1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
|
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "RenderGrid.h"
#include "LayoutRepainter.h"
#include "NotImplemented.h"
#include "RenderLayer.h"
#include "RenderView.h"
namespace WebCore {
static const int infinity = intMaxForLayoutUnit;
class GridTrack {
public:
GridTrack()
: m_usedBreadth(0)
, m_maxBreadth(0)
{
}
void growUsedBreadth(LayoutUnit growth)
{
ASSERT(growth >= 0);
m_usedBreadth += growth;
}
LayoutUnit usedBreadth() const { return m_usedBreadth; }
void growMaxBreadth(LayoutUnit growth)
{
if (m_maxBreadth == infinity)
m_maxBreadth = m_usedBreadth + growth;
else
m_maxBreadth += growth;
}
LayoutUnit maxBreadthIfNotInfinite() const
{
return (m_maxBreadth == infinity) ? m_usedBreadth : m_maxBreadth;
}
LayoutUnit m_usedBreadth;
LayoutUnit m_maxBreadth;
};
class RenderGrid::GridIterator {
WTF_MAKE_NONCOPYABLE(GridIterator);
public:
// |direction| is the direction that is fixed to |fixedTrackIndex| so e.g
// GridIterator(m_grid, ForColumns, 1) will walk over the rows of the 2nd column.
GridIterator(const Vector<Vector<Vector<RenderBox*, 1> > >& grid, TrackSizingDirection direction, size_t fixedTrackIndex)
: m_grid(grid)
, m_direction(direction)
, m_rowIndex((direction == ForColumns) ? 0 : fixedTrackIndex)
, m_columnIndex((direction == ForColumns) ? fixedTrackIndex : 0)
, m_childIndex(0)
{
ASSERT(m_rowIndex < m_grid.size());
ASSERT(m_columnIndex < m_grid[0].size());
}
RenderBox* nextGridItem()
{
if (!m_grid.size())
return 0;
size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
const Vector<RenderBox*>& children = m_grid[m_rowIndex][m_columnIndex];
if (m_childIndex < children.size())
return children[m_childIndex++];
m_childIndex = 0;
}
return 0;
}
PassOwnPtr<GridCoordinate> nextEmptyGridArea()
{
if (m_grid.isEmpty())
return nullptr;
size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
const Vector<RenderBox*>& children = m_grid[m_rowIndex][m_columnIndex];
if (children.isEmpty()) {
OwnPtr<GridCoordinate> result = adoptPtr(new GridCoordinate(GridSpan(m_rowIndex, m_rowIndex), GridSpan(m_columnIndex, m_columnIndex)));
// Advance the iterator to avoid an infinite loop where we would return the same grid area over and over.
++varyingTrackIndex;
return result.release();
}
}
return nullptr;
}
private:
const Vector<Vector<Vector<RenderBox*, 1> > >& m_grid;
TrackSizingDirection m_direction;
size_t m_rowIndex;
size_t m_columnIndex;
size_t m_childIndex;
};
RenderGrid::RenderGrid(Element* element)
: RenderBlock(element)
{
// All of our children must be block level.
setChildrenInline(false);
}
RenderGrid::~RenderGrid()
{
}
void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit)
{
ASSERT(needsLayout());
if (!relayoutChildren && simplifiedLayout())
return;
// FIXME: Much of this method is boiler plate that matches RenderBox::layoutBlock and Render*FlexibleBox::layoutBlock.
// It would be nice to refactor some of the duplicate code.
LayoutRepainter repainter(*this, checkForRepaintDuringLayout());
LayoutStateMaintainer statePusher(view(), this, locationOffset(), hasTransform() || hasReflection() || style()->isFlippedBlocksWritingMode());
// Regions changing widths can force us to relayout our children.
