summaryrefslogtreecommitdiff
path: root/src/server.h
Commit message (Collapse)AuthorAgeFilesLines
* Add basic eventloop latency measurement. (#11963)Chen Tianjie2023-05-121-3/+14
| | | | | | | | | | | | | | | | | | | | | | The measured latency(duration) includes the list below, which can be shown by `INFO STATS`. ``` eventloop_cycles // ever increasing counter eventloop_duration_sum // cumulative duration of eventloop in microseconds eventloop_duration_cmd_sum // cumulative duration of executing commands in microseconds instantaneous_eventloop_cycles_per_sec // average eventloop count per second in recent 1.6s instantaneous_eventloop_duration_usec // average single eventloop duration in recent 1.6s ``` Also added some experimental metrics, which are shown only when `INFO DEBUG` is called. This section isn't included in the default INFO, or even in `INFO ALL` and the fields in this section can change in the future without considering backwards compatibility. ``` eventloop_duration_aof_sum // cumulative duration of writing AOF eventloop_duration_cron_sum // cumulative duration cron jobs (serverCron, beforeSleep excluding IO and AOF) eventloop_cmd_per_cycle_max // max number of commands executed in one eventloop eventloop_duration_max // max duration of one eventloop ``` All of these are being reset by CONFIG RESETSTAT
* Minor performance improvement to SADD and HSET (#12019)Madelyn Olson2023-05-081-1/+1
| | | | | | | | | | | | | | | | | | For sets and hashes that will eventually be stored as the hash encoding, it's much faster to immediately convert them to their hash encoding and then perform the insertions since it avoids the O(N) search and frequent reallocations. This change checks the number of arguments in the incoming command, and converts the data-structure if the number of new entries exceeds the listpack-max-entries configuration. This can cause us to over-allocate memory if their are duplicate entries in the input, which is unexpected. unstable Summary: throughput summary: 805.54 requests per second latency summary (msec): avg min p50 p95 p99 max 61.908 25.680 68.351 73.279 75.967 79.295 hset-improvement Summary: throughput summary: 4701.46 requests per second latency summary (msec): avg min p50 p95 p99 max 10.546 0.832 11.959 12.471 13.119 14.967
* Remove prototypes with empty declarations (#12020)Madelyn Olson2023-05-021-35/+34
| | | Technically declaring a prototype with an empty declaration has been deprecated since the early days of C, but we never got a warning for it. C2x will apparently be introducing a breaking change if you are using this type of declarator, so Clang 15 has started issuing a warning with -pedantic. Although not apparently a problem for any of the compiler we build on, if feels like the right thing is to properly adhere to the C standard and use (void).
* Misuse of bool in redis (#12077)YaacovHazan2023-04-201-1/+2
| | | | | | | | | | | | We currently do not allow the use of bool type in redis project. We didn't catch it in script.c because we included hdr_histogram.h in server.h Removing it (but still having it in some c files) reducing the chance to miss the usage of bool type in the future and catch it in compiling stage. It also removes the dependency on hdr_histogram for every unit that includes server.h
* Add RM_ReplyWithErrorFormat that can support format (#11923)Binbin2023-04-121-0/+1
| | | | | | | | | | | | | | | * Add RM_ReplyWithErrorFormat that can support format Reply with the error create from a printf format and arguments. If the error code is already passed in the string 'fmt', the error code provided is used, otherwise the string "-ERR " for the generic error code is automatically added. The usage is, for example: RedisModule_ReplyWithErrorFormat(ctx, "An error: %s", "foo"); RedisModule_ReplyWithErrorFormat(ctx, "-WRONGTYPE Wrong Type: %s", "foo"); The function always returns REDISMODULE_OK.
* check for known-slave in sentinel rewrite config (#11775)Subhi Al Hasan2023-04-041-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix the following config file error ``` *** FATAL CONFIG FILE ERROR (Redis 6.2.7) *** Reading the configuration file, at line 152 >>> 'sentinel known-replica XXXX 127.0.0.1 5001' Duplicate hostname and port for replica. ``` that is happening when a user uses the legacy key "known-slave" in the config file and a config rewrite occurs. The config rewrite logic won't replace the old line "sentinel known-slave XXXX 127.0.0.1 5001" and would add a new line with "sentinel known-replica XXXX 127.0.0.1 5001" which results in the error above "Duplicate hostname and port for replica." example: Current sentinal.conf ``` ... sentinel known-slave XXXX 127.0.0.1 5001 sentinel example-random-option X ... ``` after the config rewrite logic runs: ``` .... sentinel known-slave XXXX 127.0.0.1 5001 sentinel example-random-option X # Generated by CONFIG REWRITE sentinel known-replica XXXX 127.0.0.1 5001 ``` This bug only exists in Redis versions >=6.2 because prior to that it was hidden by the effects of this bug https://github.com/redis/redis/issues/5388 that was fixed in https://github.com/redis/redis/pull/8271 and was released in versions >=6.2
* Reimplement cli hints based on command arg docs (#10515)Jason Elbaum2023-03-301-45/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that the command argument specs are available at runtime (#9656), this PR addresses #8084 by implementing a complete solution for command-line hinting in `redis-cli`. It correctly handles nearly every case in Redis's complex command argument definitions, including `BLOCK` and `ONEOF` arguments, reordering of optional arguments, and repeated arguments (even when followed by mandatory arguments). It also validates numerically-typed arguments. It may not correctly handle all possible combinations of those, but overall it is quite robust. Arguments are only matched after the space bar is typed, so partial word matching is not supported - that proved to be more confusing than helpful. When the user's current input cannot be matched against the argument specs, hinting is disabled. Partial support has been implemented for legacy (pre-7.0) servers that do not support `COMMAND DOCS`, by falling back to a statically-compiled command argument table. On startup, if the server does not support `COMMAND DOCS`, `redis-cli` will now issue an `INFO SERVER` command to retrieve the server version (unless `HELLO` has already been sent, in which case the server version will be extracted from the reply to `HELLO`). The server version will be used to filter the commands and arguments in the command table, removing those not supported by that version of the server. However, the static table only includes core Redis commands, so with a legacy server hinting will not be supported for module commands. The auto generated help.h and the scripts that generates it are gone. Command and argument tables for the server and CLI use different structs, due primarily to the need to support different runtime data. In order to generate code for both, macros have been added to `commands.def` (previously `commands.c`) to make it possible to configure the code generation differently for different use cases (one linked with redis-server, and one with redis-cli). Also adding a basic testing framework for the command hints based on new (undocumented) command line options to `redis-cli`: `--test_hint 'INPUT'` prints out the command-line hint for a given input string, and `--test_hint_file <filename>` runs a suite of test cases for the hinting mechanism. The test suite is in `tests/assets/test_cli_hint_suite.txt`, and it is run from `tests/integration/redis-cli.tcl`. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
* Fix fork done handler wrongly update fsync metrics and enhance AOF_ ↵Binbin2023-03-291-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | FSYNC_ALWAYS (#11973) This PR fix several unrelated bugs that were discovered by the same set of tests (WAITAOF tests in #11713), could make the `WAITAOF` test hang. The change in `backgroundRewriteDoneHandler` is about MP-AOF. That leftover / old code assumes that we started a new AOF file just now (when we have a new base into which we're gonna incrementally write), but the fact is that with MP-AOF, the fork done handler doesn't really affect the incremental file being maintained by the parent process, there's no reason to re-issue `SELECT`, and no reason to update any of the fsync variables in that flow. This should have been deleted with MP-AOF (introduced in #9788, 7.0). The damage is that the update to `aof_fsync_offset` will cause us to miss an fsync in `flushAppendOnlyFile`, that happens if we stop write commands in `AOF_FSYNC_EVERYSEC` while an AOFRW is in progress. This caused a new `WAITAOF` test to sometime hang forever. Also because of MP-AOF, we needed to change `aof_fsync_offset` to `aof_last_incr_fsync_offset` and match it to `aof_last_incr_size` in `flushAppendOnlyFile`. This is because in the past we compared `aof_fsync_offset` and `aof_current_size`, but with MP-AOF it could be the total AOF file will be smaller after AOFRW, and the (already existing) incr file still has data that needs to be fsynced. The change in `flushAppendOnlyFile`, about the `AOF_FSYNC_ALWAYS`, it is follow #6053 (the details is in #5985), we also check `AOF_FSYNC_ALWAYS` to handle a case where appendfsync is changed from everysec to always while there is data that's written but not yet fsynced.
