summaryrefslogtreecommitdiff
path: root/src/defrag.c
blob: ddfd6e2dd8afa1bd850e530169968c1f2fb3a4cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/* 
 * Active memory defragmentation
 * Try to find key / value allocations that need to be re-allocated in order 
 * to reduce external fragmentation.
 * We do that by scanning the keyspace and for each pointer we have, we can try to
 * ask the allocator if moving it to a new address will help reduce fragmentation.
 *
 * Copyright (c) 2017, Oran Agra
 * Copyright (c) 2017, Redis Labs, Inc
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *   * Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of Redis nor the names of its contributors may be used
 *     to endorse or promote products derived from this software without
 *     specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "server.h"
#include <time.h>
#include <assert.h>
#include <stddef.h>

#ifdef HAVE_DEFRAG

/* this method was added to jemalloc in order to help us understand which
 * pointers are worthwhile moving and which aren't */
int je_get_defrag_hint(void* ptr, int *bin_util, int *run_util);

/* Defrag helper for generic allocations.
 *
 * returns NULL in case the allocatoin wasn't moved.
 * when it returns a non-null value, the old pointer was already released
 * and should NOT be accessed. */
void* activeDefragAlloc(void *ptr) {
    int bin_util, run_util;
    size_t size;
    void *newptr;
    if(!je_get_defrag_hint(ptr, &bin_util, &run_util)) {
        server.stat_active_defrag_misses++;
        return NULL;
    }
    /* if this run is more utilized than the average utilization in this bin
     * (or it is full), skip it. This will eventually move all the allocations
     * from relatively empty runs into relatively full runs. */
    if (run_util > bin_util || run_util == 1<<16) {
        server.stat_active_defrag_misses++;
        return NULL;
    }
    /* move this allocation to a new allocation.
     * make sure not to use the thread cache. so that we don't get back the same
     * pointers we try to free */
    size = zmalloc_size(ptr);
    newptr = zmalloc_no_tcache(size);
    memcpy(newptr, ptr, size);
    zfree_no_tcache(ptr);
    return newptr;
}

/*Defrag helper for sds strings
 *
 * returns NULL in case the allocatoin wasn't moved.
 * when it returns a non-null value, the old pointer was already released
 * and should NOT be accessed. */
sds activeDefragSds(sds sdsptr) {
    void* ptr = sdsAllocPtr(sdsptr);
    void* newptr = activeDefragAlloc(ptr);
    if (newptr) {
        size_t offset = sdsptr - (char*)ptr;
        sdsptr = (char*)newptr + offset;
        return sdsptr;
    }
    return NULL;
}

/* Defrag helper for robj and/or string objects
 *
 * returns NULL in case the allocatoin wasn't moved.
 * when it returns a non-null value, the old pointer was already released
 * and should NOT be accessed. */
robj *activeDefragStringOb(robj* ob, int *defragged) {
    robj *ret = NULL;
    if (ob->refcount!=1)
        return NULL;

    /* try to defrag robj (only if not an EMBSTR type (handled below). */
    if (ob->type!=OBJ_STRING || ob->encoding!=OBJ_ENCODING_EMBSTR) {
        if ((ret = activeDefragAlloc(ob))) {
            ob = ret;
            (*defragged)++;
        }
    }

    /* try to defrag string object */
    if (ob->type == OBJ_STRING) {
        if(ob->encoding==OBJ_ENCODING_RAW) {
            sds newsds = activeDefragSds((sds)ob->ptr);
            if (newsds) {
                ob->ptr = newsds;
                (*defragged)++;
            }
        } else if (ob->encoding==OBJ_ENCODING_EMBSTR) {
            /* The sds is embedded in the object allocation, calculate the
             * offset and update the pointer in the new allocation. */
            long ofs = (intptr_t)ob->ptr - (intptr_t)ob;
            if ((ret = activeDefragAlloc(ob))) {
                ret->ptr = (void*)((intptr_t)ret + ofs);
                (*defragged)++;
            }
        } else if (ob->encoding!=OBJ_ENCODING_INT) {
            serverPanic("Unknown string encoding");
        }
    }
    return ret;
}