RenderFlowThread* flowThread = flowThreadContainingBlock();
if (logicalWidthChangedInRegions(flowThread))
relayoutChildren = true;
if (updateRegionsAndShapesBeforeChildLayout(flowThread))
relayoutChildren = true;
LayoutSize previousSize = size();
setLogicalHeight(0);
updateLogicalWidth();
layoutGridItems();
LayoutUnit oldClientAfterEdge = clientLogicalBottom();
updateLogicalHeight();
if (size() != previousSize)
relayoutChildren = true;
layoutPositionedObjects(relayoutChildren || isRoot());
updateRegionsAndShapesAfterChildLayout(flowThread);
computeOverflow(oldClientAfterEdge);
statePusher.pop();
updateLayerTransform();
// Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
// we overflow or not.
updateScrollInfoAfterLayout();
repainter.repaintAfterLayout();
setNeedsLayout(false);
}
void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
{
const_cast<RenderGrid*>(this)->placeItemsOnGrid();
// FIXME: This is an inefficient way to fill our sizes as it will try every grid areas, when we would
// only want to account for fixed grid tracks and grid items. Also this will be incorrect if we have spanning
// grid items.
for (size_t i = 0; i < gridColumnCount(); ++i) {
const GridTrackSize& trackSize = gridTrackSize(ForColumns, i);
LayoutUnit minTrackBreadth = computePreferredTrackWidth(trackSize.minTrackBreadth(), i);
LayoutUnit maxTrackBreadth = computePreferredTrackWidth(trackSize.maxTrackBreadth(), i);
maxTrackBreadth = std::max(maxTrackBreadth, minTrackBreadth);
minLogicalWidth += minTrackBreadth;
maxLogicalWidth += maxTrackBreadth;
// FIXME: This should add in the scrollbarWidth (e.g. see RenderFlexibleBox).
}
const_cast<RenderGrid*>(this)->clearGrid();
}
void RenderGrid::computePreferredLogicalWidths()
{
ASSERT(preferredLogicalWidthsDirty());
m_minPreferredLogicalWidth = 0;
m_maxPreferredLogicalWidth = 0;
// FIXME: We don't take our own logical width into account. Once we do, we need to make sure
// we apply (and test the interaction with) min-width / max-width.
computeIntrinsicLogicalWidths(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
LayoutUnit borderAndPaddingInInlineDirection = borderAndPaddingLogicalWidth();
m_minPreferredLogicalWidth += borderAndPaddingInInlineDirection;
m_maxPreferredLogicalWidth += borderAndPaddingInInlineDirection;
setPreferredLogicalWidthsDirty(false);
}
LayoutUnit RenderGrid::computePreferredTrackWidth(const Length& length, size_t trackIndex) const
{
if (length.isFixed()) {
// Grid areas don't have borders, margins or paddings so we don't need to account for them.
return length.intValue();
}
if (length.isMinContent()) {
LayoutUnit minContentSize = 0;
GridIterator iterator(m_grid, ForColumns, trackIndex);
while (RenderBox* gridItem = iterator.nextGridItem()) {
// FIXME: We should include the child's fixed margins like RenderFlexibleBox.
minContentSize = std::max(minContentSize, gridItem->minPreferredLogicalWidth());
}
return minContentSize;
}
if (length.isMaxContent()) {
LayoutUnit maxContentSize = 0;
GridIterator iterator(m_grid, ForColumns, trackIndex);
while (RenderBox* gridItem = iterator.nextGridItem()) {
// FIXME: We should include the child's fixed margins like RenderFlexibleBox.
maxContentSize = std::max(maxContentSize, gridItem->maxPreferredLogicalWidth());
}
return maxContentSize;
}
// FIXME: css3-sizing mentions that we should resolve "definite sizes"
// (including <percentage> and calc()) but we don't do it elsewhere.
return 0;
}
void RenderGrid::computedUsedBreadthOfGridTracks(TrackSizingDirection direction, Vector<GridTrack>& columnTracks, Vector<GridTrack>& rowTracks)
{
LayoutUnit availableLogicalSpace = (direction == ForColumns) ? availableLogicalWidth() : availableLogicalHeight(IncludeMarginBorderPadding);
Vector<GridTrack>& tracks = (direction == ForColumns) ? columnTracks : rowTracks;
for (size_t i = 0; i < tracks.size(); ++i) {
GridTrack& track = tracks[i];
const GridTrackSize& trackSize = gridTrackSize(direction, i);
const Length& minTrackBreadth = trackSize.minTrackBreadth();
const Length& maxTrackBreadth = trackSize.maxTrackBreadth();
track.m_usedBreadth = computeUsedBreadthOfMinLength(direction, minTrackBreadth);
track.m_maxBreadth = computeUsedBreadthOfMaxLength(direction, maxTrackBreadth);
track.m_maxBreadth = std::max(track.m_maxBreadth, track.m_usedBreadth);
}
// FIXME: We shouldn't call resolveContentBasedTrackSizingFunctions if we have no min-content / max-content tracks.
