summaryrefslogtreecommitdiff
path: root/Source/ThirdParty/ANGLE/src/libGLESv2/ProgramBinary.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Source/ThirdParty/ANGLE/src/libGLESv2/ProgramBinary.cpp')
-rw-r--r--Source/ThirdParty/ANGLE/src/libGLESv2/ProgramBinary.cpp2480
1 files changed, 2480 insertions, 0 deletions
diff --git a/Source/ThirdParty/ANGLE/src/libGLESv2/ProgramBinary.cpp b/Source/ThirdParty/ANGLE/src/libGLESv2/ProgramBinary.cpp
new file mode 100644
index 000000000..ac28e5181
--- /dev/null
+++ b/Source/ThirdParty/ANGLE/src/libGLESv2/ProgramBinary.cpp
@@ -0,0 +1,2480 @@
+//
+// Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+// Program.cpp: Implements the gl::Program class. Implements GL program objects
+// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
+
+#include "libGLESv2/Program.h"
+#include "libGLESv2/ProgramBinary.h"
+
+#include "common/debug.h"
+
+#include "libGLESv2/main.h"
+#include "libGLESv2/Shader.h"
+#include "libGLESv2/utilities.h"
+
+#include <string>
+
+#if !defined(ANGLE_COMPILE_OPTIMIZATION_LEVEL)
+#define ANGLE_COMPILE_OPTIMIZATION_LEVEL D3DCOMPILE_OPTIMIZATION_LEVEL3
+#endif
+
+namespace gl
+{
+std::string str(int i)
+{
+ char buffer[20];
+ snprintf(buffer, sizeof(buffer), "%d", i);
+ return buffer;
+}
+
+Uniform::Uniform(GLenum type, const std::string &_name, unsigned int arraySize)
+ : type(type), _name(_name), name(ProgramBinary::undecorateUniform(_name)), arraySize(arraySize)
+{
+ int bytes = UniformInternalSize(type) * arraySize;
+ data = new unsigned char[bytes];
+ memset(data, 0, bytes);
+ dirty = true;
+}
+
+Uniform::~Uniform()
+{
+ delete[] data;
+}
+
+bool Uniform::isArray()
+{
+ return _name.compare(0, 3, "ar_") == 0;
+}
+
+UniformLocation::UniformLocation(const std::string &_name, unsigned int element, unsigned int index)
+ : name(ProgramBinary::undecorateUniform(_name)), element(element), index(index)
+{
+}
+
+ProgramBinary::ProgramBinary()
+{
+ mDevice = getDevice();
+
+ mPixelExecutable = NULL;
+ mVertexExecutable = NULL;
+ mConstantTablePS = NULL;
+ mConstantTableVS = NULL;
+
+ mValidated = false;
+
+ for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
+ {
+ mSemanticIndex[index] = -1;
+ }
+
+ for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++)
+ {
+ mSamplersPS[index].active = false;
+ }
+
+ for (int index = 0; index < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; index++)
+ {
+ mSamplersVS[index].active = false;
+ }
+
+ mUsedVertexSamplerRange = 0;
+ mUsedPixelSamplerRange = 0;
+
+ mDxDepthRangeLocation = -1;
+ mDxDepthLocation = -1;
+ mDxCoordLocation = -1;
+ mDxHalfPixelSizeLocation = -1;
+ mDxFrontCCWLocation = -1;
+ mDxPointsOrLinesLocation = -1;
+}
+
+ProgramBinary::~ProgramBinary()
+{
+ if (mPixelExecutable)
+ {
+ mPixelExecutable->Release();
+ }
+
+ if (mVertexExecutable)
+ {
+ mVertexExecutable->Release();
+ }
+
+ if (mConstantTablePS)
+ {
+ mConstantTablePS->Release();
+ }
+
+ if (mConstantTableVS)
+ {
+ mConstantTableVS->Release();
+ }
+
+ while (!mUniforms.empty())
+ {
+ delete mUniforms.back();
+ mUniforms.pop_back();
+ }
+}
+
+IDirect3DPixelShader9 *ProgramBinary::getPixelShader()
+{
+ return mPixelExecutable;
+}
+
+IDirect3DVertexShader9 *ProgramBinary::getVertexShader()
+{
+ return mVertexExecutable;
+}
+
+GLuint ProgramBinary::getAttributeLocation(const char *name)
+{
+ if (name)
+ {
+ for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
+ {
+ if (mLinkedAttribute[index].name == std::string(name))
+ {
+ return index;
+ }
+ }
+ }
+
+ return -1;
+}
+
+int ProgramBinary::getSemanticIndex(int attributeIndex)
+{
+ ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS);
+
+ return mSemanticIndex[attributeIndex];
+}
+
+// Returns one more than the highest sampler index used.
+GLint ProgramBinary::getUsedSamplerRange(SamplerType type)
+{
+ switch (type)
+ {
+ case SAMPLER_PIXEL:
+ return mUsedPixelSamplerRange;
+ case SAMPLER_VERTEX:
+ return mUsedVertexSamplerRange;
+ default:
+ UNREACHABLE();
+ return 0;
+ }
+}
+
+// Returns the index of the texture image unit (0-19) corresponding to a Direct3D 9 sampler
+// index (0-15 for the pixel shader and 0-3 for the vertex shader).
+GLint ProgramBinary::getSamplerMapping(SamplerType type, unsigned int samplerIndex)
+{
+ GLint logicalTextureUnit = -1;
+
+ switch (type)
+ {
+ case SAMPLER_PIXEL:
+ ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
+
+ if (mSamplersPS[samplerIndex].active)
+ {
+ logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit;
+ }
+ break;
+ case SAMPLER_VERTEX:
+ ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
+
+ if (mSamplersVS[samplerIndex].active)
+ {
+ logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit;
+ }
+ break;
+ default: UNREACHABLE();
+ }
+
+ if (logicalTextureUnit >= 0 && logicalTextureUnit < (GLint)getContext()->getMaximumCombinedTextureImageUnits())
+ {
+ return logicalTextureUnit;
+ }
+
+ return -1;
+}
+
+// Returns the texture type for a given Direct3D 9 sampler type and
+// index (0-15 for the pixel shader and 0-3 for the vertex shader).