/* Defrag helper for dictEntries to be used during dict iteration (called on
 * each step). Teturns a stat of how many pointers were moved. */
int dictIterDefragEntry(dictIterator *iter) {
    /* This function is a little bit dirty since it messes with the internals
     * of the dict and it's iterator, but the benefit is that it is very easy
     * to use, and require no other chagnes in the dict. */
    int defragged = 0;
    dictht *ht;
    /* Handle the next entry (if there is one), and update the pointer in the
     * current entry. */
    if (iter->nextEntry) {
        dictEntry *newde = activeDefragAlloc(iter->nextEntry);
        if (newde) {
            defragged++;
            iter->nextEntry = newde;
            iter->entry->next = newde;
        }
    }
    /* handle the case of the first entry in the hash bucket. */
    ht = &iter->d->ht[iter->table];
    if (ht->table[iter->index] == iter->entry) {
        dictEntry *newde = activeDefragAlloc(iter->entry);
        if (newde) {
            iter->entry = newde;
            ht->table[iter->index] = newde;
            defragged++;
        }
    }
    return defragged;
}

/* Defrag helper for dict main allocations (dict struct, and hash tables).
 * receives a pointer to the dict* and implicitly updates it when the dict
 * struct itself was moved. Returns a stat of how many pointers were moved. */
int dictDefragTables(dict** dictRef) {
    dict *d = *dictRef;
    dictEntry **newtable;
    int defragged = 0;
    /* handle the dict struct */
    dict *newd = activeDefragAlloc(d);
    if (newd)
        defragged++, *dictRef = d = newd;
    /* handle the first hash table */
    newtable = activeDefragAlloc(d->ht[0].table);
    if (newtable)
        defragged++, d->ht[0].table = newtable;
    /* handle the second hash table */
    if (d->ht[1].table) {
        newtable = activeDefragAlloc(d->ht[1].table);
        if (newtable)
            defragged++, d->ht[1].table = newtable;
    }
    return defragged;
}

/* Internal function used by zslDefrag */
void zslUpdateNode(zskiplist *zsl, zskiplistNode *oldnode, zskiplistNode *newnode, zskiplistNode **update) {
    int i;
    for (i = 0; i < zsl->level; i++) {
        if (update[i]->level[i].forward == oldnode)
            update[i]->level[i].forward = newnode;
    }
    serverAssert(zsl->header!=oldnode);
    if (newnode->level[0].forward) {
        serverAssert(newnode->level[0].forward->backward==oldnode);
        newnode->level[0].forward->backward = newnode;
    } else {
        serverAssert(zsl->tail==oldnode);
        zsl->tail = newnode;
    }
}

/* Defrag helper for sorted set.
 * Update the robj pointer, defrag the skiplist struct and return the new score
 * reference. We may not access oldele pointer (not even the pointer stored in
 * the skiplist), as it was already freed. Newele may be null, in which case we
 * only need to defrag the skiplist, but not update the obj pointer.
 * When return value is non-NULL, it is the score reference that must be updated
 * in the dict record. */
double *zslDefrag(zskiplist *zsl, double score, sds oldele, sds newele) {
    zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x, *newx;
    int i;
    sds ele = newele? newele: oldele;

    /* find the skiplist node referring to the object that was moved,
     * and all pointers that need to be updated if we'll end up moving the skiplist node. */
    x = zsl->header;
    for (i = zsl->level-1; i >= 0; i--) {
        while (x->level[i].forward &&
            x->level[i].forward->ele != oldele && /* make sure not to access the
                                                     ->obj pointer if it matches
                                                     oldele */
            (x->level[i].forward->score < score ||
                (x->level[i].forward->score == score &&
                sdscmp(x->level[i].forward->ele,ele) < 0)))
            x = x->level[i].forward;
        update[i] = x;
    }

    /* update the robj pointer inside the skip list record. */
    x = x->level[0].forward;
    serverAssert(x && score == x->score && x->ele==oldele);
    if (newele)
        x->ele = newele;

    /* try to defrag the skiplist record itself */
    newx = activeDefragAlloc(x);
    if (newx) {
        zslUpdateNode(zsl, x, newx, update);
        return &newx->score;
    }
    return NULL;
}