resolveContentBasedTrackSizingFunctions(direction, columnTracks, rowTracks, availableLogicalSpace);
if (availableLogicalSpace <= 0)
return;
const size_t tracksSize = tracks.size();
Vector<GridTrack*> tracksForDistribution(tracksSize);
for (size_t i = 0; i < tracksSize; ++i)
tracksForDistribution[i] = tracks.data() + i;
distributeSpaceToTracks(tracksForDistribution, 0, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth, availableLogicalSpace);
}
LayoutUnit RenderGrid::computeUsedBreadthOfMinLength(TrackSizingDirection direction, const Length& trackLength) const
{
if (trackLength.isFixed() || trackLength.isPercent() || trackLength.isViewportPercentage())
return computeUsedBreadthOfSpecifiedLength(direction, trackLength);
ASSERT(trackLength.isMinContent() || trackLength.isMaxContent() || trackLength.isAuto());
return 0;
}
LayoutUnit RenderGrid::computeUsedBreadthOfMaxLength(TrackSizingDirection direction, const Length& trackLength) const
{
if (trackLength.isFixed() || trackLength.isPercent() || trackLength.isViewportPercentage()) {
LayoutUnit computedBreadth = computeUsedBreadthOfSpecifiedLength(direction, trackLength);
// FIXME: We should ASSERT that computedBreadth cannot return infinity but it's currently
// possible. See https://bugs.webkit.org/show_bug.cgi?id=107053
return computedBreadth;
}
ASSERT(trackLength.isMinContent() || trackLength.isMaxContent() || trackLength.isAuto());
return infinity;
}
LayoutUnit RenderGrid::computeUsedBreadthOfSpecifiedLength(TrackSizingDirection direction, const Length& trackLength) const
{
// FIXME: We still need to support calc() here (https://webkit.org/b/103761).
ASSERT(trackLength.isFixed() || trackLength.isPercent() || trackLength.isViewportPercentage());
return valueForLength(trackLength, direction == ForColumns ? logicalWidth() : computeContentLogicalHeight(style()->logicalHeight()), view());
}
const GridTrackSize& RenderGrid::gridTrackSize(TrackSizingDirection direction, size_t i) const
{
const Vector<GridTrackSize>& trackStyles = (direction == ForColumns) ? style()->gridColumns() : style()->gridRows();
if (i >= trackStyles.size())
return (direction == ForColumns) ? style()->gridAutoColumns() : style()->gridAutoRows();
return trackStyles[i];
}
static size_t estimatedGridSizeForPosition(const GridPosition& position)
{
if (position.isAuto())
return 1;
return std::max(position.integerPosition(), 1);
}
size_t RenderGrid::maximumIndexInDirection(TrackSizingDirection direction) const
{
const Vector<GridTrackSize>& trackStyles = (direction == ForColumns) ? style()->gridColumns() : style()->gridRows();
size_t maximumIndex = std::max<size_t>(1, trackStyles.size());
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
// This function bypasses the cache (cachedGridCoordinate()) as it is used to build it.
// Also we can't call resolveGridPositionsFromStyle here as it assumes that the grid is build and we are in
// the middle of building it. However we should be able to share more code with the previous logic (FIXME).
