summaryrefslogtreecommitdiff
path: root/Source/WebCore/contentextensions/DFABytecodeCompiler.cpp
blob: 50bf2567f309bd0e5e7340e2d6ffc5937d2c9795 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
/*
 * Copyright (C) 2015 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "DFABytecodeCompiler.h"

#if ENABLE(CONTENT_EXTENSIONS)

#include "ContentExtensionRule.h"
#include "DFA.h"
#include "DFANode.h"

namespace WebCore {
    
namespace ContentExtensions {

template <typename IntType>
inline void append(Vector<DFABytecode>& bytecode, IntType value)
{
    bytecode.resize(bytecode.size() + sizeof(IntType));
    *reinterpret_cast<IntType*>(&bytecode[bytecode.size() - sizeof(IntType)]) = value;
}

inline void appendZeroes(Vector<DFABytecode>& bytecode, DFABytecodeJumpSize jumpSize)
{
    switch (jumpSize) {
    case DFABytecodeJumpSize::Int8:
        append<int8_t>(bytecode, 0); // This value will be set when linking.
        break;
    case DFABytecodeJumpSize::Int16:
        append<int16_t>(bytecode, 0); // This value will be set when linking.
        break;
    case DFABytecodeJumpSize::Int24:
        append<uint16_t>(bytecode, 0);
        append<int8_t>(bytecode, 0); // These values will be set when linking.
        break;
    case DFABytecodeJumpSize::Int32:
        append<int32_t>(bytecode, 0); // This value will be set when linking.
        break;
    }
}

template <typename IntType>
inline void setBits(Vector<DFABytecode>& bytecode, uint32_t index, IntType value)
{
    RELEASE_ASSERT(index + sizeof(IntType) <= bytecode.size());
    ASSERT_WITH_MESSAGE(!*reinterpret_cast<IntType*>(&bytecode[index]), "Right now we should only be using setBits to overwrite values that were zero as a placeholder.");
    *reinterpret_cast<IntType*>(&bytecode[index]) = value;
}

static unsigned appendActionBytecodeSize(uint64_t action)
{
    if (action & ActionFlagMask)
        return sizeof(DFABytecodeInstruction) + sizeof(uint16_t) + sizeof(uint32_t);
    return sizeof(DFABytecodeInstruction) + sizeof(uint32_t);
}
    
void DFABytecodeCompiler::emitAppendAction(uint64_t action)
{
    // High bits are used to store flags. See compileRuleList.
    if (action & ActionFlagMask) {
        if (action & IfDomainFlag)
            append<DFABytecodeInstruction>(m_bytecode, DFABytecodeInstruction::TestFlagsAndAppendActionWithIfDomain);
        else
            append<DFABytecodeInstruction>(m_bytecode, DFABytecodeInstruction::TestFlagsAndAppendAction);
        append<uint16_t>(m_bytecode, static_cast<uint16_t>(action >> 32));
        append<uint32_t>(m_bytecode, static_cast<uint32_t>(action));
    } else {
        if (action & IfDomainFlag)
            append<DFABytecodeInstruction>(m_bytecode, DFABytecodeInstruction::AppendActionWithIfDomain);
        else
            append<DFABytecodeInstruction>(m_bytecode, DFABytecodeInstruction::AppendAction);
        append<uint32_t>(m_bytecode, static_cast<uint32_t>(action));
    }
}

int32_t DFABytecodeCompiler::longestPossibleJump(uint32_t instructionLocation, uint32_t sourceNodeIndex, uint32_t destinationNodeIndex)
{
    if (m_nodeStartOffsets[destinationNodeIndex] == std::numeric_limits<uint32_t>::max()) {
        // Jumping to a node that hasn't been compiled yet, we don't know exactly how far forward we will need to jump,
        // so make sure we have enough room for the worst possible case, the farthest possible jump
        // which would be the distance if there were no compacted branches between this jump and its destination.
        ASSERT(instructionLocation >= m_nodeStartOffsets[sourceNodeIndex]);
        ASSERT(m_maxNodeStartOffsets[destinationNodeIndex] > m_maxNodeStartOffsets[sourceNodeIndex]);
        ASSERT(m_nodeStartOffsets[sourceNodeIndex] != std::numeric_limits<uint32_t>::max());
        return m_maxNodeStartOffsets[destinationNodeIndex] - m_maxNodeStartOffsets[sourceNodeIndex] - (m_nodeStartOffsets[sourceNodeIndex] - instructionLocation);
    }
    