* Allow clients to report name and version (#11758)Igor Malinovskiy2023-03-221-0/+3
| | | | | | | | | | | | | | | | | | | | | This PR allows clients to send information about the client library to redis to be displayed in CLIENT LIST and CLIENT INFO. Currently supports: `CLIENT [lib-name | lib-ver] <value>` Client libraries are expected to pipeline these right after AUTH, and ignore the failure in case they're talking to an older version of redis. These will be shown in CLIENT LIST and CLIENT INFO as: * `lib-name` - meant to hold the client library name. * `lib-ver` - meant to hold the client library version. The values cannot contain spaces, newlines and any wild ASCII characters, but all other normal chars are accepted, e.g `.`, `=` etc (same as CLIENT NAME). The RESET command does NOT clear these, but they can be cleared to the default by sending a command with a blank string. Co-authored-by: Oran Agra <oran@redislabs.com>
* Module commands to have ACL categories. (#11708)Roshan Khatri2023-03-211-0/+3
| | | | | | | | | | | | | | | | This allows modules to register commands to existing ACL categories and blocks the creation of [sub]commands, datatypes and registering the configs outside of the OnLoad function. For allowing modules to register commands to existing ACL categories, This PR implements a new API int RM_SetCommandACLCategories() which takes a pointer to a RedisModuleCommand and a C string aclflags containing the set of space separated ACL categories. Example, 'write slow' marks the command as part of the write and slow ACL categories. The C string aclflags is tokenized by implementing a helper function categoryFlagsFromString(). Theses tokens are matched and the corresponding ACL categories flags are set by a helper function matchAclCategoriesFlags. The helper function categoryFlagsFromString() returns the corresponding categories_flags or returns -1 if some token not processed correctly. If the module contains commands which are registered to existing ACL categories, the number of [sub]commands are tracked by num_commands_with_acl_categories in struct RedisModule. Further, the allowed command bit-map of the existing users are recomputed from the command_rules list, by implementing a function called ACLRecomputeCommandBitsFromCommandRulesAllUsers() for the existing users to have access to the module commands on runtime. ## Breaking change This change requires that registering commands and subcommands only occur during a modules "OnLoad" function, in order to allow efficient recompilation of ACL bits. We also chose to block registering configs and types, since we believe it's only valid for those to be created during onLoad. We check for this onload flag in struct RedisModule to check if the call is made from the OnLoad function. Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
* Support for RM_Call on blocking commands (#11568)Meir Shpilraien (Spielrein)2023-03-161-1/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Allow running blocking commands from within a module using `RM_Call`. Today, when `RM_Call` is used, the fake client that is used to run command is marked with `CLIENT_DENY_BLOCKING` flag. This flag tells the command that it is not allowed to block the client and in case it needs to block, it must fallback to some alternative (either return error or perform some default behavior). For example, `BLPOP` fallback to simple `LPOP` if it is not allowed to block. All the commands must respect the `CLIENT_DENY_BLOCKING` flag (including module commands). When the command invocation finished, Redis asserts that the client was not blocked. This PR introduces the ability to call blocking command using `RM_Call` by passing a callback that will be called when the client will get unblocked. In order to do that, the user must explicitly say that he allow to perform blocking command by passing a new format specifier argument, `K`, to the `RM_Call` function. This new flag will tell Redis that it is allow to run blocking command and block the client. In case the command got blocked, Redis will return a new type of call reply (`REDISMODULE_REPLY_PROMISE`). This call reply indicates that the command got blocked and the user can set the on_unblocked handler using `RM_CallReplyPromiseSetUnblockHandler`. When clients gets unblocked, it eventually reaches `processUnblockedClients` function. This is where we check if the client is a fake module client and if it is, we call the unblock callback instead of performing the usual unblock operations. **Notice**: `RM_CallReplyPromiseSetUnblockHandler` must be called atomically along side the command invocation (without releasing the Redis lock in between). In addition, unlike other CallReply types, the promise call reply must be released by the module when the Redis GIL is acquired. The module can abort the execution on the blocking command (if it was not yet executed) using `RM_CallReplyPromiseAbort`. the API will return `REDISMODULE_OK` on success and `REDISMODULE_ERR` if the operation is already executed. **Notice** that in case of misbehave module, Abort might finished successfully but the operation will not really be aborted. This can only happened if the module do not respect the disconnect callback of the blocked client. For pure Redis commands this can not happened. ### Atomicity Guarantees The API promise that the unblock handler will run atomically as an execution unit. This means that all the operation performed on the unblock handler will be wrapped with a multi exec transaction when replicated to the replica and AOF. The API **do not** grantee any other atomicity properties such as when the unblock handler will be called. This gives us the flexibility to strengthen the grantees (or not) in the future if we will decide that we need a better guarantees. That said, the implementation **does** provide a better guarantees when performing pure Redis blocking command like `BLPOP`. In this case the unblock handler will run atomically with the operation that got unblocked (for example, in case of `BLPOP`, the unblock handler will run atomically with the `LPOP` operation that run when the command got unblocked). This is an implementation detail that might be change in the future and the module writer should not count on that. ### Calling blocking commands while running on script mode (`S`) `RM_Call` script mode (`S`) was introduced on #0372. It is used for usecases where the command that was invoked on `RM_Call` comes from a user input and we want to make sure the user will not run dangerous commands like `shutdown`. Some command, such as `BLPOP`, are marked with `NO_SCRIPT` flag, which means they will not be allowed on script mode. Those commands are marked with `NO_SCRIPT` just because they are blocking commands and not because they are dangerous. Now that we can run blocking commands on RM_Call, there is no real reason not to allow such commands on script mode. The underline problem is that the `NO_SCRIPT` flag is abused to also mark some of the blocking commands (notice that those commands know not to block the client if it is not allowed to do so, and have a fallback logic to such cases. So even if those commands were not marked with `NO_SCRIPT` flag, it would not harm Redis, and today we can already run those commands within multi exec). In addition, not all blocking commands are marked with `NO_SCRIPT` flag, for example `blmpop` are not marked and can run from within a script. Those facts shows that there are some ambiguity about the meaning of the `NO_SCRIPT` flag, and its not fully clear where it should be use. The PR suggest that blocking commands should not be marked with `NO_SCRIPT` flag, those commands should handle `CLIENT_DENY_BLOCKING` flag and only block when it's safe (like they already does today). To achieve that, the PR removes the `NO_SCRIPT` flag from the following commands: * `blmove` * `blpop` * `brpop` * `brpoplpush` * `bzpopmax` * `bzpopmin` * `wait` This might be considered a breaking change as now, on scripts, instead of getting `command is not allowed from script` error, the user will get some fallback behavior base on the command implementation. That said, the change matches the behavior of scripts and multi exec with respect to those commands and allow running them on `RM_Call` even when script mode is used. ### Additional RedisModule API and changes * `RM_BlockClientSetPrivateData` - Set private data on the blocked client without the need to unblock the client. This allows up to set the promise CallReply as the private data of the blocked client and abort it if the client gets disconnected. * `RM_BlockClientGetPrivateData` - Return the current private data set on a blocked client. We need it so we will have access to this private data on the disconnect callback. * On RM_Call, the returned reply will be added to the auto memory context only if auto memory is enabled, this allows us to keep the call reply for longer time then the context lifetime and does not force an unneeded borrow relationship between the CallReply and the RedisModuleContext.
* Bump codespell to 2.2.4, fix typos and outupdated comments (#11911)Binbin2023-03-161-6/+6
| | | Fix some seen typos and wrong comments.