const GridPosition& initialPosition = (direction == ForColumns) ? child->style()->gridItemStart() : child->style()->gridItemBefore();
const GridPosition& finalPosition = (direction == ForColumns) ? child->style()->gridItemEnd() : child->style()->gridItemAfter();
size_t estimatedSizeForInitialPosition = estimatedGridSizeForPosition(initialPosition);
size_t estimatedSizeForFinalPosition = estimatedGridSizeForPosition(finalPosition);
ASSERT(estimatedSizeForInitialPosition);
ASSERT(estimatedSizeForFinalPosition);
maximumIndex = std::max(maximumIndex, estimatedSizeForInitialPosition);
maximumIndex = std::max(maximumIndex, estimatedSizeForFinalPosition);
}
return maximumIndex;
}
LayoutUnit RenderGrid::logicalContentHeightForChild(RenderBox* child, Vector<GridTrack>& columnTracks)
{
// FIXME: We shouldn't force a layout every time this function is called but
// 1) Return computeLogicalHeight's value if it's available. Unfortunately computeLogicalHeight
// doesn't return if the logical height is available so would need to be changed.
// 2) Relayout if the column track's used breadth changed OR the logical height is unavailable.
if (!child->needsLayout())
child->setNeedsLayout(true, MarkOnlyThis);
child->setOverrideContainingBlockContentLogicalWidth(gridAreaBreadthForChild(child, ForColumns, columnTracks));
// If |child| has a percentage logical height, we shouldn't let it override its intrinsic height, which is
// what we are interested in here. Thus we need to set the override logical height to -1 (no possible resolution).
child->setOverrideContainingBlockContentLogicalHeight(-1);
child->layout();
return child->logicalHeight();
}
LayoutUnit RenderGrid::minContentForChild(RenderBox* child, TrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != isHorizontalWritingMode();
// FIXME: Properly support orthogonal writing mode.
if (hasOrthogonalWritingMode)
return 0;
if (direction == ForColumns) {
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child->minPreferredLogicalWidth();
}
return logicalContentHeightForChild(child, columnTracks);
}
LayoutUnit RenderGrid::maxContentForChild(RenderBox* child, TrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != isHorizontalWritingMode();
// FIXME: Properly support orthogonal writing mode.
if (hasOrthogonalWritingMode)
return LayoutUnit();
if (direction == ForColumns) {
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child->maxPreferredLogicalWidth();
}
return logicalContentHeightForChild(child, columnTracks);
}
void RenderGrid::resolveContentBasedTrackSizingFunctions(TrackSizingDirection direction, Vector<GridTrack>& columnTracks, Vector<GridTrack>& rowTracks, LayoutUnit& availableLogicalSpace)
{
// FIXME: Split the grid tracks once we support fractions (step 1 of the algorithm).
Vector<GridTrack>& tracks = (direction == ForColumns) ? columnTracks : rowTracks;
// FIXME: Per step 2 of the specification, we should order the grid items by increasing span.
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
resolveContentBasedTrackSizingFunctionsForItems(direction, columnTracks, rowTracks, child, &GridTrackSize::hasMinOrMaxContentMinTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, columnTracks, rowTracks, child, &GridTrackSize::hasMaxContentMinTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, columnTracks, rowTracks, child, &GridTrackSize::hasMinOrMaxContentMaxTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, columnTracks, rowTracks, child, &GridTrackSize::hasMaxContentMaxTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
}
for (size_t i = 0; i < tracks.size(); ++i) {
GridTrack& track = tracks[i];
if (track.m_maxBreadth == infinity)
track.m_maxBreadth = track.m_usedBreadth;
availableLogicalSpace -= track.m_usedBreadth;
}
}
void RenderGrid::resolveContentBasedTrackSizingFunctionsForItems(TrackSizingDirection direction, Vector<GridTrack>& columnTracks, Vector<GridTrack>& rowTracks, RenderBox* gridItem, FilterFunction filterFunction, SizingFunction sizingFunction, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction)
{
const GridCoordinate coordinate = cachedGridCoordinate(gridItem);
const size_t initialTrackIndex = (direction == ForColumns) ? coordinate.columns.initialPositionIndex : coordinate.rows.initialPositionIndex;
const size_t finalTrackIndex = (direction == ForColumns) ? coordinate.columns.finalPositionIndex : coordinate.rows.finalPositionIndex;
Vector<GridTrack*> tracks;
for (size_t trackIndex = initialTrackIndex; trackIndex <= finalTrackIndex; ++trackIndex) {
const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex);
if (!(trackSize.*filterFunction)())
continue;
GridTrack& track = (direction == ForColumns) ? columnTracks[trackIndex] : rowTracks[trackIndex];
tracks.append(&track);
}
LayoutUnit additionalBreadthSpace = (this->*sizingFunction)(gridItem, direction, columnTracks);
for (size_t trackIndexForSpace = initialTrackIndex; trackIndexForSpace <= finalTrackIndex; ++trackIndexForSpace) {
GridTrack& track = (direction == ForColumns) ? columnTracks[trackIndexForSpace] : rowTracks[trackIndexForSpace];
additionalBreadthSpace -= (track.*trackGetter)();
}
// FIXME: We should pass different values for |tracksForGrowthAboveMaxBreadth|.