+TextureType ProgramBinary::getSamplerTextureType(SamplerType type, unsigned int samplerIndex)
+{
+ switch (type)
+ {
+ case SAMPLER_PIXEL:
+ ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
+ ASSERT(mSamplersPS[samplerIndex].active);
+ return mSamplersPS[samplerIndex].textureType;
+ case SAMPLER_VERTEX:
+ ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
+ ASSERT(mSamplersVS[samplerIndex].active);
+ return mSamplersVS[samplerIndex].textureType;
+ default: UNREACHABLE();
+ }
+
+ return TEXTURE_2D;
+}
+
+GLint ProgramBinary::getUniformLocation(std::string name)
+{
+ unsigned int subscript = 0;
+
+ // Strip any trailing array operator and retrieve the subscript
+ size_t open = name.find_last_of('[');
+ size_t close = name.find_last_of(']');
+ if (open != std::string::npos && close == name.length() - 1)
+ {
+ subscript = atoi(name.substr(open + 1).c_str());
+ name.erase(open);
+ }
+
+ unsigned int numUniforms = mUniformIndex.size();
+ for (unsigned int location = 0; location < numUniforms; location++)
+ {
+ if (mUniformIndex[location].name == name &&
+ mUniformIndex[location].element == subscript)
+ {
+ return location;
+ }
+ }
+
+ return -1;
+}
+
+bool ProgramBinary::setUniform1fv(GLint location, GLsizei count, const GLfloat* v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ if (targetUniform->type == GL_FLOAT)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+
+ GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ target[0] = v[0];
+ target[1] = 0;
+ target[2] = 0;
+ target[3] = 0;
+ target += 4;
+ v += 1;
+ }
+ }
+ else if (targetUniform->type == GL_BOOL)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+ GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element;
+
+ for (int i = 0; i < count; ++i)
+ {
+ if (v[i] == 0.0f)
+ {
+ boolParams[i] = GL_FALSE;
+ }
+ else
+ {
+ boolParams[i] = GL_TRUE;
+ }
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ if (targetUniform->type == GL_FLOAT_VEC2)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+
+ GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ target[0] = v[0];
+ target[1] = v[1];
+ target[2] = 0;
+ target[3] = 0;
+ target += 4;
+ v += 2;
+ }
+ }
+ else if (targetUniform->type == GL_BOOL_VEC2)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+
+ GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 2;
+
+ for (int i = 0; i < count * 2; ++i)
+ {
+ if (v[i] == 0.0f)
+ {
+ boolParams[i] = GL_FALSE;
+ }
+ else
+ {
+ boolParams[i] = GL_TRUE;
+ }
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ if (targetUniform->type == GL_FLOAT_VEC3)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+
+ GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ target[0] = v[0];
+ target[1] = v[1];
+ target[2] = v[2];
+ target[3] = 0;
+ target += 4;
+ v += 3;
+ }
+ }
+ else if (targetUniform->type == GL_BOOL_VEC3)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+ GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 3;
+
+ for (int i = 0; i < count * 3; ++i)
+ {
+ if (v[i] == 0.0f)
+ {
+ boolParams[i] = GL_FALSE;
+ }
+ else
+ {
+ boolParams[i] = GL_TRUE;
+ }
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ if (targetUniform->type == GL_FLOAT_VEC4)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+
+ memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 4,
+ v, 4 * sizeof(GLfloat) * count);
+ }
+ else if (targetUniform->type == GL_BOOL_VEC4)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+ GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count * 4; ++i)
+ {
+ if (v[i] == 0.0f)
+ {
+ boolParams[i] = GL_FALSE;
+ }
+ else
+ {
+ boolParams[i] = GL_TRUE;
+ }
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+template<typename T, int targetWidth, int targetHeight, int srcWidth, int srcHeight>
+void transposeMatrix(T *target, const GLfloat *value)
+{
+ int copyWidth = std::min(targetWidth, srcWidth);
+ int copyHeight = std::min(targetHeight, srcHeight);
+
+ for (int x = 0; x < copyWidth; x++)
+ {
+ for (int y = 0; y < copyHeight; y++)
+ {
+ target[x * targetWidth + y] = (T)value[y * srcWidth + x];
+ }
+ }
+ // clear unfilled right side
+ for (int y = 0; y < copyHeight; y++)
+ {
+ for (int x = srcWidth; x < targetWidth; x++)
+ {
+ target[y * targetWidth + x] = (T)0;
+ }
+ }
+ // clear unfilled bottom.
+ for (int y = srcHeight; y < targetHeight; y++)
+ {
+ for (int x = 0; x < targetWidth; x++)
+ {
+ target[y * targetWidth + x] = (T)0;
+ }
+ }
+}
+
+bool ProgramBinary::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ if (targetUniform->type != GL_FLOAT_MAT2)
+ {
+ return false;
+ }
+
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+
+ GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8;
+ for (int i = 0; i < count; i++)
+ {
+ transposeMatrix<GLfloat,4,2,2,2>(target, value);
+ target += 8;
+ value += 4;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ if (targetUniform->type != GL_FLOAT_MAT3)
+ {
+ return false;
+ }
+
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+
+ GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12;
+ for (int i = 0; i < count; i++)
+ {
+ transposeMatrix<GLfloat,4,3,3,3>(target, value);
+ target += 12;
+ value += 9;
+ }
+
+ return true;
+}
+
+
+bool ProgramBinary::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ if (targetUniform->type != GL_FLOAT_MAT4)
+ {
+ return false;
+ }
+
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+
+ GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16);
+ for (int i = 0; i < count; i++)
+ {
+ transposeMatrix<GLfloat,4,4,4,4>(target, value);
+ target += 16;
+ value += 16;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniform1iv(GLint location, GLsizei count, const GLint *v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ if (targetUniform->type == GL_INT ||
+ targetUniform->type == GL_SAMPLER_2D ||
+ targetUniform->type == GL_SAMPLER_CUBE)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+
+ memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint),
+ v, sizeof(GLint) * count);
+ }
+ else if (targetUniform->type == GL_BOOL)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+ GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element;
+
+ for (int i = 0; i < count; ++i)
+ {
+ if (v[i] == 0)
+ {
+ boolParams[i] = GL_FALSE;
+ }
+ else
+ {
+ boolParams[i] = GL_TRUE;
+ }
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniform2iv(GLint location, GLsizei count, const GLint *v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ if (targetUniform->type == GL_INT_VEC2)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+
+ memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 2,
+ v, 2 * sizeof(GLint) * count);
+ }
+ else if (targetUniform->type == GL_BOOL_VEC2)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+ GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 2;
+
+ for (int i = 0; i < count * 2; ++i)
+ {
+ if (v[i] == 0)
+ {
+ boolParams[i] = GL_FALSE;