* Custom authentication for Modules (#11659)KarthikSubbarao2023-03-151-3/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This change adds new module callbacks that can override the default password based authentication associated with ACLs. With this, Modules can register auth callbacks through which they can implement their own Authentication logic. When `AUTH` and `HELLO AUTH ...` commands are used, Module based authentication is attempted and then normal password based authentication is attempted if needed. The new Module APIs added in this PR are - `RM_RegisterCustomAuthCallback` and `RM_BlockClientOnAuth` and `RedisModule_ACLAddLogEntryByUserName `. Module based authentication will be attempted for all Redis users (created through the ACL SETUSER cmd or through Module APIs) even if the Redis user does not exist at the time of the command. This gives a chance for the Module to create the RedisModule user and then authenticate via the RedisModule API - from the custom auth callback. For the AUTH command, we will support both variations - `AUTH <username> <password>` and `AUTH <password>`. In case of the `AUTH <password>` variation, the custom auth callbacks are triggered with “default” as the username and password as what is provided. ### RedisModule_RegisterCustomAuthCallback ``` void RM_RegisterCustomAuthCallback(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback cb) { ``` This API registers a callback to execute to prior to normal password based authentication. Multiple callbacks can be registered across different modules. These callbacks are responsible for either handling the authentication, each authenticating the user or explicitly denying, or deferring it to other authentication mechanisms. Callbacks are triggered in the order they were registered. When a Module is unloaded, all the auth callbacks registered by it are unregistered. The callbacks are attempted, in the order of most recently registered callbacks, when the AUTH/HELLO (with AUTH field is provided) commands are called. The callbacks will be called with a module context along with a username and a password, and are expected to take one of the following actions: (1) Authenticate - Use the RM_Authenticate* API successfully and return `REDISMODULE_AUTH_HANDLED`. This will immediately end the auth chain as successful and add the OK reply. (2) Block a client on authentication - Use the `RM_BlockClientOnAuth` API and return `REDISMODULE_AUTH_HANDLED`. Here, the client will be blocked until the `RM_UnblockClient `API is used which will trigger the auth reply callback (provided earlier through the `RM_BlockClientOnAuth`). In this reply callback, the Module should authenticate, deny or skip handling authentication. (3) Deny Authentication - Return `REDISMODULE_AUTH_HANDLED` without authenticating or blocking the client. Optionally, `err` can be set to a custom error message. This will immediately end the auth chain as unsuccessful and add the ERR reply. (4) Skip handling Authentication - Return `REDISMODULE_AUTH_NOT_HANDLED` without blocking the client. This will allow the engine to attempt the next custom auth callback. If none of the callbacks authenticate or deny auth, then password based auth is attempted and will authenticate or add failure logs and reply to the clients accordingly. ### RedisModule_BlockClientOnAuth ``` RedisModuleBlockedClient *RM_BlockClientOnAuth(RedisModuleCtx *ctx, RedisModuleCustomAuthCallback reply_callback, void (*free_privdata)(RedisModuleCtx*,void*)) ``` This API can only be used from a Module from the custom auth callback. If a client is not in the middle of custom module based authentication, ERROR is returned. Otherwise, the client is blocked and the `RedisModule_BlockedClient` is returned similar to the `RedisModule_BlockClient` API. ### RedisModule_ACLAddLogEntryByUserName ``` int RM_ACLAddLogEntryByUserName(RedisModuleCtx *ctx, RedisModuleString *username, RedisModuleString *object, RedisModuleACLLogEntryReason reason) ``` Adds a new entry in the ACL log with the `username` RedisModuleString provided. This simplifies the Module usage because now, developers do not need to create a Module User just to add an error ACL Log entry. Aside from accepting username (RedisModuleString) instead of a RedisModuleUser, it is the same as the existing `RedisModule_ACLAddLogEntry` API. ### Breaking changes - HELLO command - Clients can now only set the client name and RESP protocol from the `HELLO` command if they are authenticated. Also, we now finish command arg validation first and return early with a ERR reply if any arg is invalid. This is to avoid mutating the client name / RESP from a command that would have failed on invalid arguments. ### Notable behaviors - Module unblocking - Now, we will not allow Modules to block the client from inside the context of a reply callback (triggered from the Module unblock flow `moduleHandleBlockedClients`). --------- Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
* Fix WAITAOF mix-use last_offset and last_numreplicas (#11922)Binbin2023-03-151-1/+1
| | | | | | | | | | | | | | There be a situation that satisfies WAIT, and then wrongly unblock WAITAOF because we mix-use last_offset and last_numreplicas. We update last_offset and last_numreplicas only when the condition matches. i.e. output of either replicationCountAOFAcksByOffset or replicationCountAcksByOffset is right. In this case, we need to have separate last_ variables for each of them. Added a last_aof_offset and last_aof_numreplicas for WAITAOF. WAITAOF was added in #11713. Found while coding #11917. A Test was added to validate that case.
* Implementing the WAITAOF command (issue #10505) (#11713)Slava Koyfman2023-03-141-1/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Implementing the WAITAOF functionality which would allow the user to block until a specified number of Redises have fsynced all previous write commands to the AOF. Syntax: `WAITAOF <num_local> <num_replicas> <timeout>` Response: Array containing two elements: num_local, num_replicas num_local is always either 0 or 1 representing the local AOF on the master. num_replicas is the number of replicas that acknowledged the a replication offset of the last write being fsynced to the AOF. Returns an error when called on replicas, or when called with non-zero num_local on a master with AOF disabled, in all other cases the response just contains number of fsync copies. Main changes: * Added code to keep track of replication offsets that are confirmed to have been fsynced to disk. * Keep advancing master_repl_offset even when replication is disabled (and there's no replication backlog, only if there's an AOF enabled). This way we can use this command and it's mechanisms even when replication is disabled. * Extend REPLCONF ACK to `REPLCONF ACK <ofs> FACK <ofs>`, the FACK will be appended only if there's an AOF on the replica, and already ignored on old masters (thus backwards compatible) * WAIT now no longer wait for the replication offset after your last command, but rather the replication offset after your last write (or read command that caused propagation, e.g. lazy expiry). Unrelated changes: * WAIT command respects CLIENT_DENY_BLOCKING (not just CLIENT_MULTI) Implementation details: * Add an atomic var named `fsynced_reploff_pending` that's updated (usually by the bio thread) and later copied to the main `fsynced_reploff` variable (only if the AOF base file exists). I.e. during the initial AOF rewrite it will not be used as the fsynced offset since the AOF base is still missing. * Replace close+fsync bio job with new BIO_CLOSE_AOF (AOF specific) job that will also update fsync offset the field. * Handle all AOF jobs (BIO_CLOSE_AOF, BIO_AOF_FSYNC) in the same bio worker thread, to impose ordering on their execution. This solves a race condition where a job could set `fsynced_reploff_pending` to a higher value than another pending fsync job, resulting in indicating an offset for which parts of the data have not yet actually been fsynced. Imposing an ordering on the jobs guarantees that fsync jobs are executed in increasing order of replication offset. * Drain bio jobs when switching `appendfsync` to "always" This should prevent a write race between updates to `fsynced_reploff_pending` in the main thread (`flushAppendOnlyFile` when set to ALWAYS fsync), and those done in the bio thread. * Drain the pending fsync when starting over a new AOF to avoid race conditions with the previous AOF offsets overriding the new one (e.g. after switching to replicate from a new master). * Make sure to update the fsynced offset at the end of the initial AOF rewrite. a must in case there are no additional writes that trigger a periodic fsync, specifically for a replica that does a full sync. Limitations: It is possible to write a module and a Lua script that propagate to the AOF and doesn't propagate to the replication stream. see REDISMODULE_ARGV_NO_REPLICAS and luaRedisSetReplCommand. These features are incompatible with the WAITAOF command, and can result in two bad cases. The scenario is that the user executes command that only propagates to AOF, and then immediately issues a WAITAOF, and there's no further writes on the replication stream after that. 1. if the the last thing that happened on the replication stream is a PING (which increased the replication offset but won't trigger an fsync on the replica), then the client would hang forever (will wait for an fack that the replica will never send sine it doesn't trigger any fsyncs). 2. if the last thing that happened is a write command that got propagated properly, then WAITAOF will be released immediately, without waiting for an fsync (since the offset didn't change) Refactoring: * Plumbing to allow bio worker to handle multiple job types This introduces infrastructure necessary to allow BIO workers to not have a 1-1 mapping of worker to job-type. This allows in the future to assign multiple job types to a single worker, either as a performance/resource optimization, or as a way of enforcing ordering between specific classes of jobs. Co-authored-by: Oran Agra <oran@redislabs.com>
* Fix tail->repl_offset update in feedReplicationBuffer (#11905)Binbin2023-03-131-1/+1
| | | | | | | | | | | | | | | | | | | | | In #11666, we added a while loop and will split a big reply node to multiple nodes. The update of tail->repl_offset may be wrong. Like before #11666, we would have created at most one new reply node, and now we will create multiple nodes if it is a big reply node. Now we are creating more than one node, and the tail->repl_offset of all the nodes except the last one are incorrect. Because we update master_repl_offset at the beginning, and then use it to update the tail->repl_offset. This would have lead to an assertion during PSYNC, a test was added to validate that case. Besides that, the calculation of size was adjusted to fix tests that failed due to a combination of a very low backlog size, and some thresholds of that get violated because of the relatively high overhead of replBufBlock. So now if the backlog size / 16 is too small, we'll take PROTO_REPLY_CHUNK_BYTES instead. Co-authored-by: Oran Agra <oran@redislabs.com>
* Fix the bug that CLIENT REPLY OFF|SKIP cannot receive push notifications ↵Binbin2023-03-121-0/+1
| | | | | | | | | | | | | | | | | | | | (#11875) This bug seems to be there forever, CLIENT REPLY OFF|SKIP will mark the client with CLIENT_REPLY_OFF or CLIENT_REPLY_SKIP flags. With these flags, prepareClientToWrite called by addReply* will return C_ERR directly. So the client can't receive the Pub/Sub messages and any other push notifications, e.g client side tracking. In this PR, we adding a CLIENT_PUSHING flag, disables the reply silencing flags. When adding push replies, set the flag, after the reply, clear the flag. Then add the flag check in prepareClientToWrite. Fixes #11874 Note, the SUBSCRIBE command response is a bit awkward, see https://github.com/redis/redis-doc/pull/2327 Co-authored-by: Oran Agra <oran@redislabs.com>
* Add reply_schema to command json files (internal for now) (#10273)guybe72023-03-111-23/+74