distributeSpaceToTracks(tracks, &tracks, trackGetter, trackGrowthFunction, additionalBreadthSpace);
}
static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2)
{
return (track1->m_maxBreadth - track1->m_usedBreadth) < (track2->m_maxBreadth - track2->m_usedBreadth);
}
void RenderGrid::distributeSpaceToTracks(Vector<GridTrack*>& tracks, Vector<GridTrack*>* tracksForGrowthAboveMaxBreadth, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, LayoutUnit& availableLogicalSpace)
{
std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential);
size_t tracksSize = tracks.size();
Vector<LayoutUnit> updatedTrackBreadths(tracksSize);
for (size_t i = 0; i < tracksSize; ++i) {
GridTrack& track = *tracks[i];
LayoutUnit availableLogicalSpaceShare = availableLogicalSpace / (tracksSize - i);
LayoutUnit trackBreadth = (tracks[i]->*trackGetter)();
LayoutUnit growthShare = std::min(availableLogicalSpaceShare, track.m_maxBreadth - trackBreadth);
updatedTrackBreadths[i] = trackBreadth + growthShare;
availableLogicalSpace -= growthShare;
}
if (availableLogicalSpace > 0 && tracksForGrowthAboveMaxBreadth) {
tracksSize = tracksForGrowthAboveMaxBreadth->size();
for (size_t i = 0; i < tracksSize; ++i) {
LayoutUnit growthShare = availableLogicalSpace / (tracksSize - i);
updatedTrackBreadths[i] += growthShare;
availableLogicalSpace -= growthShare;
}
}
for (size_t i = 0; i < tracksSize; ++i) {
LayoutUnit growth = updatedTrackBreadths[i] - (tracks[i]->*trackGetter)();
if (growth >= 0)
(tracks[i]->*trackGrowthFunction)(growth);
}
}
#ifndef NDEBUG
bool RenderGrid::tracksAreWiderThanMinTrackBreadth(TrackSizingDirection direction, const Vector<GridTrack>& tracks)
{
for (size_t i = 0; i < tracks.size(); ++i) {
const GridTrackSize& trackSize = gridTrackSize(direction, i);
const Length& minTrackBreadth = trackSize.minTrackBreadth();
if (computeUsedBreadthOfMinLength(direction, minTrackBreadth) > tracks[i].m_usedBreadth)
return false;
}
return true;
}
#endif
void RenderGrid::growGrid(TrackSizingDirection direction)
{
if (direction == ForColumns) {
const size_t oldColumnSize = m_grid[0].size();
for (size_t row = 0; row < m_grid.size(); ++row)
m_grid[row].grow(oldColumnSize + 1);
} else {
const size_t oldRowSize = m_grid.size();
m_grid.grow(oldRowSize + 1);
m_grid[oldRowSize].grow(m_grid[0].size());
}
}
void RenderGrid::insertItemIntoGrid(RenderBox* child, const GridCoordinate& coordinate)
{
m_grid[coordinate.rows.initialPositionIndex][coordinate.columns.initialPositionIndex].append(child);
m_gridItemCoordinate.set(child, coordinate);
}
void RenderGrid::insertItemIntoGrid(RenderBox* child, size_t rowTrack, size_t columnTrack)
{
const GridSpan& rowSpan = resolveGridPositionsFromAutoPlacementPosition(child, ForRows, rowTrack);
const GridSpan& columnSpan = resolveGridPositionsFromAutoPlacementPosition(child, ForColumns, columnTrack);
insertItemIntoGrid(child, GridCoordinate(rowSpan, columnSpan));
}
void RenderGrid::placeItemsOnGrid()
{
ASSERT(!gridWasPopulated());
ASSERT(m_gridItemCoordinate.isEmpty());
m_grid.grow(maximumIndexInDirection(ForRows));
size_t maximumColumnIndex = maximumIndexInDirection(ForColumns);
for (size_t i = 0; i < m_grid.size(); ++i)
m_grid[i].grow(maximumColumnIndex);
Vector<RenderBox*> autoMajorAxisAutoGridItems;
Vector<RenderBox*> specifiedMajorAxisAutoGridItems;
GridAutoFlow autoFlow = style()->gridAutoFlow();
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
// FIXME: We never re-resolve positions if the grid is grown during auto-placement which may lead auto / <integer>
// positions to not match the author's intent. The specification is unclear on what should be done in this case.