/* Utility function that replaces an old key pointer in the dictionary with a
 * new pointer. Additionally, we try to defrag the dictEntry in that dict.
 * Oldkey mey be a dead pointer and should not be accessed (we get a
 * pre-calculated hash value). Newkey may be null if the key pointer wasn't
 * moved. Return value is the the dictEntry if found, or NULL if not found.
 * NOTE: this is very ugly code, but it let's us avoid the complication of
 * doing a scan on another dict. */
dictEntry* replaceSateliteDictKeyPtrAndOrDefragDictEntry(dict *d, sds oldkey, sds newkey, unsigned int hash, int *defragged) {
    dictEntry **deref = dictFindEntryRefByPtrAndHash(d, oldkey, hash);
    if (deref) {
        dictEntry *de = *deref;
        dictEntry *newde = activeDefragAlloc(de);
        if (newde) {
            de = *deref = newde;
            (*defragged)++;
        }
        if (newkey)
            de->key = newkey;
        return de;
    }
    return NULL;
}

/* for each key we scan in the main dict, this function will attempt to defrag
 * all the various pointers it has. Returns a stat of how many pointers were
 * moved. */
int defargKey(redisDb *db, dictEntry *de) {
    sds keysds = dictGetKey(de);
    robj *newob, *ob;
    unsigned char *newzl;
    dict *d;
    dictIterator *di;
    int defragged = 0;
    sds newsds;

    /* Try to defrag the key name. */
    newsds = activeDefragSds(keysds);
    if (newsds)
        defragged++, de->key = newsds;
    if (dictSize(db->expires)) {
         /* Dirty code:
          * I can't search in db->expires for that key after i already released
          * the pointer it holds it won't be able to do the string compare */
        unsigned int hash = dictGetHash(db->dict, de->key);
        replaceSateliteDictKeyPtrAndOrDefragDictEntry(db->expires, keysds, newsds, hash, &defragged);
    }

    /* Try to defrag robj and / or string value. */
    ob = dictGetVal(de);
    if ((newob = activeDefragStringOb(ob, &defragged))) {
        de->v.val = newob;
        ob = newob;
    }

    if (ob->type == OBJ_STRING) {
        /* Already handled in activeDefragStringOb. */
    } else if (ob->type == OBJ_LIST) {
        if (ob->encoding == OBJ_ENCODING_QUICKLIST) {
            quicklist *ql = ob->ptr, *newql;
            quicklistNode *node = ql->head, *newnode;
            if ((newql = activeDefragAlloc(ql)))
                defragged++, ob->ptr = ql = newql;
            do {
                if ((newnode = activeDefragAlloc(node))) {
                    if (newnode->prev)
                        newnode->prev->next = newnode;
                    else
                        ql->head = newnode;
                    if (newnode->next)
                        newnode->next->prev = newnode;
                    else
                        ql->tail = newnode;
                    node = newnode;
                    defragged++;
                }
                if ((newzl = activeDefragAlloc(node->zl)))
                    defragged++, node->zl = newzl;
            } while ((node = node->next));
        } else if (ob->encoding == OBJ_ENCODING_ZIPLIST) {
            if ((newzl = activeDefragAlloc(ob->ptr)))
                defragged++, ob->ptr = newzl;
        } else {
            serverPanic("Unknown list encoding");
        }
    } else if (ob->type == OBJ_SET) {
        if (ob->encoding == OBJ_ENCODING_HT) {
            d = ob->ptr;
            di = dictGetIterator(d);
            while((de = dictNext(di)) != NULL) {
                sds sdsele = dictGetKey(de);
                if ((newsds = activeDefragSds(sdsele)))
                    defragged++, de->key = newsds;
                defragged += dictIterDefragEntry(di);
            }
            dictReleaseIterator(di);
            dictDefragTables((dict**)&ob->ptr);
        } else if (ob->encoding == OBJ_ENCODING_INTSET) {
            intset *is = ob->ptr;
            intset *newis = activeDefragAlloc(is);
            if (newis)
                defragged++, ob->ptr = newis;
        } else {
            serverPanic("Unknown set encoding");
        }
    } else if (ob->type == OBJ_ZSET) {
        if (ob->encoding == OBJ_ENCODING_ZIPLIST) {
            if ((newzl = activeDefragAlloc(ob->ptr)))
                defragged++, ob->ptr = newzl;
        } else if (ob->encoding == OBJ_ENCODING_SKIPLIST) {
            zset *zs = (zset*)ob->ptr;
            zset *newzs;
            zskiplist *newzsl;
            struct zskiplistNode *newheader;
            if ((newzs = activeDefragAlloc(zs)))
                defragged++, ob->ptr = zs = newzs;
            if ((newzsl = activeDefragAlloc(zs->zsl)))
                defragged++, zs->zsl = newzsl;
            if ((newheader = activeDefragAlloc(zs->zsl->header)))
                defragged++, zs->zsl->header = newheader;
            d = zs->dict;
            di = dictGetIterator(d);
            while((de = dictNext(di)) != NULL) {
                double* newscore;
                sds sdsele = dictGetKey(de);
                if ((newsds = activeDefragSds(sdsele)))
                    defragged++, de->key = newsds;
                newscore = zslDefrag(zs->zsl, *(double*)dictGetVal(de), sdsele, newsds);
                if (newscore) {
                    dictSetVal(d, de, newscore);
                    defragged++;
                }
                defragged += dictIterDefragEntry(di);
            }
            dictReleaseIterator(di);
            dictDefragTables(&zs->dict);
        } else {
            serverPanic("Unknown sorted set encoding");
        }
    } else if (ob->type == OBJ_HASH) {
        if (ob->encoding == OBJ_ENCODING_ZIPLIST) {
            if ((newzl = activeDefragAlloc(ob->ptr)))
                defragged++, ob->ptr = newzl;
        } else if (ob->encoding == OBJ_ENCODING_HT) {
            d = ob->ptr;
            di = dictGetIterator(d);
            while((de = dictNext(di)) != NULL) {
                sds sdsele = dictGetKey(de);
                if ((newsds = activeDefragSds(sdsele)))
                    defragged++, de->key = newsds;
                sdsele = dictGetVal(de);
                if ((newsds = activeDefragSds(sdsele)))
                    defragged++, de->v.val = newsds;
                defragged += dictIterDefragEntry(di);
            }
            dictReleaseIterator(di);
            dictDefragTables((dict**)&ob->ptr);
        } else {
            serverPanic("Unknown hash encoding");
        }
    } else {
        serverPanic("Unknown object type");
    }
    return defragged;
}