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Work in progress towards implementing a reply schema as part of COMMAND DOCS, see #9845 Since ironing the details of the reply schema of each and every command can take a long time, we would like to merge this PR when the infrastructure is ready, and let this mature in the unstable branch. Meanwhile the changes of this PR are internal, they are part of the repo, but do not affect the produced build. ### Background In #9656 we add a lot of information about Redis commands, but we are missing information about the replies ### Motivation 1. Documentation. This is the primary goal. 2. It should be possible, based on the output of COMMAND, to be able to generate client code in typed languages. In order to do that, we need Redis to tell us, in detail, what each reply looks like. 3. We would like to build a fuzzer that verifies the reply structure (for now we use the existing testsuite, see the "Testing" section) ### Schema The idea is to supply some sort of schema for the various replies of each command. The schema will describe the conceptual structure of the reply (for generated clients), as defined in RESP3. Note that the reply structure itself may change, depending on the arguments (e.g. `XINFO STREAM`, with and without the `FULL` modifier) We decided to use the standard json-schema (see https://json-schema.org/) as the reply-schema. Example for `BZPOPMIN`: ``` "reply_schema": { "oneOf": [ { "description": "Timeout reached and no elements were popped.", "type": "null" }, { "description": "The keyname, popped member, and its score.", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "description": "Keyname", "type": "string" }, { "description": "Member", "type": "string" }, { "description": "Score", "type": "number" } ] } ] } ``` #### Notes 1. It is ok that some commands' reply structure depends on the arguments and it's the caller's responsibility to know which is the relevant one. this comes after looking at other request-reply systems like OpenAPI, where the reply schema can also be oneOf and the caller is responsible to know which schema is the relevant one. 2. The reply schemas will describe RESP3 replies only. even though RESP3 is structured, we want to use reply schema for documentation (and possibly to create a fuzzer that validates the replies) 3. For documentation, the description field will include an explanation of the scenario in which the reply is sent, including any relation to arguments. for example, for `ZRANGE`'s two schemas we will need to state that one is with `WITHSCORES` and the other is without. 4. For documentation, there will be another optional field "notes" in which we will add a short description of the representation in RESP2, in case it's not trivial (RESP3's `ZRANGE`'s nested array vs. RESP2's flat array, for example) Given the above: 1. We can generate the "return" section of all commands in [redis-doc](https://redis.io/commands/) (given that "description" and "notes" are comprehensive enough) 2. We can generate a client in a strongly typed language (but the return type could be a conceptual `union` and the caller needs to know which schema is relevant). see the section below for RESP2 support. 3. We can create a fuzzer for RESP3. ### Limitations (because we are using the standard json-schema) The problem is that Redis' replies are more diverse than what the json format allows. This means that, when we convert the reply to a json (in order to validate the schema against it), we lose information (see the "Testing" section below). The other option would have been to extend the standard json-schema (and json format) to include stuff like sets, bulk-strings, error-string, etc. but that would mean also extending the schema-validator - and that seemed like too much work, so we decided to compromise. Examples: 1. We cannot tell the difference between an "array" and a "set" 2. We cannot tell the difference between simple-string and bulk-string 3. we cannot verify true uniqueness of items in commands like ZRANGE: json-schema doesn't cover the case of two identical members with different scores (e.g. `[["m1",6],["m1",7]]`) because `uniqueItems` compares (member,score) tuples and not just the member name. ### Testing This commit includes some changes inside Redis in order to verify the schemas (existing and future ones) are indeed correct (i.e. describe the actual response of Redis). To do that, we added a debugging feature to Redis that causes it to produce a log of all the commands it executed and their replies. For that, Redis needs to be compiled with `-DLOG_REQ_RES` and run with `--reg-res-logfile <file> --client-default-resp 3` (the testsuite already does that if you run it with `--log-req-res --force-resp3`) You should run the testsuite with the above args (and `--dont-clean`) in order to make Redis generate `.reqres` files (same dir as the `stdout` files) which contain request-response pairs. These files are later on processed by `./utils/req-res-log-validator.py` which does: 1. Goes over req-res files, generated by redis-servers, spawned by the testsuite (see logreqres.c) 2. For each request-response pair, it validates the response against the request's reply_schema (obtained from the extended COMMAND DOCS) 5. In order to get good coverage of the Redis commands, and all their different replies, we chose to use the existing redis test suite, rather than attempt to write a fuzzer. #### Notes about RESP2 1. We will not be able to use the testing tool to verify RESP2 replies (we are ok with that, it's time to accept RESP3 as the future RESP) 2. Since the majority of the test suite is using RESP2, and we want the server to reply with RESP3 so that we can validate it, we will need to know how to convert the actual reply to the one expected. - number and boolean are always strings in RESP2 so the conversion is easy - objects (maps) are always a flat array in RESP2 - others (nested array in RESP3's `ZRANGE` and others) will need some special per-command handling (so the client will not be totally auto-generated) Example for ZRANGE: ``` "reply_schema": { "anyOf": [ { "description": "A list of member elements", "type": "array", "uniqueItems": true, "items": { "type": "string" } }, { "description": "Members and their scores. Returned in case `WITHSCORES` was used.", "notes": "In RESP2 this is returned as a flat array", "type": "array", "uniqueItems": true, "items": { "type": "array", "minItems": 2, "maxItems": 2, "items": [ { "description": "Member", "type": "string" }, { "description": "Score", "type": "number" } ] } } ] } ``` ### Other changes 1. Some tests that behave differently depending on the RESP are now being tested for both RESP, regardless of the special log-req-res mode ("Pub/Sub PING" for example) 2. Update the history field of CLIENT LIST 3. Added basic tests for commands that were not covered at all by the testsuite ### TODO - [x] (maybe a different PR) add a "condition" field to anyOf/oneOf schemas that refers to args. e.g. when `SET` return NULL, the condition is `arguments.get||arguments.condition`, for `OK` the condition is `!arguments.get`, and for `string` the condition is `arguments.get` - https://github.com/redis/redis/issues/11896 - [x] (maybe a different PR) also run `runtest-cluster` in the req-res logging mode - [x] add the new tests to GH actions (i.e. compile with `-DLOG_REQ_RES`, run the tests, and run the validator) - [x] (maybe a different PR) figure out a way to warn about (sub)schemas that are uncovered by the output of the tests - https://github.com/redis/redis/issues/11897 - [x] (probably a separate PR) add all missing schemas - [x] check why "SDOWN is triggered by misconfigured instance replying with errors" fails with --log-req-res - [x] move the response transformers to their own file (run both regular, cluster, and sentinel tests - need to fight with the tcl including mechanism a bit) - [x] issue: module API - https://github.com/redis/redis/issues/11898 - [x] (probably a separate PR): improve schemas: add `required` to `object`s - https://github.com/redis/redis/issues/11899 Co-authored-by: Ozan Tezcan <ozantezcan@gmail.com> Co-authored-by: Hanna Fadida <hanna.fadida@redislabs.com> Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Shaya Potter <shaya@redislabs.com>
* Try to trim strings only when applicable (#11817)uriyage2023-02-281-1/+4
| | | | | | | | | | As `sdsRemoveFreeSpace` have an impact on performance even if it is a no-op (see details at #11508). Only call the function when there is a possibility that the string contains free space. * For strings coming from the network, it's only if they're bigger than PROTO_MBULK_BIG_ARG * For strings coming from scripts, it's only if they're smaller than LUA_CMD_OBJCACHE_MAX_LEN * For strings coming from modules, it could be anything. Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: sundb <sundbcn@gmail.com>
* Add CLIENT NO-TOUCH for clients to run commands without affecting LRU/LFU of ↵Chen Tianjie2023-02-231-0/+1
| | | | | | | | | | | | | | | | | | | | | | | keys (#11483) When no-touch mode is enabled, the client will not touch LRU/LFU of the keys it accesses, except when executing command `TOUCH`. This allows inspecting or modifying the key-space without affecting their eviction. Changes: - A command `CLIENT NO-TOUCH ON|OFF` to switch on and off this mode. - A client flag `#define CLIENT_NOTOUCH (1ULL<<45)`, which can be shown with `CLIENT INFO`, by the letter "T" in the "flags" field. - Clear `NO-TOUCH` flag in `clearClientConnectionState`, which is used by `RESET` command and resetting temp clients used by modules. - Also clear `NO-EVICT` flag in `clearClientConnectionState`, this might have been an oversight, spotted by @madolson. - A test using `DEBUG OBJECT` command to verify that LRU stat is not touched when no-touch mode is on. Co-authored-by: chentianjie <chentianjie@alibaba-inc.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com> Co-authored-by: sundb <sundbcn@gmail.com>
* Cleanup around script_caller, fix tracking of scripts and ACL logging for ↵Oran Agra2023-02-161-3/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | RM_Call (#11770) * Make it clear that current_client is the root client that was called by external connection * add executing_client which is the client that runs the current command (can be a module or a script) * Remove script_caller that was used for commands that have CLIENT_SCRIPT to get the client that called the script. in most cases, that's the current_client, and in others (when being called from a module), it could be an intermediate client when we actually want the original one used by the external connection. bugfixes: * RM_Call with C flag should log ACL errors with the requested user rather than the one used by the original client, this also solves a crash when RM_Call is used with C flag from a detached thread safe context. * addACLLogEntry would have logged info about the script_caller, but in case the script was issued by a module command we actually want the current_client. the exception is when RM_Call is called from a timer event, in which case we don't have a current_client. behavior changes: * client side tracking for scripts now tracks the keys that are read by the script instead of the keys that are declared by the caller for EVAL other changes: * Log both current_client and executing_client in the crash log. * remove prepareLuaClient and resetLuaClient, being dead code that was forgotten. * remove scriptTimeSnapshot and snapshot_time and instead add cmd_time_snapshot that serves all commands and is reset only when execution nesting starts. * remove code to propagate CLIENT_FORCE_REPL from the executed command to the script caller since scripts aren't propagated anyway these days and anyway this flag wouldn't have had an effect since CLIENT_PREVENT_PROP is added by scriptResetRun. * fix a module GIL violation issue in afterSleep that was introduced in #10300 (unreleased)
* SCAN/RANDOMKEY and lazy-expire (#11788)guybe72023-02-141-0/+7
| | | | | | | | | | | | | | | | | | | | | Starting from Redis 7.0 (#9890) we started wrapping everything a command propagates with MULTI/EXEC. The problem is that both SCAN and RANDOMKEY can lazy-expire arbitrary keys (similar behavior to active-expire), and put DELs in a transaction. Fix: When these commands are called without a parent exec-unit (e.g. not in EVAL or MULTI) we avoid wrapping their DELs in a transaction (for the same reasons active-expire and eviction avoids a transaction) This PR adds a per-command flag that indicates that the command may touch arbitrary keys (not the ones in the arguments), and uses that flag to avoid the MULTI-EXEC. For now, this flag is internal, since we're considering other solutions for the future. Note for cluster mode: if SCAN/RANDOMKEY is inside EVAL/MULTI it can still cause the same situation (as it always did), but it won't cause a CROSSSLOT because replicas and AOF do not perform slot checks. The problem with the above is mainly for 3rd party ecosystem tools that propagate commands from master to master, or feed an AOF file with redis-cli into a master. This PR aims to fix the regression in redis 7.0, and we opened #11792 to try to handle the bigger problem with lazy expire better for another release.