OwnPtr<GridSpan> rowPositions = resolveGridPositionsFromStyle(child, ForRows);
OwnPtr<GridSpan> columnPositions = resolveGridPositionsFromStyle(child, ForColumns);
if (!rowPositions || !columnPositions) {
GridSpan* majorAxisPositions = (autoPlacementMajorAxisDirection() == ForColumns) ? columnPositions.get() : rowPositions.get();
if (!majorAxisPositions)
autoMajorAxisAutoGridItems.append(child);
else
specifiedMajorAxisAutoGridItems.append(child);
continue;
}
insertItemIntoGrid(child, GridCoordinate(*rowPositions, *columnPositions));
}
ASSERT(gridRowCount() >= style()->gridRows().size());
ASSERT(gridColumnCount() >= style()->gridColumns().size());
if (autoFlow == AutoFlowNone) {
// If we did collect some grid items, they won't be placed thus never laid out.
ASSERT(!autoMajorAxisAutoGridItems.size());
ASSERT(!specifiedMajorAxisAutoGridItems.size());
return;
}
placeSpecifiedMajorAxisItemsOnGrid(specifiedMajorAxisAutoGridItems);
placeAutoMajorAxisItemsOnGrid(autoMajorAxisAutoGridItems);
}
void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(Vector<RenderBox*> autoGridItems)
{
for (size_t i = 0; i < autoGridItems.size(); ++i) {
OwnPtr<GridSpan> majorAxisPositions = resolveGridPositionsFromStyle(autoGridItems[i], autoPlacementMajorAxisDirection());
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisPositions->initialPositionIndex);
if (OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea()) {
insertItemIntoGrid(autoGridItems[i], emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
continue;
}
growGrid(autoPlacementMinorAxisDirection());
OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea();
ASSERT(emptyGridArea);
insertItemIntoGrid(autoGridItems[i], emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
}
}
void RenderGrid::placeAutoMajorAxisItemsOnGrid(Vector<RenderBox*> autoGridItems)
{
for (size_t i = 0; i < autoGridItems.size(); ++i)
placeAutoMajorAxisItemOnGrid(autoGridItems[i]);
}
void RenderGrid::placeAutoMajorAxisItemOnGrid(RenderBox* gridItem)
{
OwnPtr<GridSpan> minorAxisPositions = resolveGridPositionsFromStyle(gridItem, autoPlacementMinorAxisDirection());
ASSERT(!resolveGridPositionsFromStyle(gridItem, autoPlacementMajorAxisDirection()));
size_t minorAxisIndex = 0;
if (minorAxisPositions) {
minorAxisIndex = minorAxisPositions->initialPositionIndex;
GridIterator iterator(m_grid, autoPlacementMinorAxisDirection(), minorAxisIndex);
if (OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea()) {
insertItemIntoGrid(gridItem, emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
return;
}
} else {
const size_t endOfMajorAxis = (autoPlacementMajorAxisDirection() == ForColumns) ? gridColumnCount() : gridRowCount();
for (size_t majorAxisIndex = 0; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) {
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisIndex);
if (OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea()) {
insertItemIntoGrid(gridItem, emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
return;
}
}
}
// We didn't find an empty grid area so we need to create an extra major axis line and insert our gridItem in it.