+ }
+ else
+ {
+ boolParams[i] = GL_TRUE;
+ }
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniform3iv(GLint location, GLsizei count, const GLint *v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ if (targetUniform->type == GL_INT_VEC3)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+
+ memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 3,
+ v, 3 * sizeof(GLint) * count);
+ }
+ else if (targetUniform->type == GL_BOOL_VEC3)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+ GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 3;
+
+ for (int i = 0; i < count * 3; ++i)
+ {
+ if (v[i] == 0)
+ {
+ boolParams[i] = GL_FALSE;
+ }
+ else
+ {
+ boolParams[i] = GL_TRUE;
+ }
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniform4iv(GLint location, GLsizei count, const GLint *v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ if (targetUniform->type == GL_INT_VEC4)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+
+ memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 4,
+ v, 4 * sizeof(GLint) * count);
+ }
+ else if (targetUniform->type == GL_BOOL_VEC4)
+ {
+ int arraySize = targetUniform->arraySize;
+
+ if (arraySize == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(arraySize - (int)mUniformIndex[location].element, count);
+ GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count * 4; ++i)
+ {
+ if (v[i] == 0)
+ {
+ boolParams[i] = GL_FALSE;
+ }
+ else
+ {
+ boolParams[i] = GL_TRUE;
+ }
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+
+ // sized queries -- ensure the provided buffer is large enough
+ if (bufSize)
+ {
+ int requiredBytes = UniformExternalSize(targetUniform->type);
+ if (*bufSize < requiredBytes)
+ {
+ return false;
+ }
+ }
+
+ switch (targetUniform->type)
+ {
+ case GL_FLOAT_MAT2:
+ transposeMatrix<GLfloat,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8);
+ break;
+ case GL_FLOAT_MAT3:
+ transposeMatrix<GLfloat,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12);
+ break;
+ case GL_FLOAT_MAT4:
+ transposeMatrix<GLfloat,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16);
+ break;
+ default:
+ {
+ unsigned int count = UniformExternalComponentCount(targetUniform->type);
+ unsigned int internalCount = UniformInternalComponentCount(targetUniform->type);
+
+ switch (UniformComponentType(targetUniform->type))
+ {
+ case GL_BOOL:
+ {
+ GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * internalCount;
+
+ for (unsigned int i = 0; i < count; ++i)
+ {
+ params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f;
+ }
+ }
+ break;
+ case GL_FLOAT:
+ memcpy(params, targetUniform->data + mUniformIndex[location].element * internalCount * sizeof(GLfloat),
+ count * sizeof(GLfloat));
+ break;
+ case GL_INT:
+ {
+ GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * internalCount;
+
+ for (unsigned int i = 0; i < count; ++i)
+ {
+ params[i] = (float)intParams[i];
+ }
+ }
+ break;
+ default: UNREACHABLE();
+ }
+ }
+ }
+
+ return true;
+}
+
+bool ProgramBinary::getUniformiv(GLint location, GLsizei *bufSize, GLint *params)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+
+ // sized queries -- ensure the provided buffer is large enough
+ if (bufSize)
+ {
+ int requiredBytes = UniformExternalSize(targetUniform->type);
+ if (*bufSize < requiredBytes)
+ {
+ return false;
+ }
+ }
+
+ switch (targetUniform->type)
+ {
+ case GL_FLOAT_MAT2:
+ {
+ transposeMatrix<GLint,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8);
+ }
+ break;
+ case GL_FLOAT_MAT3:
+ {
+ transposeMatrix<GLint,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12);
+ }
+ break;
+ case GL_FLOAT_MAT4:
+ {
+ transposeMatrix<GLint,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16);
+ }
+ break;
+ default:
+ {
+ unsigned int count = UniformExternalComponentCount(targetUniform->type);
+ unsigned int internalCount = UniformInternalComponentCount(targetUniform->type);
+
+ switch (UniformComponentType(targetUniform->type))
+ {
+ case GL_BOOL:
+ {
+ GLboolean *boolParams = targetUniform->data + mUniformIndex[location].element * internalCount;
+
+ for (unsigned int i = 0; i < count; ++i)
+ {
+ params[i] = (GLint)boolParams[i];
+ }
+ }
+ break;
+ case GL_FLOAT:
+ {
+ GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * internalCount;
+
+ for (unsigned int i = 0; i < count; ++i)
+ {
+ params[i] = (GLint)floatParams[i];
+ }
+ }
+ break;
+ case GL_INT:
+ memcpy(params, targetUniform->data + mUniformIndex[location].element * internalCount * sizeof(GLint),
+ count * sizeof(GLint));
+ break;
+ default: UNREACHABLE();
+ }
+ }
+ }
+
+ return true;
+}
+
+void ProgramBinary::dirtyAllUniforms()
+{
+ unsigned int numUniforms = mUniforms.size();
+ for (unsigned int index = 0; index < numUniforms; index++)
+ {
+ mUniforms[index]->dirty = true;
+ }
+}
+
+// Applies all the uniforms set for this program object to the Direct3D 9 device
+void ProgramBinary::applyUniforms()
+{
+ for (std::vector<Uniform*>::iterator ub = mUniforms.begin(), ue = mUniforms.end(); ub != ue; ++ub) {
+ Uniform *targetUniform = *ub;
+
+ if (targetUniform->dirty)
+ {
+ int arraySize = targetUniform->arraySize;
+ GLfloat *f = (GLfloat*)targetUniform->data;
+ GLint *i = (GLint*)targetUniform->data;
+ GLboolean *b = (GLboolean*)targetUniform->data;
+
+ switch (targetUniform->type)
+ {
+ case GL_BOOL: applyUniformnbv(targetUniform, arraySize, 1, b); break;
+ case GL_BOOL_VEC2: applyUniformnbv(targetUniform, arraySize, 2, b); break;
+ case GL_BOOL_VEC3: applyUniformnbv(targetUniform, arraySize, 3, b); break;
+ case GL_BOOL_VEC4: applyUniformnbv(targetUniform, arraySize, 4, b); break;
+ case GL_FLOAT:
+ case GL_FLOAT_VEC2:
+ case GL_FLOAT_VEC3:
+ case GL_FLOAT_VEC4:
+ case GL_FLOAT_MAT2:
+ case GL_FLOAT_MAT3:
+ case GL_FLOAT_MAT4: applyUniformnfv(targetUniform, f); break;
+ case GL_SAMPLER_2D:
+ case GL_SAMPLER_CUBE:
+ case GL_INT: applyUniform1iv(targetUniform, arraySize, i); break;
+ case GL_INT_VEC2: applyUniform2iv(targetUniform, arraySize, i); break;
+ case GL_INT_VEC3: applyUniform3iv(targetUniform, arraySize, i); break;
+ case GL_INT_VEC4: applyUniform4iv(targetUniform, arraySize, i); break;
+ default:
+ UNREACHABLE();
+ }
+
+ targetUniform->dirty = false;
+ }
+ }
+}
+
+// Compiles the HLSL code of the attached shaders into executable binaries
+ID3D10Blob *ProgramBinary::compileToBinary(InfoLog &infoLog, const char *hlsl, const char *profile, ID3DXConstantTable **constantTable)
+{
+ if (!hlsl)
+ {
+ return NULL;
+ }
+
+ DWORD result;
+ UINT flags = 0;
+ std::string sourceText;
+ if (perfActive())
+ {
+ flags |= D3DCOMPILE_DEBUG;
+#ifdef NDEBUG
+ flags |= ANGLE_COMPILE_OPTIMIZATION_LEVEL;
+#else
+ flags |= D3DCOMPILE_SKIP_OPTIMIZATION;
+#endif
+
+ std::string sourcePath = getTempPath();
+ sourceText = std::string("#line 2 \"") + sourcePath + std::string("\"\n\n") + std::string(hlsl);
+ writeFile(sourcePath.c_str(), sourceText.c_str(), sourceText.size());