    // Jumping to an already compiled node, we already know exactly where we will need to jump to.
    ASSERT(m_nodeStartOffsets[destinationNodeIndex] <= instructionLocation);
    return m_nodeStartOffsets[destinationNodeIndex] - instructionLocation;
}
    
void DFABytecodeCompiler::emitJump(uint32_t sourceNodeIndex, uint32_t destinationNodeIndex)
{
    uint32_t instructionLocation = m_bytecode.size();
    uint32_t jumpLocation = instructionLocation + sizeof(uint8_t);
    int32_t longestPossibleJumpDistance = longestPossibleJump(instructionLocation, sourceNodeIndex, destinationNodeIndex);
    DFABytecodeJumpSize jumpSize = smallestPossibleJumpSize(longestPossibleJumpDistance);
    append<uint8_t>(m_bytecode, static_cast<uint8_t>(DFABytecodeInstruction::Jump) | jumpSize);

    m_linkRecords.append(LinkRecord({jumpSize, longestPossibleJumpDistance, instructionLocation, jumpLocation, destinationNodeIndex}));
    appendZeroes(m_bytecode, jumpSize);
}

void DFABytecodeCompiler::emitCheckValue(uint8_t value, uint32_t sourceNodeIndex, uint32_t destinationNodeIndex, bool caseSensitive)
{
    uint32_t instructionLocation = m_bytecode.size();
    uint32_t jumpLocation = instructionLocation + 2 * sizeof(uint8_t);
    int32_t longestPossibleJumpDistance = longestPossibleJump(instructionLocation, sourceNodeIndex, destinationNodeIndex);
    DFABytecodeJumpSize jumpSize = smallestPossibleJumpSize(longestPossibleJumpDistance);
    DFABytecodeInstruction instruction = caseSensitive ? DFABytecodeInstruction::CheckValueCaseSensitive : DFABytecodeInstruction::CheckValueCaseInsensitive;
    append<uint8_t>(m_bytecode, static_cast<uint8_t>(instruction) | jumpSize);
    append<uint8_t>(m_bytecode, value);
    m_linkRecords.append(LinkRecord({jumpSize, longestPossibleJumpDistance, instructionLocation, jumpLocation, destinationNodeIndex}));
    appendZeroes(m_bytecode, jumpSize);
}

void DFABytecodeCompiler::emitCheckValueRange(uint8_t lowValue, uint8_t highValue, uint32_t sourceNodeIndex, uint32_t destinationNodeIndex, bool caseSensitive)
{
    ASSERT_WITH_MESSAGE(lowValue < highValue, "The instruction semantic impose lowValue is strictly less than highValue.");

    uint32_t instructionLocation = m_bytecode.size();
    uint32_t jumpLocation = instructionLocation + 3 * sizeof(uint8_t);
    int32_t longestPossibleJumpDistance = longestPossibleJump(instructionLocation, sourceNodeIndex, destinationNodeIndex);
    DFABytecodeJumpSize jumpSize = smallestPossibleJumpSize(longestPossibleJumpDistance);
    DFABytecodeInstruction instruction = caseSensitive ? DFABytecodeInstruction::CheckValueRangeCaseSensitive : DFABytecodeInstruction::CheckValueRangeCaseInsensitive;
    append<uint8_t>(m_bytecode, static_cast<uint8_t>(instruction) | jumpSize);
    append<uint8_t>(m_bytecode, lowValue);
    append<uint8_t>(m_bytecode, highValue);
    m_linkRecords.append(LinkRecord({jumpSize, longestPossibleJumpDistance, instructionLocation, jumpLocation, destinationNodeIndex}));
    appendZeroes(m_bytecode, jumpSize);
}

