1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
|
/*
* Copyright (C) 2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFAMinimizer.h"
#if ENABLE(CONTENT_EXTENSIONS)
#include "DFA.h"
#include "DFANode.h"
#include "MutableRangeList.h"
#include <wtf/HashMap.h>
#include <wtf/HashSet.h>
#include <wtf/Hasher.h>
#include <wtf/Vector.h>
namespace WebCore {
namespace ContentExtensions {
namespace {
template<typename VectorType, typename Iterable, typename Function>
static inline void iterateIntersections(const VectorType& singularTransitionsFirsts, const Iterable& iterableTransitionList, const Function& intersectionHandler)
{
ASSERT(!singularTransitionsFirsts.isEmpty());
auto otherIterator = iterableTransitionList.begin();
auto otherEnd = iterableTransitionList.end();
if (otherIterator == otherEnd)
return;
unsigned singularTransitionsLength = singularTransitionsFirsts.size();
unsigned singularTransitionsFirstsIndex = 0;
for (; otherIterator != otherEnd; ++otherIterator) {
auto firstCharacter = otherIterator.first();
while (singularTransitionsFirstsIndex < singularTransitionsLength
&& singularTransitionsFirsts[singularTransitionsFirstsIndex] != firstCharacter)
++singularTransitionsFirstsIndex;
intersectionHandler(singularTransitionsFirstsIndex, otherIterator);
++singularTransitionsFirstsIndex;
auto lastCharacter = otherIterator.last();
while (singularTransitionsFirstsIndex < singularTransitionsLength
&& singularTransitionsFirsts[singularTransitionsFirstsIndex] <= lastCharacter) {
intersectionHandler(singularTransitionsFirstsIndex, otherIterator);
++singularTransitionsFirstsIndex;
}
}
}
class Partition {
public:
void initialize(unsigned size)
{
if (!size)
return;
m_sets.reserveInitialCapacity(size);
m_partitionedElements.resize(size);
m_elementPositionInPartitionedNodes.resize(size);
m_elementToSetMap.resize(size);
for (unsigned i = 0; i < size; ++i) {
m_partitionedElements[i] = i;
m_elementPositionInPartitionedNodes[i] = i;
m_elementToSetMap[i] = 0;
}
m_sets.append(SetDescriptor({ 0, size, 0 }));
}
void reserveUninitializedCapacity(unsigned elementCount)
{
m_partitionedElements.resize(elementCount);
m_elementPositionInPartitionedNodes.resize(elementCount);
m_elementToSetMap.resize(elementCount);
}
void addSetUnchecked(unsigned start, unsigned size)
{
m_sets.append(SetDescriptor { start, size, 0 });
}
void setElementUnchecked(unsigned elementIndex, unsigned positionInPartition, unsigned setIndex)
{
ASSERT(setIndex < m_sets.size());
m_partitionedElements[positionInPartition] = elementIndex;
m_elementPositionInPartitionedNodes[elementIndex] = positionInPartition;
m_elementToSetMap[elementIndex] = setIndex;
}
unsigned startOffsetOfSet(unsigned setIndex) const
{
return m_sets[setIndex].start;
}
ALWAYS_INLINE void markElementInCurrentGeneration(unsigned elementIndex)
{
// Swap the node with the first unmarked node.
unsigned setIndex = m_elementToSetMap[elementIndex];
SetDescriptor& setDescriptor = m_sets[setIndex];
unsigned elementPositionInPartition = m_elementPositionInPartitionedNodes[elementIndex];
ASSERT(elementPositionInPartition >= setDescriptor.start);
ASSERT(elementPositionInPartition < setDescriptor.end());
unsigned firstUnmarkedElementPositionInPartition = setDescriptor.indexAfterMarkedElements();
ASSERT(firstUnmarkedElementPositionInPartition >= setDescriptor.start && firstUnmarkedElementPositionInPartition < setDescriptor.end());
ASSERT(firstUnmarkedElementPositionInPartition >= firstUnmarkedElementPositionInPartition);
// Swap the nodes in the set.
unsigned firstUnmarkedElement = m_partitionedElements[firstUnmarkedElementPositionInPartition];
m_partitionedElements[firstUnmarkedElementPositionInPartition] = elementIndex;
m_partitionedElements[elementPositionInPartition] = firstUnmarkedElement;
// Update their index.