* Match REDISMODULE_OPEN_KEY_* flags to LOOKUP_* flags (#11772)Meir Shpilraien (Spielrein)2023-02-091-1/+1
| | | | | | | | | | | | The PR adds support for the following flags on RedisModule_OpenKey: * REDISMODULE_OPEN_KEY_NONOTIFY - Don't trigger keyspace event on key misses. * REDISMODULE_OPEN_KEY_NOSTATS - Don't update keyspace hits/misses counters. * REDISMODULE_OPEN_KEY_NOEXPIRE - Avoid deleting lazy expired keys. * REDISMODULE_OPEN_KEY_NOEFFECTS - Avoid any effects from fetching the key In addition, added `RM_GetOpenKeyModesAll`, which returns the mask of all supported OpenKey modes. This allows the module to check, in runtime, which OpenKey modes are supported by the current Redis instance.
* Move stat_active_defrag_hits increment to activeDefragAllocViktor Söderqvist2023-01-111-4/+4
| | | | instead of passing it around to every defrag function
* Introduce .is_local method for connection layer (#11672)zhenwei pi2023-01-041-1/+0
| | | | | | | | | | Introduce .is_local method to connection, and implement for TCP/TLS/ Unix socket, also drop 'int islocalClient(client *c)'. Then we can hide the detail into the specific connection types. Uplayer tests a connection is local or not by abstract method only. Signed-off-by: zhenwei pi <pizhenwei@bytedance.com> Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
* reprocess command when client is unblocked on keys (#11012)ranshid2023-01-011-43/+42
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | *TL;DR* --------------------------------------- Following the discussion over the issue [#7551](https://github.com/redis/redis/issues/7551) We decided to refactor the client blocking code to eliminate some of the code duplications and to rebuild the infrastructure better for future key blocking cases. *In this PR* --------------------------------------- 1. reprocess the command once a client becomes unblocked on key (instead of running custom code for the unblocked path that's different than the one that would have run if blocking wasn't needed) 2. eliminate some (now) irrelevant code for handling unblocking lists/zsets/streams etc... 3. modify some tests to intercept the error in cases of error on reprocess after unblock (see details in the notes section below) 4. replace '$' on the client argv with current stream id. Since once we reprocess the stream XREAD we need to read from the last msg and not wait for new msg in order to prevent endless block loop. 5. Added statistics to the info "Clients" section to report the: * `total_blocking_keys` - number of blocking keys * `total_blocking_keys_on_nokey` - number of blocking keys which have at least 1 client which would like to be unblocked on when the key is deleted. 6. Avoid expiring unblocked key during unblock. Previously we used to lookup the unblocked key which might have been expired during the lookup. Now we lookup the key using NOTOUCH and NOEXPIRE to avoid deleting it at this point, so propagating commands in blocked.c is no longer needed. 7. deprecated command flags. We decided to remove the CMD_CALL_STATS and CMD_CALL_SLOWLOG and make an explicit verification in the call() function in order to decide if stats update should take place. This should simplify the logic and also mitigate existing issues: for example module calls which are triggered as part of AOF loading might still report stats even though they are called during AOF loading. *Behavior changes* --------------------------------------------------- 1. As this implementation prevents writing dedicated code handling unblocked streams/lists/zsets, since we now re-process the command once the client is unblocked some errors will be reported differently. The old implementation used to issue ``UNBLOCKED the stream key no longer exists`` in the following cases: - The stream key has been deleted (ie. calling DEL) - The stream and group existed but the key type was changed by overriding it (ie. with set command) - The key not longer exists after we swapdb with a db which does not contains this key - After swapdb when the new db has this key but with different type. In the new implementation the reported errors will be the same as if the command was processed after effect: **NOGROUP** - in case key no longer exists, or **WRONGTYPE** in case the key was overridden with a different type. 2. Reprocessing the command means that some checks will be reevaluated once the client is unblocked. For example, ACL rules might change since the command originally was executed and will fail once the client is unblocked. Another example is OOM condition checks which might enable the command to run and block but fail the command reprocess once the client is unblocked. 3. One of the changes in this PR is that no command stats are being updated once the command is blocked (all stats will be updated once the client is unblocked). This implies that when we have many clients blocked, users will no longer be able to get that information from the command stats. However the information can still be gathered from the client list. **Client blocking** --------------------------------------------------- the blocking on key will still be triggered the same way as it is done today. in order to block the current client on list of keys, the call to blockForKeys will still need to be made which will perform the same as it is today: * add the client to the list of blocked clients on each key * keep the key with a matching list node (position in the global blocking clients list for that key) in the client private blocking key dict. * flag the client with CLIENT_BLOCKED * update blocking statistics * register the client on the timeout table **Key Unblock** --------------------------------------------------- Unblocking a specific key will be triggered (same as today) by calling signalKeyAsReady. the implementation in that part will stay the same as today - adding the key to the global readyList. The reason to maintain the readyList (as apposed to iterating over all clients blocked on the specific key) is in order to keep the signal operation as short as possible, since it is called during the command processing. The main change is that instead of going through a dedicated code path that operates the blocked command we will just call processPendingCommandsAndResetClient. **ClientUnblock (keys)** --------------------------------------------------- 1. Unblocking clients on keys will be triggered after command is processed and during the beforeSleep 8. the general schema is: 9. For each key *k* in the readyList: ``` For each client *c* which is blocked on *k*: in case either: 1. *k* exists AND the *k* type matches the current client blocking type OR 2. *k* exists and *c* is blocked on module command OR 3. *k* does not exists and *c* was blocked with the flag unblock_on_deleted_key do: 1. remove the client from the list of clients blocked on this key 2. remove the blocking list node from the client blocking key dict 3. remove the client from the timeout list 10. queue the client on the unblocked_clients list 11. *NEW*: call processCommandAndResetClient(c); ``` *NOTE:* for module blocked clients we will still call the moduleUnblockClientByHandle which will queue the client for processing in moduleUnblockedClients list. **Process Unblocked clients** --------------------------------------------------- The process of all unblocked clients is done in the beforeSleep and no change is planned in that part. The general schema will be: For each client *c* in server.unblocked_clients: * remove client from the server.unblocked_clients * set back the client readHandler * continue processing the pending command and input buffer. *Some notes regarding the new implementation* --------------------------------------------------- 1. Although it was proposed, it is currently difficult to remove the read handler from the client while it is blocked. The reason is that a blocked client should be unblocked when it is disconnected, or we might consume data into void. 2. While this PR mainly keep the current blocking logic as-is, there might be some future additions to the infrastructure that we would like to have: - allow non-preemptive blocking of client - sometimes we can think that a new kind of blocking can be expected to not be preempt. for example lets imagine we hold some keys on disk and when a command needs to process them it will block until the keys are uploaded. in this case we will want the client to not disconnect or be unblocked until the process is completed (remove the client read handler, prevent client timeout, disable unblock via debug command etc...). - allow generic blocking based on command declared keys - we might want to add a hook before command processing to check if any of the declared keys require the command to block. this way it would be easier to add new kinds of key-based blocking mechanisms. Co-authored-by: Oran Agra <oran@redislabs.com> Signed-off-by: Ran Shidlansik <ranshid@amazon.com>
* Cleanup: Get rid of server.core_propagates (#11572)guybe72022-12-201-3/+4
| | | | | | | | 1. Get rid of server.core_propagates - we can just rely on module/call nesting levels 2. Rename in_nested_call to execution_nesting and update the comment 3. Remove module_ctx_nesting (redundant, we can use execution_nesting) 4. Modify postExecutionUnitOperations according to the comment (The main purpose of this PR) 5. trackingHandlePendingKeyInvalidations: Check the nesting level inside this function