const size_t columnIndex = (autoPlacementMajorAxisDirection() == ForColumns) ? m_grid[0].size() : minorAxisIndex;
const size_t rowIndex = (autoPlacementMajorAxisDirection() == ForColumns) ? minorAxisIndex : m_grid.size();
growGrid(autoPlacementMajorAxisDirection());
insertItemIntoGrid(gridItem, rowIndex, columnIndex);
}
RenderGrid::TrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const
{
GridAutoFlow flow = style()->gridAutoFlow();
ASSERT(flow != AutoFlowNone);
return (flow == AutoFlowColumn) ? ForColumns : ForRows;
}
RenderGrid::TrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const
{
GridAutoFlow flow = style()->gridAutoFlow();
ASSERT(flow != AutoFlowNone);
return (flow == AutoFlowColumn) ? ForRows : ForColumns;
}
void RenderGrid::clearGrid()
{
m_grid.clear();
m_gridItemCoordinate.clear();
}
void RenderGrid::layoutGridItems()
{
placeItemsOnGrid();
Vector<GridTrack> columnTracks(gridColumnCount());
Vector<GridTrack> rowTracks(gridRowCount());
computedUsedBreadthOfGridTracks(ForColumns, columnTracks, rowTracks);
ASSERT(tracksAreWiderThanMinTrackBreadth(ForColumns, columnTracks));
computedUsedBreadthOfGridTracks(ForRows, columnTracks, rowTracks);
ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, rowTracks));
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
LayoutPoint childPosition = findChildLogicalPosition(child, columnTracks, rowTracks);
// Because the grid area cannot be styled, we don't need to adjust
// the grid breadth to account for 'box-sizing'.
LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
LayoutUnit oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit();
// FIXME: For children in a content sized track, we clear the overrideContainingBlockContentLogicalHeight
// in minContentForChild / maxContentForChild which means that we will always relayout the child.
LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, columnTracks);
LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChild(child, ForRows, rowTracks);
if (oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth || oldOverrideContainingBlockContentLogicalHeight != overrideContainingBlockContentLogicalHeight)
child->setNeedsLayout(true, MarkOnlyThis);
child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight);
LayoutRect oldChildRect = child->frameRect();
// FIXME: Grid items should stretch to fill their cells. Once we
// implement grid-{column,row}-align, we can also shrink to fit. For
// now, just size as if we were a regular child.
child->layoutIfNeeded();
// FIXME: Handle border & padding on the grid element.
child->setLogicalLocation(childPosition);
// If the child moved, we have to repaint it as well as any floating/positioned
// descendants. An exception is if we need a layout. In this case, we know we're going to
// repaint ourselves (and the child) anyway.
if (!selfNeedsLayout() && child->checkForRepaintDuringLayout())
child->repaintDuringLayoutIfMoved(oldChildRect);
}
for (size_t i = 0; i < rowTracks.size(); ++i)
setLogicalHeight(logicalHeight() + rowTracks[i].m_usedBreadth);
// FIXME: We should handle min / max logical height.
setLogicalHeight(logicalHeight() + borderAndPaddingLogicalHeight());
clearGrid();
}
RenderGrid::GridCoordinate RenderGrid::cachedGridCoordinate(const RenderBox* gridItem) const
{
ASSERT(m_gridItemCoordinate.contains(gridItem));
return m_gridItemCoordinate.get(gridItem);
}
RenderGrid::GridSpan RenderGrid::resolveGridPositionsFromAutoPlacementPosition(const RenderBox*, TrackSizingDirection, size_t initialPosition) const
{
// FIXME: We don't support spanning with auto positions yet. Once we do, this is wrong. Also we should make
// sure the grid can accomodate the new item as we only grow 1 position in a given direction.