m_elementPositionInPartitionedNodes[elementIndex] = firstUnmarkedElementPositionInPartition;
m_elementPositionInPartitionedNodes[firstUnmarkedElement] = elementPositionInPartition;
if (!setDescriptor.markedCount) {
ASSERT(!m_setsMarkedInCurrentGeneration.contains(setIndex));
m_setsMarkedInCurrentGeneration.append(setIndex);
}
++setDescriptor.markedCount;
}
// The function passed as argument MUST not modify the partition.
template<typename Function>
void refineGeneration(const Function& function)
{
for (unsigned setIndex : m_setsMarkedInCurrentGeneration) {
SetDescriptor& setDescriptor = m_sets[setIndex];
if (setDescriptor.markedCount == setDescriptor.size) {
// Everything is marked, there is nothing to refine.
setDescriptor.markedCount = 0;
continue;
}
SetDescriptor newSet;
bool newSetIsMarkedSet = setDescriptor.markedCount * 2 <= setDescriptor.size;
if (newSetIsMarkedSet) {
// Less than half of the nodes have been marked.
newSet = { setDescriptor.start, setDescriptor.markedCount, 0 };
setDescriptor.start = setDescriptor.start + setDescriptor.markedCount;
} else
newSet = { setDescriptor.start + setDescriptor.markedCount, setDescriptor.size - setDescriptor.markedCount, 0 };
setDescriptor.size -= newSet.size;
setDescriptor.markedCount = 0;
unsigned newSetIndex = m_sets.size();
m_sets.append(newSet);
for (unsigned i = newSet.start; i < newSet.end(); ++i)
m_elementToSetMap[m_partitionedElements[i]] = newSetIndex;
function(newSetIndex);
}
m_setsMarkedInCurrentGeneration.clear();
}
// Call Function() on every node of a given subset.
template<typename Function>
void iterateSet(unsigned setIndex, const Function& function)
{
SetDescriptor& setDescriptor = m_sets[setIndex];
for (unsigned i = setDescriptor.start; i < setDescriptor.end(); ++i)
function(m_partitionedElements[i]);
}
// Index of the set containing the Node.
unsigned setIndex(unsigned elementIndex) const
{
return m_elementToSetMap[elementIndex];
}
// NodeIndex of the first element in the set.
unsigned firstElementInSet(unsigned setIndex) const
{
return m_partitionedElements[m_sets[setIndex].start];
}
unsigned size() const
{
return m_sets.size();
}
private:
struct SetDescriptor {
unsigned start;
unsigned size;
unsigned markedCount;
unsigned indexAfterMarkedElements() const { return start + markedCount; }
unsigned end() const { return start + size; }
};
// List of sets.
Vector<SetDescriptor, 0, ContentExtensionsOverflowHandler> m_sets;
// All the element indices such that two elements of the same set never have a element of a different set between them.
Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_partitionedElements;
// Map elementIndex->position in the partitionedElements.
Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_elementPositionInPartitionedNodes;
// Map elementIndex->SetIndex.
Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_elementToSetMap;
// List of sets with any marked node. Each set can appear at most once.
// FIXME: find a good inline size for this.
Vector<unsigned, 128, ContentExtensionsOverflowHandler> m_setsMarkedInCurrentGeneration;
};
class FullGraphPartition {
typedef MutableRangeList<char, uint32_t, 128> SingularTransitionsMutableRangeList;
public:
FullGraphPartition(const DFA& dfa)
{
m_nodePartition.initialize(dfa.nodes.size());
SingularTransitionsMutableRangeList singularTransitions;
CounterConverter counterConverter;
for (const DFANode& node : dfa.nodes) {
if (node.isKilled())
continue;
auto transitions = node.transitions(dfa);
singularTransitions.extend(transitions.begin(), transitions.end(), counterConverter);
}
// Count the number of transition for each singular range. This will give us the bucket size
// for the transition partition, where transitions are partitioned by "symbol".
unsigned rangeIndexAccumulator = 0;
for (const auto& transition : singularTransitions) {
m_transitionPartition.addSetUnchecked(rangeIndexAccumulator, transition.data);
rangeIndexAccumulator += transition.data;
}
// Count the number of incoming transitions per node.