* Fix zuiFind crash / RM_ScanKey hang on SET object listpack encoding (#11581)Binbin2022-12-091-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | In #11290, we added listpack encoding for SET object. But forgot to support it in zuiFind, causes ZINTER, ZINTERSTORE, ZINTERCARD, ZIDFF, ZDIFFSTORE to crash. And forgot to support it in RM_ScanKey, causes it hang. This PR add support SET listpack in zuiFind, and in RM_ScanKey. And add tests for related commands to cover this case. Other changes: - There is no reason for zuiFind to go into the internals of the SET. It can simply use setTypeIsMember and don't care about encoding. - Remove the `#include "intset.h"` from server.h reduce the chance of accidental intset API use. - Move setTypeAddAux, setTypeRemoveAux and setTypeIsMemberAux interfaces to the header. - In scanGenericCommand, use setTypeInitIterator and setTypeNext to handle OBJ_SET scan. - In RM_ScanKey, improve hash scan mode, use lpGetValue like zset, they can share code and better performance. The zuiFind part fixes #11578 Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
* Optimize client memory usage tracking operation while client eviction is ↵Harkrishn Patro2022-12-071-4/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | disabled (#11348) ## Issue During the client input/output buffer processing, the memory usage is incrementally updated to keep track of clients going beyond a certain threshold `maxmemory-clients` to be evicted. However, this additional tracking activity leads to unnecessary CPU cycles wasted when no client-eviction is required. It is applicable in two cases. * `maxmemory-clients` is set to `0` which equates to no client eviction (applicable to all clients) * `CLIENT NO-EVICT` flag is set to `ON` which equates to a particular client not applicable for eviction. ## Solution * Disable client memory usage tracking during the read/write flow when `maxmemory-clients` is set to `0` or `client no-evict` is `on`. The memory usage is tracked only during the `clientCron` i.e. it gets periodically updated. * Cleanup the clients from the memory usage bucket when client eviction is disabled. * When the maxmemory-clients config is enabled or disabled at runtime, we immediately update the memory usage buckets for all clients (tested scanning 80000 took some 20ms) Benchmark shown that this can improve performance by about 5% in certain situations. Co-authored-by: Oran Agra <oran@redislabs.com>
* When converting a set to dict, presize for one more element to be added (#11559)Viktor Söderqvist2022-12-061-0/+1
| | | | | | | | | | | | | | | | | | | In most cases when a listpack or intset is converted to a dict, the conversion is trigged when adding an element. The extra element is added after conversion to dict (in all cases except when the conversion is triggered by set-max-intset-entries being reached). If set-max-listpack-entries is set to a power of two, let's say 128, when adding the 129th element, the 128 element listpack is first converted to a dict with a hashtable presized for 128 elements. After converting to dict, the 129th element is added to the dict which immediately triggers incremental rehashing to size 256. This commit instead presizes the dict to one more element, with the assumption that conversion to dict is followed by adding another element, so the dict doesn't immediately need rehashing. Co-authored-by: sundb <sundbcn@gmail.com> Co-authored-by: Oran Agra <oran@redislabs.com>
* changing addReplySds and sdscat to addReplyStatusLength() within ↵filipe oliveira2022-11-301-0/+1
| | | | | | | | | | | | luaReplyToRedisReply() (#11556) profiling EVALSHA\ we see that luaReplyToRedisReply takes 8.73% out of the 56.90% of luaCallFunction CPU cycles. Using addReplyStatusLength instead of directly composing the protocol to avoid sdscatprintf and addReplySds ( which imply multiple sdslen calls ). The new approach drops luaReplyToRedisReply CPU cycles to 3.77%
* Add a special notification unlink available only for modules (#9406)Huang Zhw2022-11-301-2/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a new module event `RedisModule_Event_Key`, this event is fired when a key is removed from the keyspace. The event includes an open key that can be used for reading the key before it is removed. Modules can also extract the key-name, and use RM_Open or RM_Call to access key from within that event, but shouldn't modify anything from within this event. The following sub events are available: - `REDISMODULE_SUBEVENT_KEY_DELETED` - `REDISMODULE_SUBEVENT_KEY_EXPIRED` - `REDISMODULE_SUBEVENT_KEY_EVICTED` - `REDISMODULE_SUBEVENT_KEY_OVERWRITE` The data pointer can be casted to a RedisModuleKeyInfo structure with the following fields: ``` RedisModuleKey *key; // Opened Key ``` ### internals * We also add two dict functions: `dictTwoPhaseUnlinkFind` finds an element from the table, also get the plink of the entry. The entry is returned if the element is found. The user should later call `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if the key is not found, NULL is returned. These two functions should be used in pair. `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash. * We change `dbOverwrite` to `dbReplaceValue` which just replaces the value of the key and doesn't fire any events. The "overwrite" part (which emits events) is just when called from `setKey`, the other places that called dbOverwrite were ones that just update the value in-place (INCR*, SPOP, and dbUnshareStringValue). This should not have any real impact since `moduleNotifyKeyUnlink` and `signalDeletedKeyAsReady` wouldn't have mattered in these cases anyway (i.e. module keys and stream keys didn't have direct calls to dbOverwrite) * since we allow doing RM_OpenKey from withing these callbacks, we temporarily disable lazy expiry. * We also temporarily disable lazy expiry when we are in unlink/unlink2 callback and keyspace notification callback. * Move special definitions to the top of redismodule.h This is needed to resolve compilation errors with RedisModuleKeyInfoV1 that carries a RedisModuleKey member. Co-authored-by: Oran Agra <oran@redislabs.com>
* Reduce eval related overhead introduced in v7.0 by evalCalcFunctionName (#11521)filipe oliveira2022-11-291-0/+1
| | | | | | | | | | | | | | | | | As being discussed in #10981 we see a degradation in performance between v6.2 and v7.0 of Redis on the EVAL command. After profiling the current unstable branch we can see that we call the expensive function evalCalcFunctionName twice. The current "fix" is to basically avoid calling evalCalcFunctionName and even dictFind(lua_scripts) twice for the same command. Instead we cache the current script's dictEntry (for both Eval and Functions) in the current client so we don't have to repeat these calls. The exception would be when doing an EVAL on a new script that's not yet in the script cache. in that case we will call evalCalcFunctionName (and even evalExtractShebangFlags) twice. Co-authored-by: Oran Agra <oran@redislabs.com>
* Add withscore option to ZRANK and ZREVRANK. (#11235)C Charles2022-11-281-1/+1
| | | | | | | | Add an option "withscores" to ZRANK and ZREVRANK. Add `[withscore]` option to both `zrank` and `zrevrank`, like this: ``` z[rev]rank key member [withscore] ```
* Add redis_ prefix for member2struct, avoid redefined warning in FreeBSD (#11549)Binbin2022-11-271-1/+1
| | | | | | | | | | | | | It look like it will generate a warning in FreeBSD: ``` ./server.h:105:9: warning: 'member2struct' macro redefined [-Wmacro-redefined] #define member2struct(struct_name, member_name, member_addr) \ ^ /usr/include/sys/param.h:365:9: note: previous definition is here #define member2struct(s, m, x) \ ^ ``` Add a `redis_` prefix to it, avoid the warning, introduced in #11511
* Module API to allow writes after key space notification hooks (#11199)Meir Shpilraien (Spielrein)2022-11-241-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ### Summary of API additions * `RedisModule_AddPostNotificationJob` - new API to call inside a key space notification (and on more locations in the future) and allow to add a post job as describe above. * New module option, `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`, allows to disable Redis protection of nested key-space notifications. * `RedisModule_GetModuleOptionsAll` - gets the mask of all supported module options so a module will be able to check if a given option is supported by the current running Redis instance. ### Background The following PR is a proposal of handling write operations inside module key space notifications. After a lot of discussions we came to a conclusion that module should not perform any write operations on key space notification. Some examples of issues that such write operation can cause are describe on the following links: * Bad replication oreder - https://github.com/redis/redis/pull/10969 * Used after free - https://github.com/redis/redis/pull/10969#issuecomment-1223771006 * Used after free - https://github.com/redis/redis/pull/9406#issuecomment-1221684054 There are probably more issues that are yet to be discovered. The underline problem with writing inside key space notification is that the notification runs synchronously, this means that the notification code will be executed in the middle on Redis logic (commands logic, eviction, expire). Redis **do not assume** that the data might change while running the logic and such changes can crash Redis or cause unexpected behaviour. The solution is to state that modules **should not** perform any write command inside key space notification (we can chose whether or not we want to force it). To still cover the use-case where module wants to perform a write operation as a reaction to key space notifications, we introduce a new API , `RedisModule_AddPostNotificationJob`, that