1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
/*
* Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef WTF_MathExtras_h
#define WTF_MathExtras_h
#include <algorithm>
#include <cmath>
#include <float.h>
#include <limits>
#include <stdint.h>
#include <stdlib.h>
#include <wtf/StdLibExtras.h>
#if OS(SOLARIS)
#include <ieeefp.h>
#endif
#if OS(OPENBSD)
#include <sys/types.h>
#include <machine/ieee.h>
#endif
#if OS(QNX)
// FIXME: Look into a way to have cmath import its functions into both the standard and global
// namespace. For now, we include math.h since the QNX cmath header only imports its functions
// into the standard namespace.
#include <math.h>
#endif
#ifndef M_PI
const double piDouble = 3.14159265358979323846;
const float piFloat = 3.14159265358979323846f;
#else
const double piDouble = M_PI;
const float piFloat = static_cast<float>(M_PI);
#endif
#ifndef M_PI_2
const double piOverTwoDouble = 1.57079632679489661923;
const float piOverTwoFloat = 1.57079632679489661923f;
#else
const double piOverTwoDouble = M_PI_2;
const float piOverTwoFloat = static_cast<float>(M_PI_2);
#endif
#ifndef M_PI_4
const double piOverFourDouble = 0.785398163397448309616;
const float piOverFourFloat = 0.785398163397448309616f;
#else
const double piOverFourDouble = M_PI_4;
const float piOverFourFloat = static_cast<float>(M_PI_4);
#endif
#if OS(DARWIN)
// Work around a bug in the Mac OS X libc where ceil(-0.1) return +0.
inline double wtf_ceil(double x) { return copysign(ceil(x), x); }
#define ceil(x) wtf_ceil(x)
#endif
#if OS(SOLARIS)
#ifndef isfinite
inline bool isfinite(double x) { return finite(x) && !isnand(x); }
#endif
#ifndef isinf
inline bool isinf(double x) { return !finite(x) && !isnand(x); }
#endif
#ifndef signbit
inline bool signbit(double x) { return copysign(1.0, x) < 0; }
#endif
#endif
#if OS(OPENBSD)
#ifndef isfinite
inline bool isfinite(double x) { return finite(x); }
#endif
#ifndef signbit
inline bool signbit(double x) { struct ieee_double *p = (struct ieee_double *)&x; return p->dbl_sign; }
#endif
#endif
#if COMPILER(MSVC) || (COMPILER(RVCT) && !(RVCT_VERSION_AT_LEAST(3, 0, 0, 0)))
// We must not do 'num + 0.5' or 'num - 0.5' because they can cause precision loss.
static double round(double num)
{
double integer = ceil(num);
if (num > 0)
return integer - num > 0.5 ? integer - 1.0 : integer;
return integer - num >= 0.5 ? integer - 1.0 : integer;
}
static float roundf(float num)
{
float integer = ceilf(num);
if (num > 0)
return integer - num > 0.5f ? integer - 1.0f : integer;
return integer - num >= 0.5f ? integer - 1.0f : integer;
}
inline long long llround(double num) { return static_cast<long long>(round(num)); }
inline long long llroundf(float num) { return static_cast<long long>(roundf(num)); }
inline long lround(double num) { return static_cast<long>(round(num)); }
inline long lroundf(float num) { return static_cast<long>(roundf(num)); }
inline double trunc(double num) { return num > 0 ? floor(num) : ceil(num); }
#endif
#if COMPILER(GCC) && OS(QNX)
// The stdlib on QNX doesn't contain long abs(long). See PR #104666.
inline long long abs(long num) { return labs(num); }
#endif
#if OS(ANDROID) || COMPILER(MSVC)
// ANDROID and MSVC's math.h does not currently supply log2 or log2f.
inline double log2(double num)
{
// This constant is roughly M_LN2, which is not provided by default on Windows and Android.
return log(num) / 0.693147180559945309417232121458176568;
}
inline float log2f(float num)
{
// This constant is roughly M_LN2, which is not provided by default on Windows and Android.
return logf(num) / 0.693147180559945309417232121458176568f;
}
#endif
#if COMPILER(MSVC)
// The 64bit version of abs() is already defined in stdlib.h which comes with VC10
#if COMPILER(MSVC9_OR_LOWER)
inline long long abs(long long num) { return _abs64(num); }
#endif
inline bool isinf(double num) { return !_finite(num) && !_isnan(num); }
inline bool isnan(double num) { return !!_isnan(num); }
inline bool signbit(double num) { return _copysign(1.0, num) < 0; }
inline double nextafter(double x, double y) { return _nextafter(x, y); }
inline float nextafterf(float x, float y) { return x > y ? x - FLT_EPSILON : x + FLT_EPSILON; }
inline double copysign(double x, double y) { return _copysign(x, y); }
inline int isfinite(double x) { return _finite(x); }
// Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values.
inline double wtf_atan2(double x, double y)
{
double posInf = std::numeric_limits<double>::infinity();
double negInf = -std::numeric_limits<double>::infinity();
double nan = std::numeric_limits<double>::quiet_NaN();
double result = nan;
if (x == posInf && y == posInf)
result = piOverFourDouble;
else if (x == posInf && y == negInf)
result = 3 * piOverFourDouble;
else if (x == negInf && y == posInf)
result = -piOverFourDouble;
else if (x == negInf && y == negInf)
result = -3 * piOverFourDouble;
else
result = ::atan2(x, y);
return result;
}
// Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN instead of x.
inline double wtf_fmod(double x, double y) { return (!isinf(x) && isinf(y)) ? x : fmod(x, y); }
// Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead of 1.
