformIndex[location].element == subscript) + { + return location; + } + } + + return -1; +} + +bool ProgramBinary::setUniform1fv(GLint location, GLsizei count, const GLfloat* v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + if (targetUniform->type == GL_FLOAT) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + + GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + target[0] = v[0]; + target[1] = 0; + target[2] = 0; + target[3] = 0; + target += 4; + v += 1; + } + } + else if (targetUniform->type == GL_BOOL) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element; + + for (int i = 0; i < count; ++i) + { + if (v[i] == 0.0f) + { + boolParams[i] = GL_FALSE; + } + else + { + boolParams[i] = GL_TRUE; + } + } + } + else + { + return false; + } + + return true; +} + +bool ProgramBinary::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + if (targetUniform->type == GL_FLOAT_VEC2) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + + GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + target[0] = v[0]; + target[1] = v[1]; + target[2] = 0; + target[3] = 0; + target += 4; + v += 2; + } + } + else if (targetUniform->type == GL_BOOL_VEC2) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + + GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 2; + + for (int i = 0; i < count * 2; ++i) + { + if (v[i] == 0.0f) + { + boolParams[i] = GL_FALSE; + } + else + { + boolParams[i] = GL_TRUE; + } + } + } + else + { + return false; + } + + return true; +} + +bool ProgramBinary::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + if (targetUniform->type == GL_FLOAT_VEC3) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + + GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + target[0] = v[0]; + target[1] = v[1]; + target[2] = v[2]; + target[3] = 0; + target += 4; + v += 3; + } + } + else if (targetUniform->type == GL_BOOL_VEC3) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 3; + + for (int i = 0; i < count * 3; ++i) + { + if (v[i] == 0.0f) + { + boolParams[i] = GL_FALSE; + } + else + { + boolParams[i] = GL_TRUE; + } + } + } + else + { + return false; + } + + return true; +} + +bool ProgramBinary::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + if (targetUniform->type == GL_FLOAT_VEC4) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + + memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 4, + v, 4 * sizeof(GLfloat) * count); + } + else if (targetUniform->type == GL_BOOL_VEC4) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count * 4; ++i) + { + if (v[i] == 0.0f) + { + boolParams[i] = GL_FALSE; + } + else + { + boolParams[i] = GL_TRUE; + } + } + } + else + { + return false; + } + + return true; +} + +template<typename T, int targetWidth, int targetHeight, int srcWidth, int srcHeight> +void transposeMatrix(T *target, const GLfloat *value) +{ + int copyWidth = std::min(targetWidth, srcWidth); + int copyHeight = std::min(targetHeight, srcHeight); + + for (int x = 0; x < copyWidth; x++) + { + for (int y = 0; y < copyHeight; y++) + { + target[x * targetWidth + y] = (T)value[y * srcWidth + x]; + } + } + // clear unfilled right side + for (int y = 0; y < copyHeight; y++) + { + for (int x = srcWidth; x < targetWidth; x++) + { + target[y * targetWidth + x] = (T)0; + } + } + // clear unfilled bottom. + for (int y = srcHeight; y < targetHeight; y++) + { + for (int x = 0; x < targetWidth; x++) + { + target[y * targetWidth + x] = (T)0; + } + } +} + +bool ProgramBinary::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + if (targetUniform->type != GL_FLOAT_MAT2) + { + return false; + } + + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + + GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8; + for (int i = 0; i < count; i++) + { + transposeMatrix<GLfloat,4,2,2,2>(target, value); + target += 8; + value += 4; + } + + return true; +} + +bool ProgramBinary::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + if (targetUniform->type != GL_FLOAT_MAT3) + { + return false; + } + + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + + GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12; + for (int i = 0; i < count; i++) + { + transposeMatrix<GLfloat,4,3,3,3>(target, value); + target += 12; + value += 9; + } + + return true; +} + + +bool ProgramBinary::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + if (targetUniform->type != GL_FLOAT_MAT4) + { + return false; + } + + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + + GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16); + for (int i = 0; i < count; i++) + { + transposeMatrix<GLfloat,4,4,4,4>(target, value); + target += 16; + value += 16; + } + + return true; +} + +bool ProgramBinary::setUniform1iv(GLint location, GLsizei count, const GLint *v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + if (targetUniform->type == GL_INT || + targetUniform->type == GL_SAMPLER_2D || + targetUniform->type == GL_SAMPLER_CUBE) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + + memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint), + v, sizeof(GLint) * count); + } + else if (targetUniform->type == GL_BOOL) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element; + + for (int i = 0; i < count; ++i) + { + if (v[i] == 0) + { + boolParams[i] = GL_FALSE; + } + else + { + boolParams[i] = GL_TRUE; + } + } + } + else + { + return false; + } + + return true; +} + +bool ProgramBinary::setUniform2iv(GLint location, GLsizei count, const GLint *v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + if (targetUniform->type == GL_INT_VEC2) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + + memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 2, + v, 2 * sizeof(GLint) * count); + } + else if (targetUniform->type == GL_BOOL_VEC2) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 2; + + for (int i = 0; i < count * 2; ++i) + { + if (v[i] == 0) + { + boolParams[i] = GL_FALSE; + } + else + { + boolParams[i] = GL_TRUE; + } + } + } + else + { + return false; + } + + return true; +} + +bool ProgramBinary::setUniform3iv(GLint location, GLsizei count, const GLint *v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + if (targetUniform->type == GL_INT_VEC3) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + + memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 3, + v, 3 * sizeof(GLint) * count); + } + else if (targetUniform->type == GL_BOOL_VEC3) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 3; + + for (int i = 0; i < count * 3; ++i) + { + if (v[i] == 0) + { + boolParams[i] = GL_FALSE; + } + else + { + boolParams[i] = GL_TRUE; + } + } + } + else + { + return false; + } + + return true; +} + +bool ProgramBinary::setUniform4iv(GLint location, GLsizei count, const GLint *v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + if (targetUniform->type == GL_INT_VEC4) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + + memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 4, + v, 4 * sizeof(GLint) * count); + } + else if (targetUniform->type == GL_BOOL_VEC4) + { + int arraySize = targetUniform->arraySize; + + if (arraySize == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(arraySize - (int)mUniformIndex[location].element, count); + GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count * 4; ++i) + { + if (v[i] == 0) + { + boolParams[i] = GL_FALSE; + } + else + { + boolParams[i] = GL_TRUE; + } + } + } + else + { + return false; + } + + return true; +} + +bool ProgramBinary::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + + // sized queries -- ensure the provided buffer is large enough + if (bufSize) + { + int requiredBytes = UniformExternalSize(targetUniform->type); + if (*bufSize < requiredBytes) + { + return false; + } + } + + switch (targetUniform->type) + { + case GL_FLOAT_MAT2: + transposeMatrix<GLfloat,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8); + break; + case GL_FLOAT_MAT3: + transposeMatrix<GLfloat,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12); + break; + case GL_FLOAT_MAT4: + transposeMatrix<GLfloat,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16); + break; + default: + { + unsigned int count = UniformExternalComponentCount(targetUniform->type); + unsigned int internalCount = UniformInternalComponentCount(targetUniform->type); + + switch (UniformComponentType(targetUniform->type)) + { + case GL_BOOL: + { + GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * internalCount; + + for (unsigned int i = 0; i < count; ++i) + { + params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f; + } + } + break; + case GL_FLOAT: + memcpy(params, targetUniform->data + mUniformIndex[location].element * internalCount * sizeof(GLfloat), + count * sizeof(GLfloat)); + break; + case GL_INT: + { + GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * internalCount; + + for (unsigned int i = 0; i < count; ++i) + { + params[i] = (float)intParams[i]; + } + } + break; + default: UNREACHABLE(); + } + } + } + + return true; +} + +bool ProgramBinary::getUniformiv(GLint location, GLsizei *bufSize, GLint *params) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + + // sized queries -- ensure the provided buffer is large enough + if (bufSize) + { + int requiredBytes = UniformExternalSize(targetUniform->type); + if (*bufSize < requiredBytes) + { + return false; + } + } + + switch (targetUniform->type) + { + case GL_FLOAT_MAT2: + { + transposeMatrix<GLint,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8); + } + break; + case GL_FLOAT_MAT3: + { + transposeMatrix<GLint,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12); + } + break; + case GL_FLOAT_MAT4: + { + transposeMatrix<GLint,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16); + } + break; + default: + { + unsigned int count = UniformExternalComponentCount(targetUniform->type); + unsigned int internalCount = UniformInternalComponentCount(targetUniform->type); + + switch (UniformComponentType(targetUniform->type)) + { + case GL_BOOL: + { + GLboolean *boolParams = targetUniform->data + mUniformIndex[location].element * internalCount; + + for (unsigned int i = 0; i < count; ++i) + { + params[i] = (GLint)boolParams[i]; + } + } + break; + case GL_FLOAT: + { + GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * internalCount; + + for (unsigned int i = 0; i < count; ++i) + { + params[i] = (GLint)floatParams[i]; + } + } + break; + case GL_INT: + memcpy(params, targetUniform->data + mUniformIndex[location].element * internalCount * sizeof(GLint), + count * sizeof(GLint)); + break; + default: UNREACHABLE(); + } + } + } + + return true; +} + +void ProgramBinary::dirtyAllUniforms() +{ + unsigned int numUniforms = mUniforms.size(); + for (unsigned int index = 0; index < numUniforms; index++) + { + mUniforms[index]->dirty = true; + } +} + +// Applies all the uniforms set for this program object to the Direct3D 9 device +void ProgramBinary::applyUniforms() +{ + for (std::vector<Uniform*>::iterator ub = mUniforms.begin(), ue = mUniforms.end(); ub != ue; ++ub) { + Uniform *targetUniform = *ub; + + if (targetUniform->dirty) + { + int arraySize = targetUniform->arraySize; + GLfloat *f = (GLfloat*)targetUniform->data; + GLint *i = (GLint*)targetUniform->data; + GLboolean *b = (GLboolean*)targetUniform->data; + + switch (targetUniform->type) + { + case GL_BOOL: applyUniformnbv(targetUniform, arraySize, 1, b); break; + case GL_BOOL_VEC2: applyUniformnbv(targetUniform, arraySize, 2, b); break; + case GL_BOOL_VEC3: applyUniformnbv(targetUniform, arraySize, 3, b); break; + case GL_BOOL_VEC4: applyUniformnbv(targetUniform, arraySize, 4, b); break; + case GL_FLOAT: + case GL_FLOAT_VEC2: + case GL_FLOAT_VEC3: + case GL_FLOAT_VEC4: + case GL_FLOAT_MAT2: + case GL_FLOAT_MAT3: + case GL_FLOAT_MAT4: applyUniformnfv(targetUniform, f); break; + case GL_SAMPLER_2D: + case GL_SAMPLER_CUBE: + case GL_INT: applyUniform1iv(targetUniform, arraySize, i); break; + case GL_INT_VEC2: applyUniform2iv(targetUniform, arraySize, i); break; + case GL_INT_VEC3: applyUniform3iv(targetUniform, arraySize, i); break; + case GL_INT_VEC4: applyUniform4iv(targetUniform, arraySize, i); break; + default: + UNREACHABLE(); + } + + targetUniform->dirty = false; + } + } +} + +// Compiles the HLSL code of the attached shaders into executable binaries +ID3D10Blob *ProgramBinary::compileToBinary(InfoLog &infoLog, const char *hlsl, const char *profile, ID3DXConstantTable **constantTable) +{ + if (!hlsl) + { + return NULL; + } + + DWORD result; + UINT flags = 0; + std::string sourceText; + if (perfActive()) + { + flags |= D3DCOMPILE_DEBUG; +#ifdef NDEBUG + flags |= ANGLE_COMPILE_OPTIMIZATION_LEVEL; +#else + flags |= D3DCOMPILE_SKIP_OPTIMIZATION; +#endif + + std::string sourcePath = getTempPath(); + sourceText = std::string("#line 2 \"") + sourcePath + std::string("\"\n\n") + std::string(hlsl); + writeFile(sourcePath.c_str(), sourceText.c_str(), sourceText.size()); + } + else + { + flags |= ANGLE_COMPILE_OPTIMIZATION_LEVEL; + sourceText = hlsl; + } + + ID3D10Blob *binary = NULL; + ID3D10Blob *errorMessage = NULL; + result = D3DCompile(hlsl, strlen(hlsl), g_fakepath, NULL, NULL, "main", profile, flags, 0, &binary, &errorMessage); + + if (errorMessage) + { + const char *message = (const char*)errorMessage->GetBufferPointer(); + + infoLog.appendSanitized(message); + TRACE("\n%s", hlsl); + TRACE("\n%s", message); + + errorMessage->Release(); + errorMessage = NULL; + } + + if (FAILED(result)) + { + if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY) + { + error(GL_OUT_OF_MEMORY); + } + + return NULL; + } + + result = D3DXGetShaderConstantTable(static_cast<const DWORD*>(binary->GetBufferPointer()), constantTable); + + if (FAILED(result)) + { + if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY) + { + error(GL_OUT_OF_MEMORY); + } + + binary->Release(); + + return NULL; + } + + return binary; +} + +// Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111 +// Returns the number of used varying registers, or -1 if unsuccesful +int ProgramBinary::packVaryings(InfoLog &infoLog, const Varying *packing[][4], FragmentShader *fragmentShader) +{ + Context *context = getContext(); + const int maxVaryingVectors = context->getMaximumVaryingVectors(); + + for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++) + { + int n = VariableRowCount(varying->type) * varying->size; + int m = VariableColumnCount(varying->type); + bool success = false; + + if (m == 2 || m == 3 || m == 4) + { + for (int r = 0; r <= maxVaryingVectors - n && !success; r++) + { + bool available = true; + + for (int y = 0; y < n && available; y++) + { + for (int x = 0; x < m && available; x++) + { + if (packing[r + y][x]) + { + available = false; + } + } + } + + if (available) + { + varying->reg = r; + varying->col = 0; + + for (int y = 0; y < n; y++) + { + for (int x = 0; x < m; x++) + { + packing[r + y][x] = &*varying; + } + } + + success = true; + } + } + + if (!success && m == 2) + { + for (int r = maxVaryingVectors - n; r >= 0 && !success; r--) + { + bool available = true; + + for (int y = 0; y < n && available; y++) + { + for (int x = 2; x < 4 && available; x++) + { + if (packing[r + y][x]) + { + available = false; + } + } + } + + if (available) + { + varying->reg = r; + varying->col = 2; + + for (int y = 0; y < n; y++) + { + for (int x = 2; x < 4; x++) + { + packing[r + y][x] = &*varying; + } + } + + success = true; + } + } + } + } + else if (m == 1) + { + int space[4] = {0}; + + for (int y = 0; y < maxVaryingVectors; y++) + { + for (int x = 0; x < 4; x++) + { + space[x] += packing[y][x] ? 0 : 1; + } + } + + int column = 0; + + for (int x = 0; x < 4; x++) + { + if (space[x] >= n && space[x] < space[column]) + { + column = x; + } + } + + if (space[column] >= n) + { + for (int r = 0; r < maxVaryingVectors; r++) + { + if (!packing[r][column]) + { + varying->reg = r; + + for (int y = r; y < r + n; y++) + { + packing[y][column] = &*varying; + } + + break; + } + } + + varying->col = column; + + success = true; + } + } + else UNREACHABLE(); + + if (!success) + { + infoLog.append("Could not pack varying %s", varying->name.c_str()); + + return -1; + } + } + + // Return the number of used registers + int registers = 0; + + for (int r = 0; r < maxVaryingVectors; r++) + { + if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3]) + { + registers++; + } + } + + return registers; +} + +bool ProgramBinary::linkVaryings(InfoLog &infoLog, std::string& pixelHLSL, std::string& vertexHLSL, FragmentShader *fragmentShader, VertexShader *vertexShader) +{ + if (pixelHLSL.empty() || vertexHLSL.empty()) + { + return false; + } + + // Reset the varying register assignments + for (VaryingList::iterator fragVar = fragmentShader->mVaryings.begin(); fragVar != fragmentShader->mVaryings.end(); fragVar++) + { + fragVar->reg = -1; + fragVar->col = -1; + } + + for (VaryingList::iterator vtxVar = vertexShader->mVaryings.begin(); vtxVar != vertexShader->mVaryings.end(); vtxVar++) + { + vtxVar->reg = -1; + vtxVar->col = -1; + } + + // Map the varyings to the register file + const Varying *packing[MAX_VARYING_VECTORS_SM3][4] = {NULL}; + int registers = packVaryings(infoLog, packing, fragmentShader); + + if (registers < 0) + { + return false; + } + + // Write the HLSL input/output declarations + Context *context = getContext(); + const bool sm3 = context->supportsShaderModel3(); + const int maxVaryingVectors = context->getMaximumVaryingVectors(); + + if (registers == maxVaryingVectors && fragmentShader->mUsesFragCoord) + { + infoLog.append("No varying registers left to support gl_FragCoord"); + + return false; + } + + for (VaryingList::iterator input = fragmentShader->mVaryings.begin(); input != fragmentShader->mVaryings.end(); input++) + { + bool matched = false; + + for (VaryingList::iterator output = vertexShader->mVaryings.begin(); output != vertexShader->mVaryings.end(); output++) + { + if (output->name == input->name) + { + if (output->type != input->type || output->size != input->size) + { + infoLog.append("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str()); + + return false; + } + + output->reg = input->reg; + output->col = input->col; + + matched = true; + break; + } + } + + if (!matched) + { + infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str()); + + return false; + } + } + + std::string varyingSemantic = (sm3 ? "COLOR" : "TEXCOORD"); + + vertexHLSL += "struct VS_INPUT\n" + "{\n"; + + int semanticIndex = 0; + for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) + { + switch (attribute->type) + { + case GL_FLOAT: vertexHLSL += " float "; break; + case GL_FLOAT_VEC2: vertexHLSL += " float2 "; break; + case GL_FLOAT_VEC3: vertexHLSL += " float3 "; break; + case GL_FLOAT_VEC4: vertexHLSL += " float4 "; break; + case GL_FLOAT_MAT2: vertexHLSL += " float2x2 "; break; + case GL_FLOAT_MAT3: vertexHLSL += " float3x3 "; break; + case GL_FLOAT_MAT4: vertexHLSL += " float4x4 "; break; + default: UNREACHABLE(); + } + + vertexHLSL += decorateAttribute(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n"; + + semanticIndex += VariableRowCount(attribute->type); + } + + vertexHLSL += "};\n" + "\n" + "struct VS_OUTPUT\n" + "{\n" + " float4 gl_Position : POSITION;\n"; + + for (int r = 0; r < registers; r++) + { + int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1)); + + vertexHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n"; + } + + if (fragmentShader->mUsesFragCoord) + { + vertexHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n"; + } + + if (vertexShader->mUsesPointSize && sm3) + { + vertexHLSL += " float gl_PointSize : PSIZE;\n"; + } + + vertexHLSL += "};\n" + "\n" + "VS_OUTPUT main(VS_INPUT input)\n" + "{\n"; + + for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) + { + vertexHLSL += " " + decorateAttribute(attribute->name) + " = "; + + if (VariableRowCount(attribute->type) > 1) // Matrix + { + vertexHLSL += "transpose"; + } + + vertexHLSL += "(input." + decorateAttribute(attribute->name) + ");\n"; + } + + vertexHLSL += "\n" + " gl_main();\n" + "\n" + " VS_OUTPUT output;\n" + " output.gl_Position.x = gl_Position.x - dx_HalfPixelSize.x * gl_Position.w;\n" + " output.gl_Position.y = -(gl_Position.y + dx_HalfPixelSize.y * gl_Position.w);\n" + " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n" + " output.gl_Position.w = gl_Position.w;\n"; + + if (vertexShader->mUsesPointSize && sm3) + { + vertexHLSL += " output.gl_PointSize = clamp(gl_PointSize, 1.0, " + str((int)ALIASED_POINT_SIZE_RANGE_MAX_SM3) + ");\n"; + } + + if (fragmentShader->mUsesFragCoord) + { + vertexHLSL += " output.gl_FragCoord = gl_Position;\n"; + } + + for (VaryingList::iterator varying = vertexShader->mVaryings.begin(); varying != vertexShader->mVaryings.end(); varying++) + { + if (varying->reg >= 0) + { + for (int i = 0; i < varying->size; i++) + { + int rows = VariableRowCount(varying->type); + + for (int j = 0; j < rows; j++) + { + int r = varying->reg + i * rows + j; + vertexHLSL += " output.v" + str(r); + + bool sharedRegister = false; // Register used by multiple varyings + + for (int x = 0; x < 4; x++) + { + if (packing[r][x] && packing[r][x] != packing[r][0]) + { + sharedRegister = true; + break; + } + } + + if(sharedRegister) + { + vertexHLSL += "."; + + for (int x = 0; x < 4; x++) + { + if (packing[r][x] == &*varying) + { + switch(x) + { + case 0: vertexHLSL += "x"; break; + case 1: vertexHLSL += "y"; break; + case 2: vertexHLSL += "z"; break; + case 3: vertexHLSL += "w"; break; + } + } + } + } + + vertexHLSL += " = " + varying->name; + + if (varying->array) + { + vertexHLSL += "[" + str(i) + "]"; + } + + if (rows > 1) + { + vertexHLSL += "[" + str(j) + "]"; + } + + vertexHLSL += ";\n"; + } + } + } + } + + vertexHLSL += "\n" + " return output;\n" + "}\n"; + + pixelHLSL += "struct PS_INPUT\n" + "{\n"; + + for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++) + { + if (varying->reg >= 0) + { + for (int i = 0; i < varying->size; i++) + { + int rows = VariableRowCount(varying->type); + for (int j = 0; j < rows; j++) + { + std::string n = str(varying->reg + i * rows + j); + pixelHLSL += " float4 v" + n + " : " + varyingSemantic + n + ";\n"; + } + } + } + else UNREACHABLE(); + } + + if (fragmentShader->mUsesFragCoord) + { + pixelHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n"; + if (sm3) { + pixelHLSL += " float2 dx_VPos : VPOS;\n"; + } + } + + if (fragmentShader->mUsesPointCoord && sm3) + { + pixelHLSL += " float2 gl_PointCoord : TEXCOORD0;\n"; + } + + if (fragmentShader->mUsesFrontFacing) + { + pixelHLSL += " float vFace : VFACE;\n"; + } + + pixelHLSL += "};\n" + "\n" + "struct PS_OUTPUT\n" + "{\n" + " float4 gl_Color[1] : COLOR;\n" + "};\n" + "\n" + "PS_OUTPUT main(PS_INPUT input)\n" + "{\n"; + + if (fragmentShader->mUsesFragCoord) + { + pixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n"; + + if (sm3) + { + pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x + 0.5;\n" + " gl_FragCoord.y = input.dx_VPos.y + 0.5;\n"; + } + else + { + // dx_Coord contains the viewport width/2, height/2, center.x and center.y. See Context::applyRenderTarget() + pixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_Coord.x + dx_Coord.z;\n" + " gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_Coord.y + dx_Coord.w;\n"; + } + + pixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_Depth.x + dx_Depth.y;\n" + " gl_FragCoord.w = rhw;\n"; + } + + if (fragmentShader->mUsesPointCoord && sm3) + { + pixelHLSL += " gl_PointCoord.x = input.gl_PointCoord.x;\n"; + pixelHLSL += " gl_PointCoord.y = 1.0 - input.gl_PointCoord.y;\n"; + } + + if (fragmentShader->mUsesFrontFacing) + { + pixelHLSL += " gl_FrontFacing = dx_PointsOrLines || (dx_FrontCCW ? (input.vFace >= 0.0) : (input.vFace <= 