/* Defrag scan callback for the main db dictionary. */
void defragScanCallback(void *privdata, const dictEntry *de) {
    int defragged = defargKey((redisDb*)privdata, (dictEntry*)de);
    server.stat_active_defrag_hits += defragged;
    if(defragged)
        server.stat_active_defrag_key_hits++;
    else
        server.stat_active_defrag_key_misses++;
}

/* Defrag scan callback for for each hash table bicket,
 * used in order to defrag the dictEntry allocations. */
void defragDictBucketCallback(void *privdata, dictEntry **bucketref) {
    UNUSED(privdata);
    while(*bucketref) {
        dictEntry *de = *bucketref, *newde;
        if ((newde = activeDefragAlloc(de))) {
            *bucketref = newde;
        }
        bucketref = &(*bucketref)->next;
    }
}

/* Utility function to get the fragmentation ratio from jemalloc.
 * It is critical to do that by comparing only heap maps that belown to
 * jemalloc, and skip ones the jemalloc keeps as spare. Since we use this
 * fragmentation ratio in order to decide if a defrag action should be taken
 * or not, a false detection can cause the defragmenter to waste a lot of CPU
 * without the possibility of getting any results. */
float getAllocatorFragmentation(size_t *out_frag_bytes) {
    size_t epoch = 1, allocated = 0, resident = 0, active = 0, sz = sizeof(size_t);
    /* Update the statistics cached by mallctl. */
    je_mallctl("epoch", &epoch, &sz, &epoch, sz);
    /* Unlike RSS, this does not include RSS from shared libraries and other non
     * heap mappings. */
    je_mallctl("stats.resident", &resident, &sz, NULL, 0);
    /* Unlike resident, this doesn't not include the pages jemalloc reserves
     * for re-use (purge will clean that). */
    je_mallctl("stats.active", &active, &sz, NULL, 0);
    /* Unlike zmalloc_used_memory, this matches the stats.resident by taking
     * into account all allocations done by this process (not only zmalloc). */
    je_mallctl("stats.allocated", &allocated, &sz, NULL, 0);
    float frag_pct = ((float)active / allocated)*100 - 100;
    size_t frag_bytes = active - allocated;
    float rss_pct = ((float)resident / allocated)*100 - 100;
    size_t rss_bytes = resident - allocated;
    if(out_frag_bytes)
        *out_frag_bytes = frag_bytes;
    serverLog(LL_DEBUG,
        "allocated=%zu, active=%zu, resident=%zu, frag=%.0f%% (%.0f%% rss), frag_bytes=%zu (%zu%% rss)",
        allocated, active, resident, frag_pct, rss_pct, frag_bytes, rss_bytes);
    return frag_pct;
}