+ }
+ else
+ {
+ flags |= ANGLE_COMPILE_OPTIMIZATION_LEVEL;
+ sourceText = hlsl;
+ }
+
+ ID3D10Blob *binary = NULL;
+ ID3D10Blob *errorMessage = NULL;
+ result = D3DCompile(hlsl, strlen(hlsl), g_fakepath, NULL, NULL, "main", profile, flags, 0, &binary, &errorMessage);
+
+ if (errorMessage)
+ {
+ const char *message = (const char*)errorMessage->GetBufferPointer();
+
+ infoLog.appendSanitized(message);
+ TRACE("\n%s", hlsl);
+ TRACE("\n%s", message);
+
+ errorMessage->Release();
+ errorMessage = NULL;
+ }
+
+ if (FAILED(result))
+ {
+ if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
+ {
+ error(GL_OUT_OF_MEMORY);
+ }
+
+ return NULL;
+ }
+
+ result = D3DXGetShaderConstantTable(static_cast<const DWORD*>(binary->GetBufferPointer()), constantTable);
+
+ if (FAILED(result))
+ {
+ if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
+ {
+ error(GL_OUT_OF_MEMORY);
+ }
+
+ binary->Release();
+
+ return NULL;
+ }
+
+ return binary;
+}
+
+// Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111
+// Returns the number of used varying registers, or -1 if unsuccesful
+int ProgramBinary::packVaryings(InfoLog &infoLog, const Varying *packing[][4], FragmentShader *fragmentShader)
+{
+ Context *context = getContext();
+ const int maxVaryingVectors = context->getMaximumVaryingVectors();
+
+ for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
+ {
+ int n = VariableRowCount(varying->type) * varying->size;
+ int m = VariableColumnCount(varying->type);
+ bool success = false;
+
+ if (m == 2 || m == 3 || m == 4)
+ {
+ for (int r = 0; r <= maxVaryingVectors - n && !success; r++)
+ {
+ bool available = true;
+
+ for (int y = 0; y < n && available; y++)
+ {
+ for (int x = 0; x < m && available; x++)
+ {
+ if (packing[r + y][x])
+ {
+ available = false;
+ }
+ }
+ }
+
+ if (available)
+ {
+ varying->reg = r;
+ varying->col = 0;
+
+ for (int y = 0; y < n; y++)
+ {
+ for (int x = 0; x < m; x++)
+ {
+ packing[r + y][x] = &*varying;
+ }
+ }
+
+ success = true;
+ }
+ }
+
+ if (!success && m == 2)
+ {
+ for (int r = maxVaryingVectors - n; r >= 0 && !success; r--)
+ {
+ bool available = true;
+
+ for (int y = 0; y < n && available; y++)
+ {
+ for (int x = 2; x < 4 && available; x++)
+ {
+ if (packing[r + y][x])
+ {
+ available = false;
+ }
+ }
+ }
+
+ if (available)
+ {
+ varying->reg = r;
+ varying->col = 2;
+
+ for (int y = 0; y < n; y++)
+ {
+ for (int x = 2; x < 4; x++)
+ {
+ packing[r + y][x] = &*varying;
+ }
+ }
+
+ success = true;
+ }
+ }
+ }
+ }
+ else if (m == 1)
+ {
+ int space[4] = {0};
+
+ for (int y = 0; y < maxVaryingVectors; y++)
+ {
+ for (int x = 0; x < 4; x++)
+ {
+ space[x] += packing[y][x] ? 0 : 1;
+ }
+ }
+
+ int column = 0;
+
+ for (int x = 0; x < 4; x++)
+ {
+ if (space[x] >= n && space[x] < space[column])
+ {
+ column = x;
+ }
+ }
+
+ if (space[column] >= n)
+ {
+ for (int r = 0; r < maxVaryingVectors; r++)
+ {
+ if (!packing[r][column])
+ {
+ varying->reg = r;
+
+ for (int y = r; y < r + n; y++)
+ {
+ packing[y][column] = &*varying;
+ }
+
+ break;
+ }
+ }
+
+ varying->col = column;
+
+ success = true;
+ }
+ }
+ else UNREACHABLE();
+
+ if (!success)
+ {
+ infoLog.append("Could not pack varying %s", varying->name.c_str());
+
+ return -1;
+ }
+ }
+
+ // Return the number of used registers
+ int registers = 0;
+
+ for (int r = 0; r < maxVaryingVectors; r++)
+ {
+ if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3])
+ {
+ registers++;
+ }
+ }
+
+ return registers;
+}
+
+bool ProgramBinary::linkVaryings(InfoLog &infoLog, std::string& pixelHLSL, std::string& vertexHLSL, FragmentShader *fragmentShader, VertexShader *vertexShader)
+{
+ if (pixelHLSL.empty() || vertexHLSL.empty())
+ {
+ return false;
+ }
+
+ // Reset the varying register assignments
+ for (VaryingList::iterator fragVar = fragmentShader->mVaryings.begin(); fragVar != fragmentShader->mVaryings.end(); fragVar++)
+ {
+ fragVar->reg = -1;
+ fragVar->col = -1;
+ }
+
+ for (VaryingList::iterator vtxVar = vertexShader->mVaryings.begin(); vtxVar != vertexShader->mVaryings.end(); vtxVar++)
+ {
+ vtxVar->reg = -1;
+ vtxVar->col = -1;
+ }
+
+ // Map the varyings to the register file
+ const Varying *packing[MAX_VARYING_VECTORS_SM3][4] = {NULL};
+ int registers = packVaryings(infoLog, packing, fragmentShader);
+
+ if (registers < 0)
+ {
+ return false;
+ }
+
+ // Write the HLSL input/output declarations
+ Context *context = getContext();
+ const bool sm3 = context->supportsShaderModel3();
+ const int maxVaryingVectors = context->getMaximumVaryingVectors();
+
+ if (registers == maxVaryingVectors && fragmentShader->mUsesFragCoord)
+ {
+ infoLog.append("No varying registers left to support gl_FragCoord");
+
+ return false;
+ }
+
+ for (VaryingList::iterator input = fragmentShader->mVaryings.begin(); input != fragmentShader->mVaryings.end(); input++)
+ {
+ bool matched = false;
+
+ for (VaryingList::iterator output = vertexShader->mVaryings.begin(); output != vertexShader->mVaryings.end(); output++)
+ {
+ if (output->name == input->name)
+ {
+ if (output->type != input->type || output->size != input->size)
+ {
+ infoLog.append("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str());
+
+ return false;
+ }
+
+ output->reg = input->reg;
+ output->col = input->col;
+
+ matched = true;
+ break;
+ }
+ }
+
+ if (!matched)
+ {
+ infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str());
+
+ return false;
+ }
+ }
+
+ std::string varyingSemantic = (sm3 ? "COLOR" : "TEXCOORD");
+
+ vertexHLSL += "struct VS_INPUT\n"
+ "{\n";
+
+ int semanticIndex = 0;
+ for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
+ {
+ switch (attribute->type)
+ {
+ case GL_FLOAT: vertexHLSL += " float "; break;
+ case GL_FLOAT_VEC2: vertexHLSL += " float2 "; break;
+ case GL_FLOAT_VEC3: vertexHLSL += " float3 "; break;
+ case GL_FLOAT_VEC4: vertexHLSL += " float4 "; break;
+ case GL_FLOAT_MAT2: vertexHLSL += " float2x2 "; break;
+ case GL_FLOAT_MAT3: vertexHLSL += " float3x3 "; break;
+ case GL_FLOAT_MAT4: vertexHLSL += " float4x4 "; break;
+ default: UNREACHABLE();
+ }
+
+ vertexHLSL += decorateAttribute(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n";
+
+ semanticIndex += VariableRowCount(attribute->type);
+ }
+
+ vertexHLSL += "};\n"
+ "\n"
+ "struct VS_OUTPUT\n"
+ "{\n"
+ " float4 gl_Position : POSITION;\n";
+
+ for (int r = 0; r < registers; r++)
+ {
+ int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1));
+
+ vertexHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n";
+ }
+
+ if (fragmentShader->mUsesFragCoord)
+ {
+ vertexHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n";
+ }
+
+ if (vertexShader->mUsesPointSize && sm3)
+ {
+ vertexHLSL += " float gl_PointSize : PSIZE;\n";
+ }
+
+ vertexHLSL += "};\n"
+ "\n"
+ "VS_OUTPUT main(VS_INPUT input)\n"
+ "{\n";
+
+ for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
+ {
+ vertexHLSL += " " + decorateAttribute(attribute->name) + " = ";
+