0.0));\n"; + } + + for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++) + { + if (varying->reg >= 0) + { + for (int i = 0; i < varying->size; i++) + { + int rows = VariableRowCount(varying->type); + for (int j = 0; j < rows; j++) + { + std::string n = str(varying->reg + i * rows + j); + pixelHLSL += " " + varying->name; + + if (varying->array) + { + pixelHLSL += "[" + str(i) + "]"; + } + + if (rows > 1) + { + pixelHLSL += "[" + str(j) + "]"; + } + + pixelHLSL += " = input.v" + n + ";\n"; + } + } + } + else UNREACHABLE(); + } + + pixelHLSL += "\n" + " gl_main();\n" + "\n" + " PS_OUTPUT output;\n" + " output.gl_Color[0] = gl_Color[0];\n" + "\n" + " return output;\n" + "}\n"; + + return true; +} + +bool ProgramBinary::link(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader) +{ + if (!fragmentShader || !fragmentShader->isCompiled()) + { + return false; + } + + if (!vertexShader || !vertexShader->isCompiled()) + { + return false; + } + + std::string pixelHLSL = fragmentShader->getHLSL(); + std::string vertexHLSL = vertexShader->getHLSL(); + + if (!linkVaryings(infoLog, pixelHLSL, vertexHLSL, fragmentShader, vertexShader)) + { + return false; + } + + Context *context = getContext(); + const char *vertexProfile = context->supportsShaderModel3() ? "vs_3_0" : "vs_2_0"; + const char *pixelProfile = context->supportsShaderModel3() ? "ps_3_0" : "ps_2_0"; + + ID3D10Blob *vertexBinary = compileToBinary(infoLog, vertexHLSL.c_str(), vertexProfile, &mConstantTableVS); + ID3D10Blob *pixelBinary = compileToBinary(infoLog, pixelHLSL.c_str(), pixelProfile, &mConstantTablePS); + + if (vertexBinary && pixelBinary) + { + HRESULT vertexResult = mDevice->CreateVertexShader((DWORD*)vertexBinary->GetBufferPointer(), &mVertexExecutable); + HRESULT pixelResult = mDevice->CreatePixelShader((DWORD*)pixelBinary->GetBufferPointer(), &mPixelExecutable); + + if (vertexResult == D3DERR_OUTOFVIDEOMEMORY || vertexResult == E_OUTOFMEMORY || pixelResult == D3DERR_OUTOFVIDEOMEMORY || pixelResult == E_OUTOFMEMORY) + { + return error(GL_OUT_OF_MEMORY, false); + } + + ASSERT(SUCCEEDED(vertexResult) && SUCCEEDED(pixelResult)); + + vertexBinary->Release(); + pixelBinary->Release(); + vertexBinary = NULL; + pixelBinary = NULL; + + if (mVertexExecutable && mPixelExecutable) + { + if (!linkAttributes(infoLog, attributeBindings, fragmentShader, vertexShader)) + { + return false; + } + + if (!linkUniforms(infoLog, GL_FRAGMENT_SHADER, mConstantTablePS)) + { + return false; + } + + if (!linkUniforms(infoLog, GL_VERTEX_SHADER, mConstantTableVS)) + { + return false; + } + + // these uniforms are searched as already-decorated because gl_ and dx_ + // are reserved prefixes, and do not receive additional decoration + mDxDepthRangeLocation = getUniformLocation("dx_DepthRange"); + mDxDepthLocation = getUniformLocation("dx_Depth"); + mDxCoordLocation = getUniformLocation("dx_Coord"); + mDxHalfPixelSizeLocation = getUniformLocation("dx_HalfPixelSize"); + mDxFrontCCWLocation = getUniformLocation("dx_FrontCCW"); + mDxPointsOrLinesLocation = getUniformLocation("dx_PointsOrLines"); + + context->markDxUniformsDirty(); + + return true; + } + } + + return false; +} + +// Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices +bool ProgramBinary::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader) +{ + unsigned int usedLocations = 0; + + // Link attributes that have a binding location + for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) + { + int location = attributeBindings.getAttributeBinding(attribute->name); + + if (location != -1) // Set by glBindAttribLocation + { + if (!mLinkedAttribute[location].name.empty()) + { + // Multiple active attributes bound to the same location; not an error + } + + mLinkedAttribute[location] = *attribute; + + int rows = VariableRowCount(attribute->type); + + if (rows + location > MAX_VERTEX_ATTRIBS) + { + infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location); + + return false; + } + + for (int i = 0; i < rows; i++) + { + usedLocations |= 1 << (location + i); + } + } + } + + // Link attributes that don't have a binding location + for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) + { + int location = attributeBindings.getAttributeBinding(attribute->name); + + if (location == -1) // Not set by glBindAttribLocation + { + int rows = VariableRowCount(attribute->type); + int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS); + + if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS) + { + infoLog.append("Too many active attributes (%s)", attribute->name.c_str()); + + return false; // Fail to link + } + + mLinkedAttribute[availableIndex] = *attribute; + } + } + + for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; ) + { + int index = vertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name); + int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1); + + for (int r = 0; r < rows; r++) + { + mSemanticIndex[attributeIndex++] = index++; + } + } + + return true; +} + +bool ProgramBinary::linkUniforms(InfoLog &infoLog, GLenum shader, ID3DXConstantTable *constantTable) +{ + D3DXCONSTANTTABLE_DESC constantTableDescription; + + constantTable->GetDesc(&constantTableDescription); + + for (unsigned int constantIndex = 0; constantIndex < constantTableDescription.Constants; constantIndex++) + { + D3DXHANDLE constantHandle = constantTable->GetConstant(0, constantIndex); + + D3DXCONSTANT_DESC constantDescription; + UINT descriptionCount = 1; + HRESULT result = constantTable->GetConstantDesc(constantHandle, &constantDescription, &descriptionCount); + ASSERT(SUCCEEDED(result)); + + if (!defineUniform(infoLog, shader, constantHandle, constantDescription)) + { + return false; + } + } + + return true; +} + +// Adds the description of a constant found in the binary shader to the list of uniforms +// Returns true if succesful (uniform not already defined) +bool ProgramBinary::defineUniform(InfoLog &infoLog, GLenum shader, const