#define INTERPOLATE(x, x1, x2, y1, y2) ( (y1) + ((x)-(x1)) * ((y2)-(y1)) / ((x2)-(x1)) )
#define LIMIT(y, min, max) ((y)<(min)? min: ((y)>(max)? max: (y)))

/* Perform incremental defragmentation work from the serverCron.
 * This works in a similar way to activeExpireCycle, in the sense that
 * we do incremental work across calls. */
void activeDefragCycle(void) {
    static int current_db = -1;
    static unsigned long cursor = 0;
    static redisDb *db = NULL;
    static long long start_scan, start_stat;
    unsigned int iterations = 0;
    unsigned long long defragged = server.stat_active_defrag_hits;
    long long start, timelimit;

    if (server.aof_child_pid!=-1 || server.rdb_child_pid!=-1)
        return; /* Defragging memory while there's a fork will just do damage. */

    /* Once a second, check if we the fragmentation justfies starting a scan
     * or making it more aggressive. */
    run_with_period(1000) {
        size_t frag_bytes;
        float frag_pct = getAllocatorFragmentation(&frag_bytes);
        /* If we're not already running, and below the threshold, exit. */
        if (!server.active_defrag_running) {
            if(frag_pct < server.active_defrag_threshold_lower || frag_bytes < server.active_defrag_ignore_bytes)
                return;
        }

        /* Calculate the adaptive aggressiveness of the defrag */
        int cpu_pct = INTERPOLATE(frag_pct,
                server.active_defrag_threshold_lower,
                server.active_defrag_threshold_upper,
                server.active_defrag_cycle_min,
                server.active_defrag_cycle_max);
        cpu_pct = LIMIT(cpu_pct,
                server.active_defrag_cycle_min,
                server.active_defrag_cycle_max);
         /* We allow increasing the aggressiveness during a scan, but don't
          * reduce it. */
        if (!server.active_defrag_running ||
            cpu_pct > server.active_defrag_running)
        {
            server.active_defrag_running = cpu_pct;
            serverLog(LL_VERBOSE,
                "Starting active defrag, frag=%.0f%%, frag_bytes=%zu, cpu=%d%%",
                frag_pct, frag_bytes, cpu_pct);
        }
    }
    if (!server.active_defrag_running)
        return;

    /* See activeExpireCycle for how timelimit is handled. */
    start = ustime();
    timelimit = 1000000*server.active_defrag_running/server.hz/100;
    if (timelimit <= 0) timelimit = 1;

    do {
        if (!cursor) {
            /* Move on to next database, and stop if we reached the last one. */
            if (++current_db >= server.dbnum) {
                long long now = ustime();
                size_t frag_bytes;
                float frag_pct = getAllocatorFragmentation(&frag_bytes);
                serverLog(LL_VERBOSE,
                    "Active defrag done in %dms, reallocated=%d, frag=%.0f%%, frag_bytes=%zu",
                    (int)((now - start_scan)/1000), (int)(server.stat_active_defrag_hits - start_stat), frag_pct, frag_bytes);

                start_scan = now;
                current_db = -1;
                cursor = 0;
                db = NULL;
                server.active_defrag_running = 0;
                return;
            }
            else if (current_db==0) {
                /* Start a scan from the first database. */
                start_scan = ustime();
                start_stat = server.stat_active_defrag_hits;
            }

            db = &server.db[current_db];
            cursor = 0;
        }

        do {
            cursor = dictScan(db->dict, cursor, defragScanCallback, defragDictBucketCallback, db);
            /* Once in 16 scan iterations, or 1000 pointer reallocations
             * (if we have a lot of pointers in one hash bucket), check if we
             * reached the tiem limit. */
            if (cursor && (++iterations > 16 || server.stat_active_defrag_hits - defragged > 1000)) {
                if ((ustime() - start) > timelimit) {
                    return;
                }
                iterations = 0;
                defragged = server.stat_active_defrag_hits;
            }
        } while(cursor);
    } while(1);
}

#else /* HAVE_DEFRAG */

void activeDefragCycle(void) {
    /* Not implemented yet. */
}

#endif