void DFABytecodeCompiler::emitTerminate()
{
    append<DFABytecodeInstruction>(m_bytecode, DFABytecodeInstruction::Terminate);
}

void DFABytecodeCompiler::compileNode(uint32_t index, bool root)
{
    unsigned startSize = m_bytecode.size();
    
    const DFANode& node = m_dfa.nodes[index];
    if (node.isKilled()) {
        ASSERT(m_nodeStartOffsets[index] == std::numeric_limits<uint32_t>::max());
        return;
    }

    // Record starting index for linking.
    if (!root)
        m_nodeStartOffsets[index] = m_bytecode.size();

    for (uint64_t action : node.actions(m_dfa))
        emitAppendAction(action);
    
    // If we jump to the root, we don't want to re-add its actions to a HashSet.
    // We know we have already added them because the root is always compiled first and we always start interpreting at the beginning.
    if (root)
        m_nodeStartOffsets[index] = m_bytecode.size();
    
    compileNodeTransitions(index);
    
    ASSERT_UNUSED(startSize, m_bytecode.size() - startSize <= compiledNodeMaxBytecodeSize(index));
}
    
unsigned DFABytecodeCompiler::compiledNodeMaxBytecodeSize(uint32_t index)
{
    const DFANode& node = m_dfa.nodes[index];
    if (node.isKilled())
        return 0;
    unsigned size = 0;
    for (uint64_t action : node.actions(m_dfa))
        size += appendActionBytecodeSize(action);
    size += nodeTransitionsMaxBytecodeSize(node);
    return size;
}

DFABytecodeCompiler::JumpTable DFABytecodeCompiler::extractJumpTable(Vector<DFABytecodeCompiler::Range>& ranges, unsigned firstRange, unsigned lastRange)
{
    ASSERT(lastRange > firstRange);
    ASSERT(lastRange < ranges.size());

    JumpTable jumpTable;
    jumpTable.min = ranges[firstRange].min;
    jumpTable.max = ranges[lastRange].max;
    jumpTable.caseSensitive = ranges[lastRange].caseSensitive;

    unsigned size = lastRange - firstRange + 1;
    jumpTable.destinations.reserveInitialCapacity(size);
    for (unsigned i = firstRange; i <= lastRange; ++i) {
        const Range& range = ranges[i];

        ASSERT(range.caseSensitive == jumpTable.caseSensitive);
        ASSERT(range.min == range.max);
        ASSERT(range.min >= jumpTable.min);
        ASSERT(range.min <= jumpTable.max);

        jumpTable.destinations.append(range.destination);
    }

    ranges.remove(firstRange, size);

    return jumpTable;
}

DFABytecodeCompiler::Transitions DFABytecodeCompiler::transitions(const DFANode& node)
{
    Transitions transitions;

    uint32_t destinations[128];
    memset(destinations, 0xff, sizeof(destinations));
    const uint32_t noDestination = std::numeric_limits<uint32_t>::max();

    transitions.useFallbackTransition = node.canUseFallbackTransition(m_dfa);
    if (transitions.useFallbackTransition)
        transitions.fallbackTransitionTarget = node.bestFallbackTarget(m_dfa);

    for (const auto& transition : node.transitions(m_dfa)) {
        uint32_t targetNodeIndex = transition.target();
        if (transitions.useFallbackTransition && transitions.fallbackTransitionTarget == targetNodeIndex)
            continue;

        for (uint16_t i = transition.range().first; i <= transition.range().last; ++i)
            destinations[i] = targetNodeIndex;
    }

    Vector<Range>& ranges = transitions.ranges;
    uint8_t rangeMin;
    bool hasRangeMin = false;
    for (uint8_t i = 0; i < 128; i++) {
        if (hasRangeMin) {
            if (destinations[i] != destinations[rangeMin]) {