return GridSpan(initialPosition, initialPosition);
}
PassOwnPtr<RenderGrid::GridSpan> RenderGrid::resolveGridPositionsFromStyle(const RenderBox* gridItem, TrackSizingDirection direction) const
{
ASSERT(gridWasPopulated());
const GridPosition& initialPosition = (direction == ForColumns) ? gridItem->style()->gridItemStart() : gridItem->style()->gridItemBefore();
const GridPositionSide initialPositionSide = (direction == ForColumns) ? StartSide : BeforeSide;
const GridPosition& finalPosition = (direction == ForColumns) ? gridItem->style()->gridItemEnd() : gridItem->style()->gridItemAfter();
const GridPositionSide finalPositionSide = (direction == ForColumns) ? EndSide : AfterSide;
if (initialPosition.isAuto() && finalPosition.isAuto()) {
if (style()->gridAutoFlow() == AutoFlowNone)
return adoptPtr(new GridSpan(0, 0));
// We can't get our grid positions without running the auto placement algorithm.
return nullptr;
}
if (initialPosition.isAuto()) {
// Infer the position from the final position ('auto / 1' case).
const size_t finalResolvedPosition = resolveGridPositionFromStyle(finalPosition, finalPositionSide);
return adoptPtr(new GridSpan(finalResolvedPosition, finalResolvedPosition));
}
if (finalPosition.isAuto()) {
// Infer our position from the initial position ('1 / auto' case).
const size_t initialResolvedPosition = resolveGridPositionFromStyle(initialPosition, initialPositionSide);
return adoptPtr(new GridSpan(initialResolvedPosition, initialResolvedPosition));
}
return adoptPtr(new GridSpan(resolveGridPositionFromStyle(initialPosition, initialPositionSide), resolveGridPositionFromStyle(finalPosition, finalPositionSide)));
}
size_t RenderGrid::resolveGridPositionFromStyle(const GridPosition& position, GridPositionSide side) const
{
ASSERT(gridWasPopulated());
// FIXME: Handle other values for grid-{row,column} like ranges or line names.
switch (position.type()) {
case IntegerPosition: {
// FIXME: What does a non-positive integer mean for a column/row?
size_t resolvedPosition = position.isPositive() ? position.integerPosition() - 1 : 0;
if (side == StartSide || side == BeforeSide)
return resolvedPosition;
const size_t endOfTrack = (side == EndSide) ? gridColumnCount() - 1 : gridRowCount() - 1;
ASSERT(endOfTrack >= resolvedPosition);
return endOfTrack - resolvedPosition;
}
case AutoPosition:
// 'auto' depends on the opposite position for resolution (e.g. grid-row: auto / 1).
ASSERT_NOT_REACHED();
return 0;
}
ASSERT_NOT_REACHED();
return 0;
}
LayoutUnit RenderGrid::gridAreaBreadthForChild(const RenderBox* child, TrackSizingDirection direction, const Vector<GridTrack>& tracks) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
const GridSpan& span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
LayoutUnit gridAreaBreadth = 0;
for (size_t trackIndex = span.initialPositionIndex; trackIndex <= span.finalPositionIndex; ++trackIndex)
gridAreaBreadth += tracks[trackIndex].m_usedBreadth;
return gridAreaBreadth;
}
LayoutPoint RenderGrid::findChildLogicalPosition(RenderBox* child, const Vector<GridTrack>& columnTracks, const Vector<GridTrack>& rowTracks)
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
// The grid items should be inside the grid container's border box, that's why they need to be shifted.
LayoutPoint offset(borderAndPaddingStart(), borderAndPaddingBefore());
// FIXME: |columnTrack| and |rowTrack| should be smaller than our column / row count.
for (size_t i = 0; i < coordinate.columns.initialPositionIndex && i < columnTracks.size(); ++i)
offset.setX(offset.x() + columnTracks[i].m_usedBreadth);
for (size_t i = 0; i < coordinate.rows.initialPositionIndex && i < rowTracks.size(); ++i)
offset.setY(offset.y() + rowTracks[i].m_usedBreadth);
// FIXME: Handle margins on the grid item.
return offset;
}
const char* RenderGrid::renderName() const
{
if (isFloating())
return "RenderGrid (floating)";
if (isOutOfFlowPositioned())
return "RenderGrid (positioned)";
if (isAnonymous())
return "RenderGrid (generated)";
if (isRelPositioned())
return "RenderGrid (relative positioned)";
return "RenderGrid";
}
} // namespace WebCore
|