m_flattenedTransitionsStartOffsetPerNode.resize(dfa.nodes.size());
memset(m_flattenedTransitionsStartOffsetPerNode.data(), 0, m_flattenedTransitionsStartOffsetPerNode.size() * sizeof(unsigned));
Vector<char, 0, ContentExtensionsOverflowHandler> singularTransitionsFirsts;
singularTransitionsFirsts.reserveInitialCapacity(singularTransitions.m_ranges.size());
for (const auto& transition : singularTransitions)
singularTransitionsFirsts.uncheckedAppend(transition.first);
for (const DFANode& node : dfa.nodes) {
if (node.isKilled())
continue;
auto transitions = node.transitions(dfa);
iterateIntersections(singularTransitionsFirsts, transitions, [&](unsigned, const DFANode::ConstRangeIterator& origin) {
uint32_t targetNodeIndex = origin.target();
++m_flattenedTransitionsStartOffsetPerNode[targetNodeIndex];
});
}
// Accumulate the offsets. This gives us the start position of each bucket.
unsigned transitionAccumulator = 0;
for (unsigned i = 0; i < m_flattenedTransitionsStartOffsetPerNode.size(); ++i) {
unsigned transitionsCountForNode = m_flattenedTransitionsStartOffsetPerNode[i];
m_flattenedTransitionsStartOffsetPerNode[i] = transitionAccumulator;
transitionAccumulator += transitionsCountForNode;
}
unsigned flattenedTransitionsSize = transitionAccumulator;
ASSERT_WITH_MESSAGE(flattenedTransitionsSize == rangeIndexAccumulator, "The number of transitions should be the same, regardless of how they are arranged in buckets.");
m_transitionPartition.reserveUninitializedCapacity(flattenedTransitionsSize);
// Next, let's fill the transition table and set up the size of each group at the same time.
m_flattenedTransitionsSizePerNode.resize(dfa.nodes.size());
for (unsigned& counter : m_flattenedTransitionsSizePerNode)
counter = 0;
m_flattenedTransitions.resize(flattenedTransitionsSize);
Vector<uint32_t> transitionPerRangeOffset(m_transitionPartition.size());
memset(transitionPerRangeOffset.data(), 0, transitionPerRangeOffset.size() * sizeof(uint32_t));
for (unsigned i = 0; i < dfa.nodes.size(); ++i) {
const DFANode& node = dfa.nodes[i];
if (node.isKilled())
continue;
auto transitions = node.transitions(dfa);
iterateIntersections(singularTransitionsFirsts, transitions, [&](unsigned singularTransitonIndex, const DFANode::ConstRangeIterator& origin) {
uint32_t targetNodeIndex = origin.target();
unsigned start = m_flattenedTransitionsStartOffsetPerNode[targetNodeIndex];
unsigned offset = m_flattenedTransitionsSizePerNode[targetNodeIndex];
unsigned positionInFlattenedTransitions = start + offset;
m_flattenedTransitions[positionInFlattenedTransitions] = Transition({ i });
uint32_t& inRangeOffset = transitionPerRangeOffset[singularTransitonIndex];
unsigned positionInTransitionPartition = m_transitionPartition.startOffsetOfSet(singularTransitonIndex) + inRangeOffset;
++inRangeOffset;
m_transitionPartition.setElementUnchecked(positionInFlattenedTransitions, positionInTransitionPartition, singularTransitonIndex);
++m_flattenedTransitionsSizePerNode[targetNodeIndex];
});
}
}
void markNode(unsigned nodeIndex)
{
m_nodePartition.markElementInCurrentGeneration(nodeIndex);
}
void refinePartitions()
{
m_nodePartition.refineGeneration([&](unsigned smallestSetIndex) {
m_nodePartition.iterateSet(smallestSetIndex, [&](unsigned nodeIndex) {
unsigned incomingTransitionsStartForNode = m_flattenedTransitionsStartOffsetPerNode[nodeIndex];
unsigned incomingTransitionsSizeForNode = m_flattenedTransitionsSizePerNode[nodeIndex];
for (unsigned i = 0; i < incomingTransitionsSizeForNode; ++i)
m_transitionPartition.markElementInCurrentGeneration(incomingTransitionsStartForNode + i);
});
// We only need to split the transitions, we handle the new sets through the main loop.
m_transitionPartition.refineGeneration([](unsigned) { });
});
}
void splitByUniqueTransitions()
{
for (; m_nextTransitionSetToProcess < m_transitionPartition.size(); ++m_nextTransitionSetToProcess) {
// We use the known splitters to refine the set.