                // This is the end of a range. Check if it can be case insensitive.
                uint8_t rangeMax = i - 1;
                bool caseSensitive = true;
                if (rangeMin >= 'A' && rangeMax <= 'Z') {
                    caseSensitive = false;
                    for (uint8_t rangeIndex = rangeMin; rangeIndex <= rangeMax; rangeIndex++) {
                        if (destinations[rangeMin] != destinations[toASCIILower(rangeIndex)]) {
                            caseSensitive = true;
                            break;
                        }
                    }
                }

                if (!caseSensitive) {
                    // If all the lower-case destinations are the same as the upper-case destinations,
                    // then they will be covered by a case-insensitive range and will not need their own range.
                    for (uint8_t rangeIndex = rangeMin; rangeIndex <= rangeMax; rangeIndex++) {
                        ASSERT(destinations[rangeMin] == destinations[toASCIILower(rangeIndex)]);
                        destinations[toASCIILower(rangeIndex)] = noDestination;
                    }
                    ranges.append(Range(toASCIILower(rangeMin), toASCIILower(rangeMax), destinations[rangeMin], caseSensitive));
                } else
                    ranges.append(Range(rangeMin, rangeMax, destinations[rangeMin], caseSensitive));

                if (destinations[i] == noDestination)
                    hasRangeMin = false;
                else
                    rangeMin = i;
            }
        } else {
            if (destinations[i] != noDestination) {
                rangeMin = i;
                hasRangeMin = true;
            }
        }
    }
    if (hasRangeMin) {
        // Ranges are appended after passing the end of them.
        // If a range goes to 127, we will have an uncommitted rangeMin because the loop does not check 128.
        // If a range goes to 127, there will never be values higher than it, so checking for case-insensitive ranges would always fail.
        ranges.append(Range(rangeMin, 127, destinations[rangeMin], true));
    }

    Vector<JumpTable>& jumpTables = transitions.jumpTables;
    unsigned rangePosition = 0;
    unsigned baseRangePosition = std::numeric_limits<unsigned>::max();
    Range* baseRange = nullptr;
    while (rangePosition < ranges.size()) {
        auto& range = ranges[rangePosition];
        if (baseRange) {
            if (range.min != range.max
                || baseRange->caseSensitive != range.caseSensitive
                || ranges[rangePosition - 1].max + 1 != range.min) {
                if (rangePosition - baseRangePosition > 1) {
                    jumpTables.append(extractJumpTable(ranges, baseRangePosition, rangePosition - 1));
                    rangePosition = baseRangePosition;
                }
                baseRangePosition = std::numeric_limits<unsigned>::max();
                baseRange = nullptr;
            }
        } else {
            if (range.min == range.max) {
                baseRangePosition = rangePosition;
                baseRange = &range;
            }
        }
        ++rangePosition;
    }

    if (baseRange && ranges.size() - baseRangePosition > 1)
        jumpTables.append(extractJumpTable(ranges, baseRangePosition, ranges.size() - 1));

    return transitions;
}

unsigned DFABytecodeCompiler::checkForJumpTableMaxBytecodeSize(const JumpTable& jumpTable)
{
    unsigned baselineSize = sizeof(DFABytecodeInstruction::CheckValueRangeCaseInsensitive) + 2 * sizeof(uint8_t);
    unsigned targetsSize = (jumpTable.max - jumpTable.min + 1) * sizeof(uint32_t);
    return baselineSize + targetsSize;
}
    
unsigned DFABytecodeCompiler::checkForRangeMaxBytecodeSize(const Range& range)
{
    if (range.min == range.max)
        return sizeof(DFABytecodeInstruction::CheckValueCaseInsensitive) + sizeof(uint8_t) + sizeof(uint32_t);
    return sizeof(DFABytecodeInstruction::CheckValueRangeCaseInsensitive) + 2 * sizeof(uint8_t) + sizeof(uint32_t);
}