allows to register a callback that will be called by Redis when the following conditions hold: * It is safe to perform any write operation. * The job will be called atomically along side the operation that triggers it (in our case, key space notification). Module can use this new API to safely perform any write operation and still achieve atomicity between the notification and the write. Although currently the API is supported on key space notifications, the API is written in a generic way so that in the future we will be able to use it on other places (server events for example). ### Technical Details Whenever a module uses `RedisModule_AddPostNotificationJob` the callback is added to a list of callbacks (called `modulePostExecUnitJobs`) that need to be invoke after the current execution unit ends (whether its a command, eviction, or active expire). In order to trigger those callback atomically with the notification effect, we call those callbacks on `postExecutionUnitOperations` (which was `propagatePendingCommands` before this PR). The new function fires the post jobs and then calls `propagatePendingCommands`. If the callback perform more operations that triggers more key space notifications. Those keys space notifications might register more callbacks. Those callbacks will be added to the end of `modulePostExecUnitJobs` list and will be invoke atomically after the current callback ends. This raises a concerns of entering an infinite loops, we consider infinite loops as a logical bug that need to be fixed in the module, an attempt to protect against infinite loops by halting the execution could result in violation of the feature correctness and so **Redis will make no attempt to protect the module from infinite loops** In addition, currently key space notifications are not nested. Some modules might want to allow nesting key-space notifications. To allow that and keep backward compatibility, we introduce a new module option called `REDISMODULE_OPTIONS_ALLOW_NESTED_KEYSPACE_NOTIFICATIONS`. Setting this option will disable the Redis key-space notifications nesting protection and will pass this responsibility to the module. ### Redis infrastructure This PR promotes the existing `propagatePendingCommands` to an "Execution Unit" concept, which is called after each atomic unit of execution, Co-authored-by: Oran Agra <oran@redislabs.com> Co-authored-by: Yossi Gottlieb <yossigo@gmail.com> Co-authored-by: Madelyn Olson <34459052+madolson@users.noreply.github.com>
* Fix sanitizer warning, use offsetof instread of member_offset (#11539)Binbin2022-11-241-4/+2
| | | | | | | | | | | | | | | | | | | | | | In #11511 we introduced member_offset which has a sanitizer warning: ``` multi.c:390:26: runtime error: member access within null pointer of type 'watchedKey' (aka 'struct watchedKey') SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior multi.c:390:26 ``` We can use offsetof() from stddef.h. This is part of the standard lib just to avoid this UB :) Sanitizer should not complain after we change this. 1. Use offsetof instead of member_offset, so we can delete this now 2. Changed (uint8_t*) cast to (char*). This does not matter much but according to standard, we are only allowed to cast pointers to its own type, char* and void*. Let's try to follow the rules. This change was suggested by tezc and the comments is also from him. Co-authored-by: Ozan Tezcan <ozantezcan@gmail.com>
* optimize unwatchAllKeys() (#11511)Mingyi Kang2022-11-231-0/+7
| | | | | | | | | | | | | | | | | In unwatchAllKeys() function, we traverse all the keys watched by the client, and for each key we need to remove the client from the list of clients watching that key. This is implemented by listSearchKey which traverses the list of clients. If we can reach the node of the list of clients from watchedKey in O(1) time, then we do not need to call listSearchKey anymore. Changes in this PR: put the node of the list of clients of each watched key in the db inside the watchedKey structure. In this way, for every key watched by the client, we can get the watchedKey structure and then reach the node in the list of clients in db->watched_keys to remove it from that list. From the perspective of the list of clients watching the key, the list node is inside a watchedKey structure, so we can get to the watchedKey struct from the listnode by struct member offset math. And because of this, node->value is not used, we can point node->value to the list itself, so that we don't need to fetch the list of clients from the dict.
* Introduce Shard IDs to logically group nodes in cluster mode (#10536)Ping Xie2022-11-161-0/+4
| | | | | | | | | | | Introduce Shard IDs to logically group nodes in cluster mode. 1. Added a new "shard_id" field to "cluster nodes" output and nodes.conf after "hostname" 2. Added a new PING extension to propagate "shard_id" 3. Handled upgrade from pre-7.2 releases automatically 4. Refactored PING extension assembling/parsing logic Behavior of Shard IDs: Replicas will always follow the shards of their reported primaries. If a primary updates its shard ID, the replica will follow. (This need not follow for cluster v2) This is not an expected use case.
* Add listpack encoding for list (#11303)sundb2022-11-161-3/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Improve memory efficiency of list keys ## Description of the feature The new listpack encoding uses the old `list-max-listpack-size` config to perform the conversion, which we can think it of as a node inside a quicklist, but without 80 bytes overhead (internal fragmentation included) of quicklist and quicklistNode structs. For example, a list key with 5 items of 10 chars each, now takes 128 bytes instead of 208 it used to take. ## Conversion rules * Convert listpack to quicklist When the listpack length or size reaches the `list-max-listpack-size` limit, it will be converted to a quicklist. * Convert quicklist to listpack When a quicklist has only one node, and its length or size is reduced to half of the `list-max-listpack-size` limit, it will be converted to a listpack. This is done to avoid frequent conversions when we add or remove at the bounding size or length. ## Interface changes 1. add list entry param to listTypeSetIteratorDirection When list encoding is listpack, `listTypeIterator->lpi` points to the next entry of current entry, so when changing the direction, we need to use the current node (listTypeEntry->p) to update `listTypeIterator->lpi` to the next node in the reverse direction. ## Benchmark ### Listpack VS Quicklist with one node * LPUSH - roughly 0.3% improvement * LRANGE - roughly 13% improvement ### Both are quicklist * LRANGE - roughly 3% improvement * LRANGE without pipeline - roughly 3% improvement From the benchmark, as we can see from the results 1. When list is quicklist encoding, LRANGE improves performance by <5%. 2. When list is listpack encoding, LRANGE improves performance by ~13%, the main enhancement is brought by `addListListpackRangeReply()`. ## Memory usage 1M lists(key:0~key:1000000) with 5 items of 10 chars ("hellohello") each. shows memory usage down by 35.49%, from 214MB to 138MB. ## Note 1. Add conversion callback to support doing some work before conversion Since the quicklist iterator decompresses the current node when it is released, we can no longer decompress the quicklist after we convert the list.
* Listpack encoding for sets (#11290)Viktor Söderqvist2022-11-091-2/+6
| | | | | | | | | | | | | | | | | | | | Small sets with not only integer elements are listpack encoded, by default up to 128 elements, max 64 bytes per element, new config `set-max-listpack-entries` and `set-max-listpack-value`. This saves memory for small sets compared to using a hashtable. Sets with only integers, even very small sets, are still intset encoded (up to 1G limit, etc.). Larger sets are hashtable encoded. This PR increments the RDB version, and has an effect on OBJECT ENCODING Possible conversions when elements are added: intset -> listpack listpack -> hashtable intset -> hashtable Note: No conversion happens when elements are deleted. If all elements are deleted and then added again, the set is deleted and recreated, thus implicitly converted to a smaller encoding.
* Re-design cluster link send buffer to improve memory management (#11343)Brennan2022-11-011-1/+1
| | | Re-design cluster link send queue to improve memory management
* Refactor and (internally) rebrand from pause-clients to pause-actions (#11098)Moti Cohen2022-10-271-15/+24
| | | | | | | | | | | | | | | | | | | | | Renamed from "Pause Clients" to "Pause Actions" since the mechanism can pause several actions in redis, not just clients (e.g. eviction, expiration). Previously each pause purpose (which has a timeout that's tracked separately from others purposes), also implicitly dictated what it pauses (reads, writes, eviction, etc). Now it is explicit, and the actions that are paused (bit flags) are defined separately from the purpose. - Previously, when using feature pause-client it also implicitly means to make the server static: - Pause replica traffic - Pauses eviction processing - Pauses expire processing Making the server static is used also for failover and shutdown. This PR internally rebrand pause-client API to become pause-action API. It also Simplifies pauseClients structure by replacing pointers array with static array. The context of this PR is to add another trigger to pause-client which will activated in case of OOM as throttling mechanism ([see here](https://github.com/redis/redis/issues/10907)). In this case we want only to pause client, and eviction actions.
