summaryrefslogtreecommitdiff
path: root/deps/jemalloc/src/chunk_dss.c
blob: 61fc91696192476304939721e8c338779575614f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#define	JEMALLOC_CHUNK_DSS_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */

const char	*dss_prec_names[] = {
	"disabled",
	"primary",
	"secondary",
	"N/A"
};

/* Current dss precedence default, used when creating new arenas. */
static dss_prec_t	dss_prec_default = DSS_PREC_DEFAULT;

/*
 * Protects sbrk() calls.  This avoids malloc races among threads, though it
 * does not protect against races with threads that call sbrk() directly.
 */
static malloc_mutex_t	dss_mtx;

/* Base address of the DSS. */
static void		*dss_base;
/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
static void		*dss_prev;
/* Current upper limit on DSS addresses. */
static void		*dss_max;

/******************************************************************************/

static void *
chunk_dss_sbrk(intptr_t increment)
{

#ifdef JEMALLOC_DSS
	return (sbrk(increment));
#else
	not_implemented();
	return (NULL);
#endif
}

dss_prec_t
chunk_dss_prec_get(void)
{
	dss_prec_t ret;

	if (!have_dss)
		return (dss_prec_disabled);
	malloc_mutex_lock(&dss_mtx);
	ret = dss_prec_default;
	malloc_mutex_unlock(&dss_mtx);
	return (ret);
}

bool
chunk_dss_prec_set(dss_prec_t dss_prec)
{

	if (!have_dss)
		return (dss_prec != dss_prec_disabled);
	malloc_mutex_lock(&dss_mtx);
	dss_prec_default = dss_prec;
	malloc_mutex_unlock(&dss_mtx);
	return (false);
}

void *
chunk_alloc_dss(arena_t *arena, void *new_addr, size_t size, size_t alignment,
    bool *zero, bool *commit)
{
	cassert(have_dss);
	assert(size > 0 && (size & chunksize_mask) == 0);
	assert(alignment > 0 && (alignment & chunksize_mask) == 0);

	/*
	 * sbrk() uses a signed increment argument, so take care not to
	 * interpret a huge allocation request as a negative increment.
	 */
	if ((intptr_t)size < 0)
		return (NULL);

	malloc_mutex_lock(&dss_mtx);
	if (dss_prev != (void *)-1) {

		/*
		 * The loop is necessary to recover from races with other
		 * threads that are using the DSS for something other than
		 * malloc.
		 */
		do {
			void *ret, *cpad, *dss_next;
			size_t gap_size, cpad_size;
			intptr_t incr;
			/* Avoid an unnecessary system call. */
			if (new_addr != NULL && dss_max != new_addr)
				break;

			/* Get the current end of the DSS. */
			dss_max = chunk_dss_sbrk(0);

			/* Make sure the earlier condition still holds. */
			if (new_addr != NULL && dss_max != new_addr)
				break;

			/*
			 * Calculate how much padding is necessary to
			 * chunk-align the end of the DSS.
			 */
			gap_size = (chunksize - CHUNK_ADDR2OFFSET(dss_max)) &
			    chunksize_mask;
			/*
			 * Compute how much chunk-aligned pad space (if any) is
			 * necessary to satisfy alignment.  This space can be
			 * recycled for later use.
			 */
			cpad = (void *)((uintptr_t)dss_max + gap_size);
			ret = (void *)ALIGNMENT_CEILING((uintptr_t)dss_max,
			    alignment);
			cpad_size = (uintptr_t)ret - (uintptr_t)cpad;
			dss_next = (void *)((uintptr_t)ret + size);
			if ((uintptr_t)ret < (uintptr_t)dss_max ||
			    (uintptr_t)dss_next < (uintptr_t)dss_max) {
				/* Wrap-around. */
				malloc_mutex_unlock(&dss_mtx);
				return (NULL);
			}
			incr = gap_size + cpad_size + size;
			dss_prev = chunk_dss_sbrk(incr);
			if (dss_prev == dss_max) {
				/* Success. */
				dss_max = dss_next;
				malloc_mutex_unlock(&dss_mtx);
				if (cpad_size != 0) {
					chunk_hooks_t chunk_hooks =
					    CHUNK_HOOKS_INITIALIZER;
					chunk_dalloc_wrapper(arena,
					    &chunk_hooks, cpad, cpad_size,
					    true);
				}
				if (*zero) {
					JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED(
					    ret, size);
					memset(ret, 0, size);
				}
				if (!*commit)
					*commit = pages_decommit(ret, size);
				return (ret);
			}
		} while (dss_prev != (void *)-1);
	}
	malloc_mutex_unlock(&dss_mtx);

	return (NULL);
}

bool
chunk_in_dss(void *chunk)
{
	bool ret;

	cassert(have_dss);

	malloc_mutex_lock(&dss_mtx);
	if ((uintptr_t)chunk >= (uintptr_t)dss_base
	    && (uintptr_t)chunk < (uintptr_t)dss_max)
		ret = true;
	else
		ret = false;
	malloc_mutex_unlock(&dss_mtx);

	return (ret);
}

bool
chunk_dss_boot(void)
{

	cassert(have_dss);

	if (malloc_mutex_init(&dss_mtx))
		return (true);
	dss_base = chunk_dss_sbrk(0);
	dss_prev = dss_base;
	dss_max = dss_base;

	return (false);
}

void
chunk_dss_prefork(void)
{

	if (have_dss)
		malloc_mutex_prefork(&dss_mtx);
}

void
chunk_dss_postfork_parent(void)
{

	if (have_dss)
		malloc_mutex_postfork_parent(&dss_mtx);
}

void
chunk_dss_postfork_child(void)
{

	if (have_dss)
		malloc_mutex_postfork_child(&dss_mtx);
}

/******************************************************************************/