void DFABytecodeCompiler::compileJumpTable(uint32_t nodeIndex, const JumpTable& jumpTable)
{
    unsigned startSize = m_bytecode.size();
    ASSERT_WITH_MESSAGE(jumpTable.max < 128, "The DFA engine only supports the ASCII alphabet.");
    ASSERT(jumpTable.min <= jumpTable.max);

    uint32_t instructionLocation = m_bytecode.size();
    DFABytecodeJumpSize jumpSize = Int8;
    for (uint32_t destinationNodeIndex : jumpTable.destinations) {
        int32_t longestPossibleJumpDistance = longestPossibleJump(instructionLocation, nodeIndex, destinationNodeIndex);
        DFABytecodeJumpSize localJumpSize = smallestPossibleJumpSize(longestPossibleJumpDistance);
        jumpSize = std::max(jumpSize, localJumpSize);
    }

    DFABytecodeInstruction instruction = jumpTable.caseSensitive ? DFABytecodeInstruction::JumpTableCaseSensitive : DFABytecodeInstruction::JumpTableCaseInsensitive;
    append<uint8_t>(m_bytecode, static_cast<uint8_t>(instruction) | jumpSize);
    append<uint8_t>(m_bytecode, jumpTable.min);
    append<uint8_t>(m_bytecode, jumpTable.max);

    for (uint32_t destinationNodeIndex : jumpTable.destinations) {
        int32_t longestPossibleJumpDistance = longestPossibleJump(instructionLocation, nodeIndex, destinationNodeIndex);
        uint32_t jumpLocation = m_bytecode.size();
        m_linkRecords.append(LinkRecord({jumpSize, longestPossibleJumpDistance, instructionLocation, jumpLocation, destinationNodeIndex}));
        appendZeroes(m_bytecode, jumpSize);
    }

    ASSERT_UNUSED(startSize, m_bytecode.size() - startSize <= checkForJumpTableMaxBytecodeSize(jumpTable));
}

void DFABytecodeCompiler::compileCheckForRange(uint32_t nodeIndex, const Range& range)
{
    unsigned startSize = m_bytecode.size();
    ASSERT_WITH_MESSAGE(range.max < 128, "The DFA engine only supports the ASCII alphabet.");
    ASSERT(range.min <= range.max);

    if (range.min == range.max)
        emitCheckValue(range.min, nodeIndex, range.destination, range.caseSensitive);
    else
        emitCheckValueRange(range.min, range.max, nodeIndex, range.destination, range.caseSensitive);
    
    ASSERT_UNUSED(startSize, m_bytecode.size() - startSize <= checkForRangeMaxBytecodeSize(range));
}

unsigned DFABytecodeCompiler::nodeTransitionsMaxBytecodeSize(const DFANode& node)
{
    unsigned size = 0;
    Transitions nodeTransitions = transitions(node);
    for (const auto& jumpTable : nodeTransitions.jumpTables)
        size += checkForJumpTableMaxBytecodeSize(jumpTable);
    for (const auto& range : nodeTransitions.ranges)
        size += checkForRangeMaxBytecodeSize(range);
    if (nodeTransitions.useFallbackTransition)
        size += sizeof(DFABytecodeInstruction::Jump) + sizeof(uint32_t);
    else
        size += instructionSizeWithArguments(DFABytecodeInstruction::Terminate);
    return size;
}

void DFABytecodeCompiler::compileNodeTransitions(uint32_t nodeIndex)
{
    const DFANode& node = m_dfa.nodes[nodeIndex];
    unsigned startSize = m_bytecode.size();

    Transitions nodeTransitions = transitions(node);
    for (const auto& jumpTable : nodeTransitions.jumpTables)
        compileJumpTable(nodeIndex, jumpTable);
    for (const auto& range : nodeTransitions.ranges)
        compileCheckForRange(nodeIndex, range);
    if (nodeTransitions.useFallbackTransition)
        emitJump(nodeIndex, nodeTransitions.fallbackTransitionTarget);
    else
        emitTerminate();