inline double wtf_pow(double x, double y) { return y == 0 ? 1 : pow(x, y); }
#define atan2(x, y) wtf_atan2(x, y)
#define fmod(x, y) wtf_fmod(x, y)
#define pow(x, y) wtf_pow(x, y)
#endif // COMPILER(MSVC)
inline double deg2rad(double d) { return d * piDouble / 180.0; }
inline double rad2deg(double r) { return r * 180.0 / piDouble; }
inline double deg2grad(double d) { return d * 400.0 / 360.0; }
inline double grad2deg(double g) { return g * 360.0 / 400.0; }
inline double turn2deg(double t) { return t * 360.0; }
inline double deg2turn(double d) { return d / 360.0; }
inline double rad2grad(double r) { return r * 200.0 / piDouble; }
inline double grad2rad(double g) { return g * piDouble / 200.0; }
inline float deg2rad(float d) { return d * piFloat / 180.0f; }
inline float rad2deg(float r) { return r * 180.0f / piFloat; }
inline float deg2grad(float d) { return d * 400.0f / 360.0f; }
inline float grad2deg(float g) { return g * 360.0f / 400.0f; }
inline float turn2deg(float t) { return t * 360.0f; }
inline float deg2turn(float d) { return d / 360.0f; }
inline float rad2grad(float r) { return r * 200.0f / piFloat; }
inline float grad2rad(float g) { return g * piFloat / 200.0f; }
// std::numeric_limits<T>::min() returns the smallest positive value for floating point types
template<typename T> inline T defaultMinimumForClamp() { return std::numeric_limits<T>::min(); }
template<> inline float defaultMinimumForClamp() { return -std::numeric_limits<float>::max(); }
template<> inline double defaultMinimumForClamp() { return -std::numeric_limits<double>::max(); }
template<typename T> inline T defaultMaximumForClamp() { return std::numeric_limits<T>::max(); }
template<typename T> inline T clampTo(double value, T min = defaultMinimumForClamp<T>(), T max = defaultMaximumForClamp<T>())
{
if (value >= static_cast<double>(max))
return max;
if (value <= static_cast<double>(min))
return min;
return static_cast<T>(value);
}
template<> inline long long int clampTo(double, long long int, long long int); // clampTo does not support long long ints.
inline int clampToInteger(double value)
{
return clampTo<int>(value);
}
inline float clampToFloat(double value)
{
return clampTo<float>(value);
}
inline int clampToPositiveInteger(double value)
{
return clampTo<int>(value, 0);
}
inline int clampToInteger(float value)
{
return clampTo<int>(value);
}
inline int clampToInteger(unsigned x)
{
const unsigned intMax = static_cast<unsigned>(std::numeric_limits<int>::max());
if (x >= intMax)
return std::numeric_limits<int>::max();
return static_cast<int>(x);
}
inline bool isWithinIntRange(float x)
{
return x > static_cast<float>(std::numeric_limits<int>::min()) && x < static_cast<float>(std::numeric_limits<int>::max());
}
#if !COMPILER(MSVC) && !COMPILER(RVCT) && !OS(SOLARIS)
using std::isfinite;
#if !COMPILER_QUIRK(GCC11_GLOBAL_ISINF_ISNAN)
using std::isinf;
using std::isnan;
#endif
using std::signbit;
#endif
#if COMPILER_QUIRK(GCC11_GLOBAL_ISINF_ISNAN)
// A workaround to avoid conflicting declarations of isinf and isnan when compiling with GCC in C++11 mode.
namespace std {
inline bool wtf_isinf(float f) { return std::isinf(f); }
inline bool wtf_isinf(double d) { return std::isinf(d); }
inline bool wtf_isnan(float f) { return std::isnan(f); }
inline bool wtf_isnan(double d) { return std::isnan(d); }
};
using std::wtf_isinf;
using std::wtf_isnan;
#define isinf(x) wtf_isinf(x)
#define isnan(x) wtf_isnan(x)
#endif
#ifndef UINT64_C
#if COMPILER(MSVC)
#define UINT64_C(c) c ## ui64
#else
#define UINT64_C(c) c ## ull
#endif
#endif
// decompose 'number' to its sign, exponent, and mantissa components.
// The result is interpreted as:
// (sign ? -1 : 1) * pow(2, exponent) * (mantissa / (1 << 52))
inline void decomposeDouble(double number, bool& sign, int32_t& exponent, uint64_t& mantissa)
{
ASSERT(isfinite(number));
sign = signbit(number);
uint64_t bits = WTF::bitwise_cast<uint64_t>(number);
exponent = (static_cast<int32_t>(bits >> 52) & 0x7ff) - 0x3ff;
mantissa = bits & 0xFFFFFFFFFFFFFull;
// Check for zero/denormal values; if so, adjust the exponent,
// if not insert the implicit, omitted leading 1 bit.
if (exponent == -0x3ff)
exponent = mantissa ? -0x3fe : 0;
else
mantissa |= 0x10000000000000ull;
}
// Calculate d % 2^{64}.
inline void doubleToInteger(double d, unsigned long long& value)
{
if (isnan(d) || isinf(d))
value = 0;
else {
// -2^{64} < fmodValue < 2^{64}.
double fmodValue = fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0);
if (fmodValue >= 0) {
// 0 <= fmodValue < 2^{64}.
// 0 <= value < 2^{64}. This cast causes no loss.
value = static_cast<unsigned long long>(fmodValue);
} else {
// -2^{64} < fmodValue < 0.
// 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss.
unsigned long long fmodValueInUnsignedLongLong = static_cast<unsigned long long>(-fmodValue);
// -1 < (std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1.
// 0 < value < 2^{64}.
value = std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong + 1;
}
}
}
#endif // #ifndef WTF_MathExtras_h
|