+ if (VariableRowCount(attribute->type) > 1) // Matrix
+ {
+ vertexHLSL += "transpose";
+ }
+
+ vertexHLSL += "(input." + decorateAttribute(attribute->name) + ");\n";
+ }
+
+ vertexHLSL += "\n"
+ " gl_main();\n"
+ "\n"
+ " VS_OUTPUT output;\n"
+ " output.gl_Position.x = gl_Position.x - dx_HalfPixelSize.x * gl_Position.w;\n"
+ " output.gl_Position.y = -(gl_Position.y + dx_HalfPixelSize.y * gl_Position.w);\n"
+ " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
+ " output.gl_Position.w = gl_Position.w;\n";
+
+ if (vertexShader->mUsesPointSize && sm3)
+ {
+ vertexHLSL += " output.gl_PointSize = clamp(gl_PointSize, 1.0, " + str((int)ALIASED_POINT_SIZE_RANGE_MAX_SM3) + ");\n";
+ }
+
+ if (fragmentShader->mUsesFragCoord)
+ {
+ vertexHLSL += " output.gl_FragCoord = gl_Position;\n";
+ }
+
+ for (VaryingList::iterator varying = vertexShader->mVaryings.begin(); varying != vertexShader->mVaryings.end(); varying++)
+ {
+ if (varying->reg >= 0)
+ {
+ for (int i = 0; i < varying->size; i++)
+ {
+ int rows = VariableRowCount(varying->type);
+
+ for (int j = 0; j < rows; j++)
+ {
+ int r = varying->reg + i * rows + j;
+ vertexHLSL += " output.v" + str(r);
+
+ bool sharedRegister = false; // Register used by multiple varyings
+
+ for (int x = 0; x < 4; x++)
+ {
+ if (packing[r][x] && packing[r][x] != packing[r][0])
+ {
+ sharedRegister = true;
+ break;
+ }
+ }
+
+ if(sharedRegister)
+ {
+ vertexHLSL += ".";
+
+ for (int x = 0; x < 4; x++)
+ {
+ if (packing[r][x] == &*varying)
+ {
+ switch(x)
+ {
+ case 0: vertexHLSL += "x"; break;
+ case 1: vertexHLSL += "y"; break;
+ case 2: vertexHLSL += "z"; break;
+ case 3: vertexHLSL += "w"; break;
+ }
+ }
+ }
+ }
+
+ vertexHLSL += " = " + varying->name;
+
+ if (varying->array)
+ {
+ vertexHLSL += "[" + str(i) + "]";
+ }
+
+ if (rows > 1)
+ {
+ vertexHLSL += "[" + str(j) + "]";
+ }
+
+ vertexHLSL += ";\n";
+ }
+ }
+ }
+ }
+
+ vertexHLSL += "\n"
+ " return output;\n"
+ "}\n";
+
+ pixelHLSL += "struct PS_INPUT\n"
+ "{\n";
+
+ for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
+ {
+ if (varying->reg >= 0)
+ {
+ for (int i = 0; i < varying->size; i++)
+ {
+ int rows = VariableRowCount(varying->type);
+ for (int j = 0; j < rows; j++)
+ {
+ std::string n = str(varying->reg + i * rows + j);
+ pixelHLSL += " float4 v" + n + " : " + varyingSemantic + n + ";\n";
+ }
+ }
+ }
+ else UNREACHABLE();
+ }
+
+ if (fragmentShader->mUsesFragCoord)
+ {
+ pixelHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n";
+ if (sm3) {
+ pixelHLSL += " float2 dx_VPos : VPOS;\n";
+ }
+ }
+
+ if (fragmentShader->mUsesPointCoord && sm3)
+ {
+ pixelHLSL += " float2 gl_PointCoord : TEXCOORD0;\n";
+ }
+
+ if (fragmentShader->mUsesFrontFacing)
+ {
+ pixelHLSL += " float vFace : VFACE;\n";
+ }
+
+ pixelHLSL += "};\n"
+ "\n"
+ "struct PS_OUTPUT\n"
+ "{\n"
+ " float4 gl_Color[1] : COLOR;\n"
+ "};\n"
+ "\n"
+ "PS_OUTPUT main(PS_INPUT input)\n"
+ "{\n";
+
+ if (fragmentShader->mUsesFragCoord)
+ {
+ pixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n";
+
+ if (sm3)
+ {
+ pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x + 0.5;\n"
+ " gl_FragCoord.y = input.dx_VPos.y + 0.5;\n";
+ }
+ else
+ {
+ // dx_Coord contains the viewport width/2, height/2, center.x and center.y. See Context::applyRenderTarget()
+ pixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_Coord.x + dx_Coord.z;\n"
+ " gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_Coord.y + dx_Coord.w;\n";
+ }
+
+ pixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_Depth.x + dx_Depth.y;\n"
+ " gl_FragCoord.w = rhw;\n";
+ }
+
+ if (fragmentShader->mUsesPointCoord && sm3)
+ {
+ pixelHLSL += " gl_PointCoord.x = input.gl_PointCoord.x;\n";
+ pixelHLSL += " gl_PointCoord.y = 1.0 - input.gl_PointCoord.y;\n";
+ }
+
+ if (fragmentShader->mUsesFrontFacing)
+ {
+ pixelHLSL += " gl_FrontFacing = dx_PointsOrLines || (dx_FrontCCW ? (input.vFace >= 0.0) : (input.vFace <= 0.0));\n";
+ }
+
+ for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
+ {
+ if (varying->reg >= 0)
+ {
+ for (int i = 0; i < varying->size; i++)
+ {
+ int rows = VariableRowCount(varying->type);
+ for (int j = 0; j < rows; j++)
+ {
+ std::string n = str(varying->reg + i * rows + j);
+ pixelHLSL += " " + varying->name;
+
+ if (varying->array)
+ {
+ pixelHLSL += "[" + str(i) + "]";
+ }
+
+ if (rows > 1)
+ {
+ pixelHLSL += "[" + str(j) + "]";
+ }
+
+ pixelHLSL += " = input.v" + n + ";\n";
+ }
+ }
+ }
+ else UNREACHABLE();
+ }
+
+ pixelHLSL += "\n"
+ " gl_main();\n"
+ "\n"
+ " PS_OUTPUT output;\n"
+ " output.gl_Color[0] = gl_Color[0];\n"
+ "\n"
+ " return output;\n"
+ "}\n";
+
+ return true;
+}
+
+bool ProgramBinary::link(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader)
+{
+ if (!fragmentShader || !fragmentShader->isCompiled())
+ {
+ return false;
+ }
+
+ if (!vertexShader || !vertexShader->isCompiled())
+ {
+ return false;
+ }
+
+ std::string pixelHLSL = fragmentShader->getHLSL();
+ std::string vertexHLSL = vertexShader->getHLSL();
+
+ if (!linkVaryings(infoLog, pixelHLSL, vertexHLSL, fragmentShader, vertexShader))
+ {
+ return false;
+ }
+
+ Context *context = getContext();
+ const char *vertexProfile = context->supportsShaderModel3() ? "vs_3_0" : "vs_2_0";
+ const char *pixelProfile = context->supportsShaderModel3() ? "ps_3_0" : "ps_2_0";
+
+ ID3D10Blob *vertexBinary = compileToBinary(infoLog, vertexHLSL.c_str(), vertexProfile, &mConstantTableVS);
+ ID3D10Blob *pixelBinary = compileToBinary(infoLog, pixelHLSL.c_str(), pixelProfile, &mConstantTablePS);
+
+ if (vertexBinary && pixelBinary)
+ {
+ HRESULT vertexResult = mDevice->CreateVertexShader((DWORD*)vertexBinary->GetBufferPointer(), &mVertexExecutable);
+ HRESULT pixelResult = mDevice->CreatePixelShader((DWORD*)pixelBinary->GetBufferPointer(), &mPixelExecutable);
+
+ if (vertexResult == D3DERR_OUTOFVIDEOMEMORY || vertexResult == E_OUTOFMEMORY || pixelResult == D3DERR_OUTOFVIDEOMEMORY || pixelResult == E_OUTOFMEMORY)
+ {
+ return error(GL_OUT_OF_MEMORY, false);
+ }
+
+ ASSERT(SUCCEEDED(vertexResult) && SUCCEEDED(pixelResult));
+
+ vertexBinary->Release();
+ pixelBinary->Release();
+ vertexBinary = NULL;
+ pixelBinary = NULL;
+
+ if (mVertexExecutable && mPixelExecutable)
+ {
+ if (!linkAttributes(infoLog, attributeBindings, fragmentShader, vertexShader))
+ {
+ return false;
+ }
+
+ if (!linkUniforms(infoLog, GL_FRAGMENT_SHADER, mConstantTablePS))
+ {
+ return false;
+ }
+
+ if (!linkUniforms(infoLog, GL_VERTEX_SHADER, mConstantTableVS))
+ {
+ return false;
+ }
+
+ // these uniforms are searched as already-decorated because gl_ and dx_
+ // are reserved prefixes, and do not receive additional decoration
+ mDxDepthRangeLocation = getUniformLocation("dx_DepthRange");
+ mDxDepthLocation = getUniformLocation("dx_Depth");
+ mDxCoordLocation = getUniformLocation("dx_Coord");
+ mDxHalfPixelSizeLocation = getUniformLocation("dx_HalfPixelSize");
+ mDxFrontCCWLocation = getUniformLocation("dx_FrontCCW");