D3DXHANDLE &constantHandle, const D3DXCONSTANT_DESC &constantDescription, std::string name) +{ + if (constantDescription.RegisterSet == D3DXRS_SAMPLER) + { + for (unsigned int i = 0; i < constantDescription.RegisterCount; i++) + { + D3DXHANDLE psConstant = mConstantTablePS->GetConstantByName(NULL, constantDescription.Name); + D3DXHANDLE vsConstant = mConstantTableVS->GetConstantByName(NULL, constantDescription.Name); + + if (psConstant) + { + unsigned int samplerIndex = mConstantTablePS->GetSamplerIndex(psConstant) + i; + + if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS) + { + mSamplersPS[samplerIndex].active = true; + mSamplersPS[samplerIndex].textureType = (constantDescription.Type == D3DXPT_SAMPLERCUBE) ? TEXTURE_CUBE : TEXTURE_2D; + mSamplersPS[samplerIndex].logicalTextureUnit = 0; + mUsedPixelSamplerRange = std::max(samplerIndex + 1, mUsedPixelSamplerRange); + } + else + { + infoLog.append("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS); + return false; + } + } + + if (vsConstant) + { + unsigned int samplerIndex = mConstantTableVS->GetSamplerIndex(vsConstant) + i; + + if (samplerIndex < getContext()->getMaximumVertexTextureImageUnits()) + { + mSamplersVS[samplerIndex].active = true; + mSamplersVS[samplerIndex].textureType = (constantDescription.Type == D3DXPT_SAMPLERCUBE) ? TEXTURE_CUBE : TEXTURE_2D; + mSamplersVS[samplerIndex].logicalTextureUnit = 0; + mUsedVertexSamplerRange = std::max(samplerIndex + 1, mUsedVertexSamplerRange); + } + else + { + infoLog.append("Vertex shader sampler count exceeds MAX_VERTEX_TEXTURE_IMAGE_UNITS (%d).", getContext()->getMaximumVertexTextureImageUnits()); + return false; + } + } + } + } + + switch(constantDescription.Class) + { + case D3DXPC_STRUCT: + { + for (unsigned int arrayIndex = 0; arrayIndex < constantDescription.Elements; arrayIndex++) + { + for (unsigned int field = 0; field < constantDescription.StructMembers; field++) + { + D3DXHANDLE fieldHandle = mConstantTablePS->GetConstant(constantHandle, field); + + D3DXCONSTANT_DESC fieldDescription; + UINT descriptionCount = 1; + + HRESULT result = mConstantTablePS->GetConstantDesc(fieldHandle, &fieldDescription, &descriptionCount); + ASSERT(SUCCEEDED(result)); + + std::string structIndex = (constantDescription.Elements > 1) ? ("[" + str(arrayIndex) + "]") : ""; + + if (!defineUniform(infoLog, shader, fieldHandle, fieldDescription, name + constantDescription.Name + structIndex + ".")) + { + return false; + } + } + } + + return true; + } + case D3DXPC_SCALAR: + case D3DXPC_VECTOR: + case D3DXPC_MATRIX_COLUMNS: + case D3DXPC_OBJECT: + return defineUniform(shader, constantDescription, name + constantDescription.Name); + default: + UNREACHABLE(); + return false; + } +} + +bool ProgramBinary::defineUniform(GLenum shader, const D3DXCONSTANT_DESC &constantDescription, const std::string &_name) +{ + Uniform *uniform = createUniform(constantDescription, _name); + + if(!uniform) + { + return false; + } + + // Check if already defined + GLint location = getUniformLocation(uniform->name); + GLenum type = uniform->type; + + if (location >= 0) + { + delete uniform; + uniform = mUniforms[mUniformIndex[location].index]; + } + + if (shader == GL_FRAGMENT_SHADER) uniform->ps.set(constantDescription); + if (shader == GL_VERTEX_SHADER) uniform->vs.set(constantDescription); + + if (location >= 0) + { + return uniform->type == type; + } + + mUniforms.push_back(uniform); + unsigned int uniformIndex = mUniforms.size() - 1; + + for (unsigned int i = 0; i < uniform->arraySize; ++i) + { + mUniformIndex.push_back(UniformLocation(_name, i, uniformIndex)); + } + + return true; +} + +Uniform *ProgramBinary::createUniform(const D3DXCONSTANT_DESC &constantDescription, const std::string &_name) +{ + if (constantDescription.Rows == 1) // Vectors and scalars + { + switch (constantDescription.Type) + { + case D3DXPT_SAMPLER2D: + switch (constantDescription.Columns) + { + case 1: return new Uniform(GL_SAMPLER_2D, _name, constantDescription.Elements); + default: UNREACHABLE(); + } + break; + case D3DXPT_SAMPLERCUBE: + switch (constantDescription.Columns) + { + case 1: return new Uniform(GL_SAMPLER_CUBE, _name, constantDescription.Elements); + default: UNREACHABLE(); + } + break; + case D3DXPT_BOOL: + switch (constantDescription.Columns) + { + case 1: return new Uniform(GL_BOOL, _name, constantDescription.Elements); + case 2: return new Uniform(GL_BOOL_VEC2, _name, constantDescription.Elements); + case 3: return new Uniform(GL_BOOL_VEC3, _name, constantDescription.Elements); + case 4: return new Uniform(GL_BOOL_VEC4, _name, constantDescription.Elements); + default: UNREACHABLE(); + } + break; + case D3DXPT_INT: + switch (constantDescription.Columns) + { + case 1: return new Uniform(GL_INT, _name, constantDescription.Elements); + case 2: return new Uniform(GL_INT_VEC2, _name, constantDescription.Elements); + case 3: return new Uniform(GL_INT_VEC3, _name, constantDescription.Elements); + case 4: return new Uniform(GL_INT_VEC4, _name, constantDescription.Elements); + default: UNREACHABLE(); + } + break; + case D3DXPT_FLOAT: + switch (constantDescription.Columns) + { + case 1: return new Uniform(GL_FLOAT, _name, constantDescription.Elements); + case 2: return new Uniform(GL_FLOAT_VEC2, _name, constantDescription.Elements); + case 3: return new Uniform(GL_FLOAT_VEC3, _name, constantDescription.Elements); + case 4: return new Uniform(GL_FLOAT_VEC4, _name, constantDescription.Elements); + default: UNREACHABLE(); + } + break; + default: + UNREACHABLE(); + } + } + else if (constantDescription.Rows == constantDescription.Columns) // Square matrices + { + switch (constantDescription.Type) + { + case D3DXPT_FLOAT: + switch (constantDescription.Rows) + { + case 2: return new Uniform(GL_FLOAT_MAT2, _name, constantDescription.Elements); + case 3: return new Uniform(GL_FLOAT_MAT3, _name, constantDescription.Elements); + case 4: return new