m_transitionPartition.iterateSet(m_nextTransitionSetToProcess, [&](unsigned transitionIndex) {
unsigned sourceNodeIndex = m_flattenedTransitions[transitionIndex].source;
m_nodePartition.markElementInCurrentGeneration(sourceNodeIndex);
});
refinePartitions();
}
}
unsigned nodeReplacement(unsigned nodeIndex)
{
unsigned setIndex = m_nodePartition.setIndex(nodeIndex);
return m_nodePartition.firstElementInSet(setIndex);
}
private:
struct Transition {
unsigned source;
};
struct CounterConverter {
uint32_t convert(uint32_t)
{
return 1;
}
void extend(uint32_t& destination, uint32_t)
{
++destination;
}
};
Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_flattenedTransitionsStartOffsetPerNode;
Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_flattenedTransitionsSizePerNode;
Vector<Transition, 0, ContentExtensionsOverflowHandler> m_flattenedTransitions;
Partition m_nodePartition;
Partition m_transitionPartition;
unsigned m_nextTransitionSetToProcess { 0 };
};
struct ActionKey {
enum DeletedValueTag { DeletedValue };
explicit ActionKey(DeletedValueTag) { state = Deleted; }
enum EmptyValueTag { EmptyValue };
explicit ActionKey(EmptyValueTag) { state = Empty; }
explicit ActionKey(const DFA* dfa, uint32_t actionsStart, uint16_t actionsLength)
: dfa(dfa)
, actionsStart(actionsStart)
, actionsLength(actionsLength)
, state(Valid)
{
StringHasher hasher;
hasher.addCharactersAssumingAligned(reinterpret_cast<const UChar*>(&dfa->actions[actionsStart]), actionsLength * sizeof(uint64_t) / sizeof(UChar));
hash = hasher.hash();
}
bool isEmptyValue() const { return state == Empty; }
bool isDeletedValue() const { return state == Deleted; }
unsigned hash;
const DFA* dfa;
uint32_t actionsStart;
uint16_t actionsLength;
enum {
Valid,
Empty,
Deleted
} state;
};
struct ActionKeyHash {
static unsigned hash(const ActionKey& actionKey)
{
return actionKey.hash;
}
static bool equal(const ActionKey& a, const ActionKey& b)
{
if (a.state != b.state
|| a.dfa != b.dfa
|| a.actionsLength != b.actionsLength)
return false;
for (uint16_t i = 0; i < a.actionsLength; ++i) {
if (a.dfa->actions[a.actionsStart + i] != a.dfa->actions[b.actionsStart + i])
return false;
}
return true;
}
static const bool safeToCompareToEmptyOrDeleted = false;
};
struct ActionKeyHashTraits : public WTF::CustomHashTraits<ActionKey> {
static const bool emptyValueIsZero = true;
};
} // anonymous namespace.
void DFAMinimizer::minimize(DFA& dfa)
{
FullGraphPartition fullGraphPartition(dfa);
// Unlike traditional minimization final states can be differentiated by their action.
// Instead of creating a single set for the final state, we partition by actions from
// the start.
HashMap<ActionKey, Vector<unsigned>, ActionKeyHash, ActionKeyHashTraits> finalStates;
for (unsigned i = 0; i < dfa.nodes.size(); ++i) {
const DFANode& node = dfa.nodes[i];
if (node.hasActions()) {
// FIXME: Sort the actions in the dfa to make nodes that have the same actions in different order equal.
auto addResult = finalStates.add(ActionKey(&dfa, node.actionsStart(), node.actionsLength()), Vector<unsigned>());
addResult.iterator->value.append(i);
}
}
for (const auto& slot : finalStates) {
for (unsigned finalStateIndex : slot.value)
fullGraphPartition.markNode(finalStateIndex);
fullGraphPartition.refinePartitions();
}
// Use every splitter to refine the node partitions.
fullGraphPartition.splitByUniqueTransitions();
Vector<unsigned> relocationVector;
relocationVector.reserveInitialCapacity(dfa.nodes.size());
for (unsigned i = 0; i < dfa.nodes.size(); ++i)
relocationVector.uncheckedAppend(i);
// Update all the transitions.
for (unsigned i = 0; i < dfa.nodes.size(); ++i) {
unsigned replacement = fullGraphPartition.nodeReplacement(i);
if (i != replacement) {
relocationVector[i] = replacement;
dfa.nodes[i].kill(dfa);
}
}
dfa.root = relocationVector[dfa.root];
for (DFANode& node : dfa.nodes) {
if (node.isKilled())
continue;
for (auto& transition : node.transitions(dfa)) {
uint32_t target = transition.target();
uint32_t relocatedTarget = relocationVector[target];
if (target != relocatedTarget)
transition.resetTarget(relocatedTarget);
}
}
}
} // namespace ContentExtensions
} // namespace WebCore
#endif // ENABLE(CONTENT_EXTENSIONS)
|