* RM_Call - only enforce OOM on scripts if 'M' flag is sent (#11425)Shaya Potter2022-10-271-0/+2
| | | | | | | | | | | | | | | | | RM_Call is designed to let modules call redis commands disregarding the OOM state (the module is responsible to declare its command flags to redis, or perform the necessary checks). The other (new) alternative is to pass the "M" flag to RM_Call so that redis can OOM reject commands implicitly. However, Currently, RM_Call enforces OOM on scripts (excluding scripts that declared `allow-oom`) in all cases, regardless of the RM_Call "M" flag being present. This PR fixes scripts to be consistent with other commands being executed by RM_Call. It modifies the flow in effect treats scripts as if they if they have the ALLOW_OOM script flag, if the "M" flag is not passed (i.e. no OOM checking is being performed by RM_Call, so no OOM checking should be done on script). Co-authored-by: Oran Agra <oran@redislabs.com>
* Blocked module clients should be aware when a key is deleted (#11310)guybe72022-10-181-2/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The use case is a module that wants to implement a blocking command on a key that necessarily exists and wants to unblock the client in case the key is deleted (much like what we implemented for XREADGROUP in #10306) New module API: * RedisModule_BlockClientOnKeysWithFlags Flags: * REDISMODULE_BLOCK_UNBLOCK_NONE * REDISMODULE_BLOCK_UNBLOCK_DELETED ### Detailed description of code changes blocked.c: 1. Both module and stream functions are called whether the key exists or not, regardless of its type. We do that in order to allow modules/stream to unblock the client in case the key is no longer present or has changed type (the behavior for streams didn't change, just code that moved into serveClientsBlockedOnStreamKey) 2. Make sure afterCommand is called in serveClientsBlockedOnKeyByModule, in order to propagate actions from moduleTryServeClientBlockedOnKey. 3. handleClientsBlockedOnKeys: call propagatePendingCommands directly after lookupKeyReadWithFlags to prevent a possible lazy-expire DEL from being mixed with any command propagated by the preceding functions. 4. blockForKeys: Caller can specifiy that it wants to be awakened if key is deleted. Minor optimizations (use dictAddRaw). 5. signalKeyAsReady became signalKeyAsReadyLogic which can take a boolean in case the key is deleted. It will only signal if there's at least one client that awaits key deletion (to save calls to handleClientsBlockedOnKeys). Minor optimizations (use dictAddRaw) db.c: 1. scanDatabaseForDeletedStreams is now scanDatabaseForDeletedKeys and will signalKeyAsReady for any key that was removed from the database or changed type. It is the responsibility of the code in blocked.c to ignore or act on deleted/type-changed keys. 2. Use the new signalDeletedKeyAsReady where needed blockedonkey.c + tcl: 1. Added test of new capabilities (FSL.BPOPGT now requires the key to exist in order to work)
* Avoid saving module aux on RDB if no aux data was saved by the module. (#11374)Meir Shpilraien (Spielrein)2022-10-181-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ### Background The issue is that when saving an RDB with module AUX data, the module AUX metadata (moduleid, when, ...) is saved to the RDB even though the module did not saved any actual data. This prevent loading the RDB in the absence of the module (although there is no actual data in the RDB that requires the module to be loaded). ### Solution The solution suggested in this PR is that module AUX will be saved on the RDB only if the module actually saved something during `aux_save` function. To support backward compatibility, we introduce `aux_save2` callback that acts the same as `aux_save` with the tiny change of avoid saving the aux field if no data was actually saved by the module. Modules can use the new API to make sure that if they have no data to save, then it will be possible to load the created RDB even without the module. ### Concerns A module may register for the aux load and save hooks just in order to be notified when saving or loading starts or completed (there are better ways to do that, but it still possible that someone used it). However, if a module didn't save a single field in the save callback, it means it's not allowed to read in the read callback, since it has no way to distinguish between empty and non-empty payloads. furthermore, it means that if the module did that, it must never change it, since it'll break compatibility with it's old RDB files, so this is really not a valid use case. Since some modules (ones who currently save one field indicating an empty payload), need to know if saving an empty payload is valid, and if Redis is gonna ignore an empty payload or store it, we opted to add a new API (rather than change behavior of an existing API and expect modules to check the redis version) ### Technical Details To avoid saving AUX data on RDB, we change the code to first save the AUX metadata (moduleid, when, ...) into a temporary buffer. The buffer is then flushed to the rio at the first time the module makes a write operation inside the `aux_save` function. If the module saves nothing (and `aux_save2` was used), the entire temporary buffer is simply dropped and no data about this AUX field is saved to the RDB. This make it possible to load the RDB even in the absence of the module. Test was added to verify the fix.
* Unify ACL failure error messaging. (#11160)Shaya Potter2022-10-161-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Motivation: for applications that use RM ACL verification functions, they would want to return errors back to the user, in ways that are consistent with Redis. While investigating how we should return ACL errors to the user, we realized that Redis isn't consistent, and currently returns ACL error strings in 3 primary ways. [For the actual implications of this change, see the "Impact" section at the bottom] 1. how it returns an error when calling a command normally ACL_DENIED_CMD -> "this user has no permissions to run the '%s' command" ACL_DENIED_KEY -> "this user has no permissions to access one of the keys used as arguments" ACL_DENIED_CHANNEL -> "this user has no permissions to access one of the channels used as arguments" 2. how it returns an error when calling via 'acl dryrun' command ACL_DENIED_CMD -> "This user has no permissions to run the '%s' command" ACL_DENIED_KEY -> "This user has no permissions to access the '%s' key" ACL_DENIED_CHANNEL -> "This user has no permissions to access the '%s' channel" 3. how it returns an error via RM_Call (and scripting is similar). ACL_DENIED_CMD -> "can't run this command or subcommand"; ACL_DENIED_KEY -> "can't access at least one of the keys mentioned in the command arguments"; ACL_DENIED_CHANNEL -> "can't publish to the channel mentioned in the command"; In addition, if one wants to use RM_Call's "dry run" capability instead of the RM ACL functions directly, one also sees a different problem than it returns ACL errors with a -ERR, not a -PERM, so it can't be returned directly to the caller. This PR modifies the code to generate a base message in a common manner with the ability to set verbose flag for acl dry run errors, and keep it unset for normal/rm_call/script cases ```c sds getAclErrorMessage(int acl_res, user *user, struct redisCommand *cmd, sds errored_val, int verbose) { switch (acl_res) { case ACL_DENIED_CMD: return sdscatfmt(sdsempty(), "User %S has no permissions to run " "the '%S' command", user->name, cmd->fullname); case ACL_DENIED_KEY: if (verbose) { return sdscatfmt(sdsempty(), "User %S has no permissions to access " "the '%S' key", user->name, errored_val); } else { return sdsnew("No permissions to access a key"); } case ACL_DENIED_CHANNEL: if (verbose) { return sdscatfmt(sdsempty(), "User %S has no permissions to access " "the '%S' channel", user->name, errored_val); } else { return sdsnew("No permissions to access a channel"); } } ``` The caller can append/prepend the message (adding NOPERM for normal/RM_Call or indicating it's within a script). Impact: - Plain commands, as well as scripts and RM_Call now include the user name. - ACL DRYRUN remains the only one that's verbose (mentions the offending channel or key name) - Changes RM_Call ACL errors from being a `-ERR` to being `-NOPERM` (besides for textual changes) **This somewhat a breaking change, but it only affects the RM_Call with both `C` and `E`, or `D`** - Changes ACL errors in scripts textually from being `The user executing the script <old non unified text>` to `ACL failure in script: <new unified text>`
* Freeze time sampling during command execution, and scripts (#10300)Binbin2022-10-091-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Freeze time during execution of scripts and all other commands. This means that a key is either expired or not, and doesn't change state during a script execution. resolves #10182 This PR try to add a new `commandTimeSnapshot` function. The function logic is extracted from `keyIsExpired`, but the related calls to `fixed_time_expire` and `mstime()` are removed, see below. In commands, we will avoid calling `mstime()` multiple times and just use the one that sampled in call. The background is, e.g. using `PEXPIRE 1` with valgrind sometimes result in the key being deleted rather than expired. The reason is that both `PEXPIRE` command and `checkAlreadyExpired` call `mstime()` separately. There are other more important changes in this PR: 1. Eliminate `fixed_time_expire`, it is no longer needed. When we want to sample time we should always use a time snapshot. We will use `in_nested_call` instead to update the cached time in `call`. 2. Move the call for `updateCachedTime` from `serverCron` to `afterSleep`. Now `commandTimeSnapshot` will always return the sample time, the `lookupKeyReadWithFlags` call in `getNodeByQuery` will get a outdated cached time (because `processCommand` is out of the `call` context). We put the call to `updateCachedTime` in `aftersleep`. 3. Cache the time each time the module lock Redis. Call `updateCachedTime` in `moduleGILAfterLock`, affecting `RM_ThreadSafeContextLock` and `RM_ThreadSafeContextTryLock` Currently the commandTimeSnapshot change affects the following TTL commands: - SET EX / SET PX - EXPIRE / PEXPIRE - SETEX / PSETEX - GETEX EX / GETEX PX - TTL / PTTL - EXPIRETIME / PEXPIRETIME - RESTORE key TTL And other commands just use the cached mstime (including TIME). This is considered to be a breaking change since it can break a script that uses a loop to wait for a key to expire.
* Added authentication failure and access denied metrics (#11288)aradz442022-10-071-0/+10
| | | Added authentication failure and access denied metrics
* Stabilize cluster hostnames tests (#11307)Madelyn Olson2022-10-031-0/+1
| | | | | | | | This PR introduces a couple of changes to improve cluster test stability: 1. Increase the cluster node timeout to 3 seconds, which is similar to the normal cluster tests, but introduce a new mechanism to increase the ping period so that the tests are still fast. This new config is a debug config. 2. Set `cluster-replica-no-failover yes` on a wider array of tests which are sensitive to failovers. This was occurring on the ARM CI.