Uniform(GL_FLOAT_MAT4, _name, constantDescription.Elements); + default: UNREACHABLE(); + } + break; + default: UNREACHABLE(); + } + } + else UNREACHABLE(); + + return 0; +} + +// This method needs to match OutputHLSL::decorate +std::string ProgramBinary::decorateAttribute(const std::string &name) +{ + if (name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0) + { + return "_" + name; + } + + return name; +} + +std::string ProgramBinary::undecorateUniform(const std::string &_name) +{ + std::string name = _name; + + // Remove any structure field decoration + size_t pos = 0; + while ((pos = name.find("._", pos)) != std::string::npos) + { + name.replace(pos, 2, "."); + } + + // Remove the leading decoration + if (name[0] == '_') + { + return name.substr(1); + } + else if (name.compare(0, 3, "ar_") == 0) + { + return name.substr(3); + } + + return name; +} + +void ProgramBinary::applyUniformnbv(Uniform *targetUniform, GLsizei count, int width, const GLboolean *v) +{ + float vector[D3D9_MAX_FLOAT_CONSTANTS * 4]; + BOOL boolVector[D3D9_MAX_BOOL_CONSTANTS]; + + if (targetUniform->ps.float4Index >= 0 || targetUniform->vs.float4Index >= 0) + { + ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); + for (int i = 0; i < count; i++) + { + for (int j = 0; j < 4; j++) + { + if (j < width) + { + vector[i * 4 + j] = (v[i * width + j] == GL_FALSE) ? 0.0f : 1.0f; + } + else + { + vector[i * 4 + j] = 0.0f; + } + } + } + } + + if (targetUniform->ps.boolIndex >= 0 || targetUniform->vs.boolIndex >= 0) + { + int psCount = targetUniform->ps.boolIndex >= 0 ? targetUniform->ps.registerCount : 0; + int vsCount = targetUniform->vs.boolIndex >= 0 ? targetUniform->vs.registerCount : 0; + int copyCount = std::min(count * width, std::max(psCount, vsCount)); + ASSERT(copyCount <= D3D9_MAX_BOOL_CONSTANTS); + for (int i = 0; i < copyCount; i++) + { + boolVector[i] = v[i] != GL_FALSE; + } + } + + if (targetUniform->ps.float4Index >= 0) + { + mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, vector, targetUniform->ps.registerCount); + } + + if (targetUniform->ps.boolIndex >= 0) + { + mDevice->SetPixelShaderConstantB(targetUniform->ps.boolIndex, boolVector, targetUniform->ps.registerCount); + } + + if (targetUniform->vs.float4Index >= 0) + { + mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, vector, targetUniform->vs.registerCount); + } + + if (targetUniform->vs.boolIndex >= 0) + { + mDevice->SetVertexShaderConstantB(targetUniform->vs.boolIndex, boolVector, targetUniform->vs.registerCount); + } +} + +bool ProgramBinary::applyUniformnfv(Uniform *targetUniform, const GLfloat *v) +{ + if (targetUniform->ps.registerCount) + { + mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, v, targetUniform->ps.registerCount); + } + + if (targetUniform->vs.registerCount) + { + mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, v, targetUniform->vs.registerCount); + } + + return true; +} + +bool ProgramBinary::applyUniform1iv(Uniform *targetUniform, GLsizei count, const GLint *v) +{ + ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); + D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS]; + + for (int i = 0; i < count; i++) + { + vector[i] = D3DXVECTOR4((float)v[i], 0, 0, 0); + } + + if (targetUniform->ps.registerCount) + { + if (targetUniform->ps.samplerIndex >= 0) + { + unsigned int firstIndex = targetUniform->ps.samplerIndex; + + for (int i = 0; i < count; i++) + { + unsigned int samplerIndex = firstIndex + i; + + if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS) + { + ASSERT(mSamplersPS[samplerIndex].active); + mSamplersPS[samplerIndex].logicalTextureUnit = v[i]; + } + } + } + else + { + ASSERT(targetUniform->ps.float4Index >= 0); + mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, (const float*)vector, targetUniform->ps.registerCount); + } + } + + if (targetUniform->vs.registerCount) + { + if (targetUniform->vs.samplerIndex >= 0) + { + unsigned int firstIndex = targetUniform->vs.samplerIndex; + + for (int i = 0; i < count; i++) + { + unsigned int samplerIndex = firstIndex + i; + + if (samplerIndex < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF) + { + ASSERT(mSamplersVS[samplerIndex].active); + mSamplersVS[samplerIndex].logicalTextureUnit = v[i]; + } + } + } + else + { + ASSERT(targetUniform->vs.float4Index >= 0); + mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, (const float *)vector, targetUniform->vs.registerCount); + } + } + + return true; +} + +bool ProgramBinary::applyUniform2iv(Uniform *targetUniform, GLsizei count, const GLint *v) +{ + ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); + D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS]; + + for (int i = 0; i < count; i++) + { + vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], 0, 0); + + v += 2; + } + + applyUniformniv(targetUniform, count, vector); + + return true; +} + +bool ProgramBinary::applyUniform3iv(Uniform *targetUniform, GLsizei count, const GLint *v) +{ + ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); + D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS]; + + for (int i = 0; i < count; i++) + { + vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], (float)v[2], 0); + + v += 3; + } + + applyUniformniv(targetUniform, count, vector); + + return true; +} + +bool ProgramBinary::applyUniform4iv(Uniform *targetUniform, GLsizei count, const GLint *v) +{ + ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); + D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS]; + + for (int i = 0; i < count; i++) + { + vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], (float)v[2], (float)v[3]); + + v += 4; + } + + applyUniformniv(targetUniform, count, vector); + + return true; +} + +void ProgramBinary::applyUniformniv(Uniform *targetUniform, GLsizei count, const D3DXVECTOR4 *vector) +{ + if (targetUniform->ps.registerCount) + { + ASSERT(targetUniform->ps.float4Index >= 0); + mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, (const