+ mDxPointsOrLinesLocation = getUniformLocation("dx_PointsOrLines");
+
+ context->markDxUniformsDirty();
+
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices
+bool ProgramBinary::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader)
+{
+ unsigned int usedLocations = 0;
+
+ // Link attributes that have a binding location
+ for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
+ {
+ int location = attributeBindings.getAttributeBinding(attribute->name);
+
+ if (location != -1) // Set by glBindAttribLocation
+ {
+ if (!mLinkedAttribute[location].name.empty())
+ {
+ // Multiple active attributes bound to the same location; not an error
+ }
+
+ mLinkedAttribute[location] = *attribute;
+
+ int rows = VariableRowCount(attribute->type);
+
+ if (rows + location > MAX_VERTEX_ATTRIBS)
+ {
+ infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location);
+
+ return false;
+ }
+
+ for (int i = 0; i < rows; i++)
+ {
+ usedLocations |= 1 << (location + i);
+ }
+ }
+ }
+
+ // Link attributes that don't have a binding location
+ for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
+ {
+ int location = attributeBindings.getAttributeBinding(attribute->name);
+
+ if (location == -1) // Not set by glBindAttribLocation
+ {
+ int rows = VariableRowCount(attribute->type);
+ int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS);
+
+ if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS)
+ {
+ infoLog.append("Too many active attributes (%s)", attribute->name.c_str());
+
+ return false; // Fail to link
+ }
+
+ mLinkedAttribute[availableIndex] = *attribute;
+ }
+ }
+
+ for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; )
+ {
+ int index = vertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name);
+ int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1);
+
+ for (int r = 0; r < rows; r++)
+ {
+ mSemanticIndex[attributeIndex++] = index++;
+ }
+ }
+
+ return true;
+}
+
+bool ProgramBinary::linkUniforms(InfoLog &infoLog, GLenum shader, ID3DXConstantTable *constantTable)
+{
+ D3DXCONSTANTTABLE_DESC constantTableDescription;
+
+ constantTable->GetDesc(&constantTableDescription);
+
+ for (unsigned int constantIndex = 0; constantIndex < constantTableDescription.Constants; constantIndex++)
+ {
+ D3DXHANDLE constantHandle = constantTable->GetConstant(0, constantIndex);
+
+ D3DXCONSTANT_DESC constantDescription;
+ UINT descriptionCount = 1;
+ HRESULT result = constantTable->GetConstantDesc(constantHandle, &constantDescription, &descriptionCount);
+ ASSERT(SUCCEEDED(result));
+
+ if (!defineUniform(infoLog, shader, constantHandle, constantDescription))
+ {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+// Adds the description of a constant found in the binary shader to the list of uniforms
+// Returns true if succesful (uniform not already defined)
+bool ProgramBinary::defineUniform(InfoLog &infoLog, GLenum shader, const D3DXHANDLE &constantHandle, const D3DXCONSTANT_DESC &constantDescription, std::string name)
+{
+ if (constantDescription.RegisterSet == D3DXRS_SAMPLER)
+ {
+ for (unsigned int i = 0; i < constantDescription.RegisterCount; i++)
+ {
+ D3DXHANDLE psConstant = mConstantTablePS->GetConstantByName(NULL, constantDescription.Name);
+ D3DXHANDLE vsConstant = mConstantTableVS->GetConstantByName(NULL, constantDescription.Name);
+
+ if (psConstant)
+ {
+ unsigned int samplerIndex = mConstantTablePS->GetSamplerIndex(psConstant) + i;
+
+ if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
+ {
+ mSamplersPS[samplerIndex].active = true;
+ mSamplersPS[samplerIndex].textureType = (constantDescription.Type == D3DXPT_SAMPLERCUBE) ? TEXTURE_CUBE : TEXTURE_2D;
+ mSamplersPS[samplerIndex].logicalTextureUnit = 0;
+ mUsedPixelSamplerRange = std::max(samplerIndex + 1, mUsedPixelSamplerRange);
+ }
+ else
+ {
+ infoLog.append("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS);
+ return false;
+ }
+ }
+
+ if (vsConstant)
+ {
+ unsigned int samplerIndex = mConstantTableVS->GetSamplerIndex(vsConstant) + i;
+
+ if (samplerIndex < getContext()->getMaximumVertexTextureImageUnits())
+ {
+ mSamplersVS[samplerIndex].active = true;
+ mSamplersVS[samplerIndex].textureType = (constantDescription.Type == D3DXPT_SAMPLERCUBE) ? TEXTURE_CUBE : TEXTURE_2D;
+ mSamplersVS[samplerIndex].logicalTextureUnit = 0;
+ mUsedVertexSamplerRange = std::max(samplerIndex + 1, mUsedVertexSamplerRange);
+ }
+ else
+ {
+ infoLog.append("Vertex shader sampler count exceeds MAX_VERTEX_TEXTURE_IMAGE_UNITS (%d).", getContext()->getMaximumVertexTextureImageUnits());
+ return false;
+ }
+ }
+ }
+ }
+
+ switch(constantDescription.Class)
+ {
+ case D3DXPC_STRUCT:
+ {
+ for (unsigned int arrayIndex = 0; arrayIndex < constantDescription.Elements; arrayIndex++)
+ {
+ for (unsigned int field = 0; field < constantDescription.StructMembers; field++)
+ {
+ D3DXHANDLE fieldHandle = mConstantTablePS->GetConstant(constantHandle, field);
+
+ D3DXCONSTANT_DESC fieldDescription;
+ UINT descriptionCount = 1;
+
+ HRESULT result = mConstantTablePS->GetConstantDesc(fieldHandle, &fieldDescription, &descriptionCount);
+ ASSERT(SUCCEEDED(result));
+
+ std::string structIndex = (constantDescription.Elements > 1) ? ("[" + str(arrayIndex) + "]") : "";
+
+ if (!defineUniform(infoLog, shader, fieldHandle, fieldDescription, name + constantDescription.Name + structIndex + "."))
+ {
+ return false;
+ }
+ }
+ }
+
+ return true;
+ }
+ case D3DXPC_SCALAR:
+ case D3DXPC_VECTOR:
+ case D3DXPC_MATRIX_COLUMNS:
+ case D3DXPC_OBJECT:
+ return defineUniform(shader, constantDescription, name + constantDescription.Name);
+ default:
+ UNREACHABLE();
+ return false;
+ }
+}
+
+bool ProgramBinary::defineUniform(GLenum shader, const D3DXCONSTANT_DESC &constantDescription, const std::string &_name)
+{
+ Uniform *uniform = createUniform(constantDescription, _name);
+
+ if(!uniform)
+ {
+ return false;
+ }
+
+ // Check if already defined
+ GLint location = getUniformLocation(uniform->name);
+ GLenum type = uniform->type;
+
+ if (location >= 0)
+ {
+ delete uniform;
+ uniform = mUniforms[mUniformIndex[location].index];
+ }
+
+ if (shader == GL_FRAGMENT_SHADER) uniform->ps.set(constantDescription);
+ if (shader == GL_VERTEX_SHADER) uniform->vs.set(constantDescription);
+
+ if (location >= 0)
+ {
+ return uniform->type == type;
+ }
+
+ mUniforms.push_back(uniform);
+ unsigned int uniformIndex = mUniforms.size() - 1;
+
+ for (unsigned int i = 0; i < uniform->arraySize; ++i)
+ {
+ mUniformIndex.push_back(UniformLocation(_name, i, uniformIndex));
+ }
+
+ return true;
+}
+
+Uniform *ProgramBinary::createUniform(const D3DXCONSTANT_DESC &constantDescription, const std::string &_name)
+{
+ if (constantDescription.Rows == 1) // Vectors and scalars
+ {
+ switch (constantDescription.Type)
+ {
+ case D3DXPT_SAMPLER2D:
+ switch (constantDescription.Columns)
+ {
+ case 1: return new Uniform(GL_SAMPLER_2D, _name, constantDescription.Elements);