    ASSERT_UNUSED(startSize, m_bytecode.size() - startSize <= nodeTransitionsMaxBytecodeSize(node));
}

void DFABytecodeCompiler::compile()
{
    uint32_t startLocation = m_bytecode.size();
    append<DFAHeader>(m_bytecode, 0); // This will be set when we are finished compiling this DFA.

    m_nodeStartOffsets.resize(m_dfa.nodes.size());
    for (unsigned i = 0; i < m_dfa.nodes.size(); ++i)
        m_nodeStartOffsets[i] = std::numeric_limits<uint32_t>::max();
    
    // Populate m_maxNodeStartOffsets with a worst-case index of where the node would be with no branch compaction.
    // Compacting the branches using 1-4 byte signed jump distances should only make nodes closer together than this.
    ASSERT(m_maxNodeStartOffsets.isEmpty());
    m_maxNodeStartOffsets.clear();
    m_maxNodeStartOffsets.resize(m_dfa.nodes.size());
    unsigned rootActionsSize = 0;
    for (uint64_t action : m_dfa.nodes[m_dfa.root].actions(m_dfa))
        rootActionsSize += appendActionBytecodeSize(action);
    m_maxNodeStartOffsets[m_dfa.root] = sizeof(DFAHeader) + rootActionsSize;
    unsigned nextIndex = sizeof(DFAHeader) + compiledNodeMaxBytecodeSize(m_dfa.root);
    for (uint32_t i = 0; i < m_dfa.nodes.size(); i++) {
        if (i != m_dfa.root) {
            m_maxNodeStartOffsets[i] = nextIndex;
            nextIndex += compiledNodeMaxBytecodeSize(i);
        }
    }
    
    // Make sure the root is always at the beginning of the bytecode.
    compileNode(m_dfa.root, true);
    for (uint32_t i = 0; i < m_dfa.nodes.size(); i++) {
        if (i != m_dfa.root)
            compileNode(i, false);
    }
    
    ASSERT(m_maxNodeStartOffsets.size() == m_nodeStartOffsets.size());
    for (unsigned i = 0; i < m_dfa.nodes.size(); ++i) {
        if (m_nodeStartOffsets[i] != std::numeric_limits<uint32_t>::max())
            ASSERT(m_maxNodeStartOffsets[i] >= m_nodeStartOffsets[i]);
    }

    // Link.
    for (const auto& linkRecord : m_linkRecords) {
        uint32_t destination = m_nodeStartOffsets[linkRecord.destinationNodeIndex];
        RELEASE_ASSERT(destination < std::numeric_limits<int32_t>::max());
        int32_t distance = destination - linkRecord.instructionLocation;
        ASSERT(abs(distance) <= abs(linkRecord.longestPossibleJump));
        
        switch (linkRecord.jumpSize) {
        case Int8:
            RELEASE_ASSERT(distance == static_cast<int8_t>(distance));
            setBits<int8_t>(m_bytecode, linkRecord.jumpLocation, static_cast<int8_t>(distance));
            break;
        case Int16:
            RELEASE_ASSERT(distance == static_cast<int16_t>(distance));
            setBits<int16_t>(m_bytecode, linkRecord.jumpLocation, static_cast<int16_t>(distance));
            break;
        case Int24:
            RELEASE_ASSERT(distance >= Int24Min && distance <= Int24Max);
            setBits<uint16_t>(m_bytecode, linkRecord.jumpLocation, static_cast<uint16_t>(distance));
            setBits<int8_t>(m_bytecode, linkRecord.jumpLocation + sizeof(int16_t), static_cast<int8_t>(distance >> 16));
            break;
        case Int32:
            setBits<int32_t>(m_bytecode, linkRecord.jumpLocation, distance);
            break;
        }
    }
    
    setBits<DFAHeader>(m_bytecode, startLocation, m_bytecode.size() - startLocation);
}
    
} // namespace ContentExtensions

} // namespace WebCore

#endif // ENABLE(CONTENT_EXTENSIONS)