float *)vector, targetUniform->ps.registerCount); + } + + if (targetUniform->vs.registerCount) + { + ASSERT(targetUniform->vs.float4Index >= 0); + mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, (const float *)vector, targetUniform->vs.registerCount); + } +} + +bool ProgramBinary::isValidated() const +{ + return mValidated; +} + +void ProgramBinary::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) +{ + // Skip over inactive attributes + unsigned int activeAttribute = 0; + unsigned int attribute; + for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) + { + if (mLinkedAttribute[attribute].name.empty()) + { + continue; + } + + if (activeAttribute == index) + { + break; + } + + activeAttribute++; + } + + if (bufsize > 0) + { + const char *string = mLinkedAttribute[attribute].name.c_str(); + + strncpy(name, string, bufsize); + name[bufsize - 1] = '\0'; + + if (length) + { + *length = strlen(name); + } + } + + *size = 1; // Always a single 'type' instance + + *type = mLinkedAttribute[attribute].type; +} + +GLint ProgramBinary::getActiveAttributeCount() +{ + int count = 0; + + for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) + { + if (!mLinkedAttribute[attributeIndex].name.empty()) + { + count++; + } + } + + return count; +} + +GLint ProgramBinary::getActiveAttributeMaxLength() +{ + int maxLength = 0; + + for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) + { + if (!mLinkedAttribute[attributeIndex].name.empty()) + { + maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength); + } + } + + return maxLength; +} + +void ProgramBinary::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) +{ + // Skip over internal uniforms + unsigned int activeUniform = 0; + unsigned int uniform; + for (uniform = 0; uniform < mUniforms.size(); uniform++) + { + if (mUniforms[uniform]->name.compare(0, 3, "dx_") == 0) + { + continue; + } + + if (activeUniform == index) + { + break; + } + + activeUniform++; + } + + ASSERT(uniform < mUniforms.size()); // index must be smaller than getActiveUniformCount() + + if (bufsize > 0) + { + std::string string = mUniforms[uniform]->name; + + if (mUniforms[uniform]->isArray()) + { + string += "[0]"; + } + + strncpy(name, string.c_str(), bufsize); + name[bufsize - 1] = '\0'; + + if (length) + { + *length = strlen(name); + } + } + + *size = mUniforms[uniform]->arraySize; + + *type = mUniforms[uniform]->type; +} + +GLint ProgramBinary::getActiveUniformCount() +{ + int count = 0; + + unsigned int numUniforms = mUniforms.size(); + for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) + { + if (mUniforms[uniformIndex]->name.compare(0, 3, "dx_") != 0) + { + count++; + } + } + + return count; +} + +GLint ProgramBinary::getActiveUniformMaxLength() +{ + int maxLength = 0; + + unsigned int numUniforms = mUniforms.size(); + for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) + { + if (!mUniforms[uniformIndex]->name.empty() && mUniforms[uniformIndex]->name.compare(0, 3, "dx_") != 0) + { + int length = (int)(mUniforms[uniformIndex]->name.length() + 1); + if (mUniforms[uniformIndex]->isArray()) + { + length += 3; // Counting in "[0]". + } + maxLength = std::max(length, maxLength); + } + } + + return maxLength; +} + +void ProgramBinary::validate(InfoLog &infoLog) +{ + applyUniforms(); + if (!validateSamplers(&infoLog)) + { + mValidated = false; + } + else + { + mValidated = true; + } +} + +bool ProgramBinary::validateSamplers(InfoLog *infoLog) +{ + // if any two active samplers in a program are of different types, but refer to the same + // texture image unit, and this is the current program, then ValidateProgram will fail, and + // DrawArrays and DrawElements will issue the INVALID_OPERATION error. + + const unsigned int maxCombinedTextureImageUnits = getContext()->getMaximumCombinedTextureImageUnits(); + TextureType textureUnitType[MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF]; + + for (unsigned int i = 0; i < MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF; ++i) + { + textureUnitType[i] = TEXTURE_UNKNOWN; + } + + for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i) + { + if (mSamplersPS[i].active) + { + unsigned int unit = mSamplersPS[i].logicalTextureUnit; + + if (unit >= maxCombinedTextureImageUnits) + { + if (infoLog) + { + infoLog->append("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits); + } + + return false; + } + + if (textureUnitType[unit] != TEXTURE_UNKNOWN) + { + if (mSamplersPS[i].textureType != textureUnitType[unit]) + { + if (infoLog) + { + infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit); + } + + return false; + } + } + else + { + textureUnitType[unit] = mSamplersPS[i].textureType; + } + } + } + + for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i) + { + if (mSamplersVS[i].active) + { + unsigned int unit = mSamplersVS[i].logicalTextureUnit; + + if (unit >= maxCombinedTextureImageUnits) + { + if (infoLog) + { + infoLog->append("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits); + } + + return false; + } + + if (textureUnitType[unit] != TEXTURE_UNKNOWN) + { + if (mSamplersVS[i].textureType != textureUnitType[unit]) + { + if (infoLog) + { + infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit); + } + + return false; + } + } + else + { + textureUnitType[unit] = mSamplersVS[i].textureType; + } + } + } + + return true; +} + +GLint ProgramBinary::getDxDepthRangeLocation() const +{ + return mDxDepthRangeLocation; +} + +GLint ProgramBinary::getDxDepthLocation() const +{ + return mDxDepthLocation; +} + +GLint ProgramBinary::getDxCoordLocation() const +{ + return mDxCoordLocation; +} + +GLint ProgramBinary::getDxHalfPixelSizeLocation() const +{ + return mDxHalfPixelSizeLocation; +} + +GLint ProgramBinary::getDxFrontCCWLocation() const +{ + return mDxFrontCCWLocation; +} + +GLint ProgramBinary::getDxPointsOrLinesLocation() const +{ + return mDxPointsOrLinesLocation; +} + +} |