+ default: UNREACHABLE();
+ }
+ break;
+ case D3DXPT_SAMPLERCUBE:
+ switch (constantDescription.Columns)
+ {
+ case 1: return new Uniform(GL_SAMPLER_CUBE, _name, constantDescription.Elements);
+ default: UNREACHABLE();
+ }
+ break;
+ case D3DXPT_BOOL:
+ switch (constantDescription.Columns)
+ {
+ case 1: return new Uniform(GL_BOOL, _name, constantDescription.Elements);
+ case 2: return new Uniform(GL_BOOL_VEC2, _name, constantDescription.Elements);
+ case 3: return new Uniform(GL_BOOL_VEC3, _name, constantDescription.Elements);
+ case 4: return new Uniform(GL_BOOL_VEC4, _name, constantDescription.Elements);
+ default: UNREACHABLE();
+ }
+ break;
+ case D3DXPT_INT:
+ switch (constantDescription.Columns)
+ {
+ case 1: return new Uniform(GL_INT, _name, constantDescription.Elements);
+ case 2: return new Uniform(GL_INT_VEC2, _name, constantDescription.Elements);
+ case 3: return new Uniform(GL_INT_VEC3, _name, constantDescription.Elements);
+ case 4: return new Uniform(GL_INT_VEC4, _name, constantDescription.Elements);
+ default: UNREACHABLE();
+ }
+ break;
+ case D3DXPT_FLOAT:
+ switch (constantDescription.Columns)
+ {
+ case 1: return new Uniform(GL_FLOAT, _name, constantDescription.Elements);
+ case 2: return new Uniform(GL_FLOAT_VEC2, _name, constantDescription.Elements);
+ case 3: return new Uniform(GL_FLOAT_VEC3, _name, constantDescription.Elements);
+ case 4: return new Uniform(GL_FLOAT_VEC4, _name, constantDescription.Elements);
+ default: UNREACHABLE();
+ }
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+ else if (constantDescription.Rows == constantDescription.Columns) // Square matrices
+ {
+ switch (constantDescription.Type)
+ {
+ case D3DXPT_FLOAT:
+ switch (constantDescription.Rows)
+ {
+ case 2: return new Uniform(GL_FLOAT_MAT2, _name, constantDescription.Elements);
+ case 3: return new Uniform(GL_FLOAT_MAT3, _name, constantDescription.Elements);
+ case 4: return new Uniform(GL_FLOAT_MAT4, _name, constantDescription.Elements);
+ default: UNREACHABLE();
+ }
+ break;
+ default: UNREACHABLE();
+ }
+ }
+ else UNREACHABLE();
+
+ return 0;
+}
+
+// This method needs to match OutputHLSL::decorate
+std::string ProgramBinary::decorateAttribute(const std::string &name)
+{
+ if (name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0)
+ {
+ return "_" + name;
+ }
+
+ return name;
+}
+
+std::string ProgramBinary::undecorateUniform(const std::string &_name)
+{
+ std::string name = _name;
+
+ // Remove any structure field decoration
+ size_t pos = 0;
+ while ((pos = name.find("._", pos)) != std::string::npos)
+ {
+ name.replace(pos, 2, ".");
+ }
+
+ // Remove the leading decoration
+ if (name[0] == '_')
+ {
+ return name.substr(1);
+ }
+ else if (name.compare(0, 3, "ar_") == 0)
+ {
+ return name.substr(3);
+ }
+
+ return name;
+}
+
+void ProgramBinary::applyUniformnbv(Uniform *targetUniform, GLsizei count, int width, const GLboolean *v)
+{
+ float vector[D3D9_MAX_FLOAT_CONSTANTS * 4];
+ BOOL boolVector[D3D9_MAX_BOOL_CONSTANTS];
+
+ if (targetUniform->ps.float4Index >= 0 || targetUniform->vs.float4Index >= 0)
+ {
+ ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS);
+ for (int i = 0; i < count; i++)
+ {
+ for (int j = 0; j < 4; j++)
+ {
+ if (j < width)
+ {
+ vector[i * 4 + j] = (v[i * width + j] == GL_FALSE) ? 0.0f : 1.0f;
+ }
+ else
+ {
+ vector[i * 4 + j] = 0.0f;
+ }
+ }
+ }
+ }
+
+ if (targetUniform->ps.boolIndex >= 0 || targetUniform->vs.boolIndex >= 0)
+ {
+ int psCount = targetUniform->ps.boolIndex >= 0 ? targetUniform->ps.registerCount : 0;
+ int vsCount = targetUniform->vs.boolIndex >= 0 ? targetUniform->vs.registerCount : 0;
+ int copyCount = std::min(count * width, std::max(psCount, vsCount));
+ ASSERT(copyCount <= D3D9_MAX_BOOL_CONSTANTS);
+ for (int i = 0; i < copyCount; i++)
+ {
+ boolVector[i] = v[i] != GL_FALSE;
+ }
+ }
+
+ if (targetUniform->ps.float4Index >= 0)
+ {
+ mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, vector, targetUniform->ps.registerCount);
+ }
+
+ if (targetUniform->ps.boolIndex >= 0)
+ {
+ mDevice->SetPixelShaderConstantB(targetUniform->ps.boolIndex, boolVector, targetUniform->ps.registerCount);
+ }
+
+ if (targetUniform->vs.float4Index >= 0)
+ {
+ mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, vector, targetUniform->vs.registerCount);
+ }
+
+ if (targetUniform->vs.boolIndex >= 0)
+ {
+ mDevice->SetVertexShaderConstantB(targetUniform->vs.boolIndex, boolVector, targetUniform->vs.registerCount);
+ }
+}
+
+bool ProgramBinary::applyUniformnfv(Uniform *targetUniform, const GLfloat *v)
+{
+ if (targetUniform->ps.registerCount)
+ {
+ mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, v, targetUniform->ps.registerCount);
+ }
+
+ if (targetUniform->vs.registerCount)
+ {
+ mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, v, targetUniform->vs.registerCount);
+ }
+
+ return true;
+}
+
+bool ProgramBinary::applyUniform1iv(Uniform *targetUniform, GLsizei count, const GLint *v)
+{
+ ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS);
+ D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS];
+
+ for (int i = 0; i < count; i++)
+ {
+ vector[i] = D3DXVECTOR4((float)v[i], 0, 0, 0);
+ }
+
+ if (targetUniform->ps.registerCount)
+ {
+ if (targetUniform->ps.samplerIndex >= 0)
+ {
+ unsigned int firstIndex = targetUniform->ps.samplerIndex;
+
+ for (int i = 0; i < count; i++)
+ {
+ unsigned int samplerIndex = firstIndex + i;
+
+ if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
+ {
+ ASSERT(mSamplersPS[samplerIndex].active);
+ mSamplersPS[samplerIndex].logicalTextureUnit = v[i];
+ }
+ }
+ }
+ else
+ {
+ ASSERT(targetUniform->ps.float4Index >= 0);
+ mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, (const float*)vector, targetUniform->ps.registerCount);
+ }
+ }
+
+ if (targetUniform->vs.registerCount)
+ {
+ if (targetUniform->vs.samplerIndex >= 0)
+ {
+ unsigned int firstIndex = targetUniform->vs.samplerIndex;
+
+ for (int i = 0; i < count; i++)
+ {
+ unsigned int samplerIndex = firstIndex + i;
+
+ if (samplerIndex < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF)
+ {
+ ASSERT(mSamplersVS[samplerIndex].active);
+ mSamplersVS[samplerIndex].logicalTextureUnit = v[i];
+ }
+ }
+ }
+ else
+ {
+ ASSERT(targetUniform->vs.float4Index >= 0);
+ mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, (const float *)vector, targetUniform->vs.registerCount);
+ }
+ }
+
+ return true;
+}
+
+bool ProgramBinary::applyUniform2iv(Uniform *targetUniform, GLsizei count, const GLint *v)
+{
+ ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS);
+ D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS];
+
+ for (int i = 0; i < count; i++)
+ {
+ vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], 0, 0);
+
+ v += 2;
+ }
+
+ applyUniformniv(targetUniform, count, vector);
+
+ return true;
+}
+
+bool ProgramBinary::applyUniform3iv(Uniform *targetUniform, GLsizei count, const GLint *v)
+{
+ ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS);
+ D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS];
+
+ for (int i = 0; i < count; i++)
+ {
+ vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], (float)v[2], 0);
+
+ v += 3;
+ }
+
+ applyUniformniv(targetUniform, count, vector);
+
+ return true;
+}
+
+bool ProgramBinary::applyUniform4iv(Uniform *targetUniform, GLsizei count, const GLint *v)
+{
+ ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS);
+ D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS];
+
+ for (int i = 0; i < count; i++)
+ {
+ vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], (float)v[2], (float)v[3]);
+
+ v += 4;
+ }
+
+ applyUniformniv(targetUniform, count, vector);
+
+ return true;
+}
+
+void ProgramBinary::applyUniformniv(Uniform *targetUniform, GLsizei count, const D3DXVECTOR4 *vector)
+{
+ if (targetUniform->ps.registerCount)
+ {
+ ASSERT(targetUniform->ps.float4Index >= 0);
+ mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, (const float *)vector, targetUniform->ps.registerCount);
+ }
+
+ if (targetUniform->vs.registerCount)
+ {
+ ASSERT(targetUniform->vs.float4Index >= 0);
+ mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, (const float *)vector, targetUniform->vs.registerCount);
+ }
+}
+
+bool ProgramBinary::isValidated() const
+{
+ return mValidated;
+}
+
+void ProgramBinary::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
+{
+ // Skip over inactive attributes
+ unsigned int activeAttribute = 0;
+ unsigned int attribute;
+ for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
+ {
+ if (mLinkedAttribute[attribute].name.empty())
+ {
+ continue;
+ }
+
+ if (activeAttribute == index)
+ {
+ break;
+ }
+
+ activeAttribute++;
+ }
+
+ if (bufsize > 0)
+ {
+ const char *string = mLinkedAttribute[attribute].name.c_str();
+
+ strncpy(name, string, bufsize);
+ name[bufsize - 1] = '\0';
+
+ if (length)
+ {
+ *length = strlen(name);
+ }
+ }
+
+ *size = 1; // Always a single 'type' instance
+
+ *type = mLinkedAttribute[attribute].type;
+}
+
+GLint ProgramBinary::getActiveAttributeCount()
+{
+ int count = 0;
+
+ for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
+ {
+ if (!mLinkedAttribute[attributeIndex].name.empty())
+ {
+ count++;
+ }
+ }
+
+ return count;
+}
+
+GLint ProgramBinary::getActiveAttributeMaxLength()
+{
+ int maxLength = 0;
+
+ for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
+ {
+ if (!mLinkedAttribute[attributeIndex].name.empty())
+ {
+ maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength);
+ }
+ }
+
+ return maxLength;
+}
+
+void ProgramBinary::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
+{
+ // Skip over internal uniforms
+ unsigned int activeUniform = 0;
+ unsigned int uniform;
+ for (uniform = 0; uniform < mUniforms.size(); uniform++)
+ {
+ if (mUniforms[uniform]->name.compare(0, 3, "dx_") == 0)
+ {
+ continue;
+ }
+
+ if (activeUniform == index)
+ {
+ break;
+ }
+
+ activeUniform++;
+ }
+
+ ASSERT(uniform < mUniforms.size()); // index must be smaller than getActiveUniformCount()
+
+ if (bufsize > 0)
+ {
+ std::string string = mUniforms[uniform]->name;
+
+ if (mUniforms[uniform]->isArray())
+ {
+ string += "[0]";
+ }
+
+ strncpy(name, string.c_str(), bufsize);
+ name[bufsize - 1] = '\0';
+
+ if (length)
+ {
+ *length = strlen(name);
+ }
+ }
+
+ *size = mUniforms[uniform]->arraySize;
+
+ *type = mUniforms[uniform]->type;
+}
+
+GLint ProgramBinary::getActiveUniformCount()
+{
+ int count = 0;
+
+ unsigned int numUniforms = mUniforms.size();
+ for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
+ {
+ if (mUniforms[uniformIndex]->name.compare(0, 3, "dx_") != 0)
+ {
+ count++;
+ }
+ }
+
+ return count;
+}
+
+GLint ProgramBinary::getActiveUniformMaxLength()
+{
+ int maxLength = 0;
+
+ unsigned int numUniforms = mUniforms.size();
+ for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
+ {
+ if (!mUniforms[uniformIndex]->name.empty() && mUniforms[uniformIndex]->name.compare(0, 3, "dx_") != 0)
+ {
+ int length = (int)(mUniforms[uniformIndex]->name.length() + 1);
+ if (mUniforms[uniformIndex]->isArray())
+ {
+ length += 3; // Counting in "[0]".
+ }
+ maxLength = std::max(length, maxLength);
+ }
+ }
+
+ return maxLength;
+}
+
+void ProgramBinary::validate(InfoLog &infoLog)
+{
+ applyUniforms();
+ if (!validateSamplers(&infoLog))
+ {
+ mValidated = false;
+ }
+ else
+ {
+ mValidated = true;
+ }
+}
+
+bool ProgramBinary::validateSamplers(InfoLog *infoLog)
+{
+ // if any two active samplers in a program are of different types, but refer to the same
+ // texture image unit, and this is the current program, then ValidateProgram will fail, and
+ // DrawArrays and DrawElements will issue the INVALID_OPERATION error.
+
+ const unsigned int maxCombinedTextureImageUnits = getContext()->getMaximumCombinedTextureImageUnits();
+ TextureType textureUnitType[MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF];
+
+ for (unsigned int i = 0; i < MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF; ++i)
+ {
+ textureUnitType[i] = TEXTURE_UNKNOWN;
+ }
+
+ for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i)
+ {
+ if (mSamplersPS[i].active)
+ {
+ unsigned int unit = mSamplersPS[i].logicalTextureUnit;
+
+ if (unit >= maxCombinedTextureImageUnits)
+ {
+ if (infoLog)
+ {
+ infoLog->append("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits);
+ }
+
+ return false;
+ }
+
+ if (textureUnitType[unit] != TEXTURE_UNKNOWN)
+ {
+ if (mSamplersPS[i].textureType != textureUnitType[unit])
+ {
+ if (infoLog)
+ {
+ infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
+ }
+
+ return false;
+ }
+ }
+ else
+ {
+ textureUnitType[unit] = mSamplersPS[i].textureType;
+ }
+ }
+ }
+
+ for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i)
+ {
+ if (mSamplersVS[i].active)
+ {
+ unsigned int unit = mSamplersVS[i].logicalTextureUnit;
+
+ if (unit >= maxCombinedTextureImageUnits)
+ {
+ if (infoLog)
+ {
+ infoLog->append("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits);
+ }
+
+ return false;
+ }
+
+ if (textureUnitType[unit] != TEXTURE_UNKNOWN)
+ {
+ if (mSamplersVS[i].textureType != textureUnitType[unit])
+ {
+ if (infoLog)
+ {
+ infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
+ }
+
+ return false;
+ }
+ }
+ else
+ {
+ textureUnitType[unit] = mSamplersVS[i].textureType;
+ }
+ }
+ }
+
+ return true;
+}
+
+GLint ProgramBinary::getDxDepthRangeLocation() const
+{
+ return mDxDepthRangeLocation;
+}
+
+GLint ProgramBinary::getDxDepthLocation() const
+{
+ return mDxDepthLocation;
+}
+
+GLint ProgramBinary::getDxCoordLocation() const
+{
+ return mDxCoordLocation;
+}
+
+GLint ProgramBinary::getDxHalfPixelSizeLocation() const
+{
+ return mDxHalfPixelSizeLocation;
+}
+
+GLint ProgramBinary::getDxFrontCCWLocation() const
+{
+ return mDxFrontCCWLocation;
+}
+
+GLint ProgramBinary::getDxPointsOrLinesLocation() const
+{
+ return mDxPointsOrLinesLocation;
+}
+
+}