1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
|
#--
# matrix.rb -
# $Release Version: 1.0$
# $Revision: 1.13 $
# Original Version from Smalltalk-80 version
# on July 23, 1985 at 8:37:17 am
# by Keiju ISHITSUKA
#++
#
# = matrix.rb
#
# An implementation of Matrix and Vector classes.
#
# Author:: Keiju ISHITSUKA
# Documentation:: Gavin Sinclair (sourced from <i>Ruby in a Nutshell</i> (Matsumoto, O'Reilly))
#
# See classes Matrix and Vector for documentation.
#
require "e2mmap.rb"
module ExceptionForMatrix # :nodoc:
extend Exception2MessageMapper
def_e2message(TypeError, "wrong argument type %s (expected %s)")
def_e2message(ArgumentError, "Wrong # of arguments(%d for %d)")
def_exception("ErrDimensionMismatch", "\#{self.name} dimension mismatch")
def_exception("ErrNotRegular", "Not Regular Matrix")
def_exception("ErrOperationNotDefined", "This operation(%s) can\\'t defined")
end
#
# The +Matrix+ class represents a mathematical matrix, and provides methods for creating
# special-case matrices (zero, identity, diagonal, singular, vector), operating on them
# arithmetically and algebraically, and determining their mathematical properties (trace, rank,
# inverse, determinant).
#
# Note that matrices must be rectangular, otherwise an ErrDimensionMismatch is raised.
#
# Also note that the determinant of integer matrices may be approximated unless you
# also <tt>require 'mathn'</tt>. This may be fixed in the future.
#
# == Method Catalogue
#
# To create a matrix:
# * <tt> Matrix[*rows] </tt>
# * <tt> Matrix.[](*rows) </tt>
# * <tt> Matrix.rows(rows, copy = true) </tt>
# * <tt> Matrix.columns(columns) </tt>
# * <tt> Matrix.diagonal(*values) </tt>
# * <tt> Matrix.scalar(n, value) </tt>
# * <tt> Matrix.identity(n) </tt>
# * <tt> Matrix.unit(n) </tt>
# * <tt> Matrix.I(n) </tt>
# * <tt> Matrix.zero(n) </tt>
# * <tt> Matrix.row_vector(row) </tt>
# * <tt> Matrix.column_vector(column) </tt>
#
# To access Matrix elements/columns/rows/submatrices/properties:
# * <tt> [](i, j) </tt>
# * <tt> #row_size </tt>
# * <tt> #column_size </tt>
# * <tt> #row(i) </tt>
# * <tt> #column(j) </tt>
# * <tt> #collect </tt>
# * <tt> #map </tt>
# * <tt> #minor(*param) </tt>
#
# Properties of a matrix:
# * <tt> #regular? </tt>
# * <tt> #singular? </tt>
# * <tt> #square? </tt>
#
# Matrix arithmetic:
# * <tt> *(m) </tt>
# * <tt> +(m) </tt>
# * <tt> -(m) </tt>
# * <tt> #/(m) </tt>
# * <tt> #inverse </tt>
# * <tt> #inv </tt>
# * <tt> ** </tt>
#
# Matrix functions:
# * <tt> #determinant </tt>
# * <tt> #det </tt>
# * <tt> #rank </tt>
# * <tt> #trace </tt>
# * <tt> #tr </tt>
# * <tt> #transpose </tt>
# * <tt> #t </tt>
#
# Conversion to other data types:
# * <tt> #coerce(other) </tt>
# * <tt> #row_vectors </tt>
# * <tt> #column_vectors </tt>
# * <tt> #to_a </tt>
#
# String representations:
# * <tt> #to_s </tt>
# * <tt> #inspect </tt>
#
class Matrix
@RCS_ID='-$Id: matrix.rb,v 1.13 2001/12/09 14:22:23 keiju Exp keiju $-'
# extend Exception2MessageMapper
include ExceptionForMatrix
# instance creations
private_class_method :new
attr_reader :rows
protected :rows
#
# Creates a matrix where each argument is a row.
# Matrix[ [25, 93], [-1, 66] ]
# => 25 93
# -1 66
#
def Matrix.[](*rows)
Matrix.rows(rows, false)
end
#
# Creates a matrix where +rows+ is an array of arrays, each of which is a row
# of the matrix. If the optional argument +copy+ is false, use the given
# arrays as the internal structure of the matrix without copying.
# Matrix.rows([[25, 93], [-1, 66]])
# => 25 93
# -1 66
#
def Matrix.rows(rows, copy = true)
rows = Matrix.convert_to_array(rows)
rows.map! do |row|
Matrix.convert_to_array(row, copy)
end
size = (rows[0] || []).size
rows.each do |row|
Matrix.Raise ErrDimensionMismatch, "element size differs (#{row.size} should be #{size})" unless row.size == size
end
new rows, size
end
#
# Creates a matrix using +columns+ as an array of column vectors.
# Matrix.columns([[25, 93], [-1, 66]])
# => 25 -1
# 93 66
#
def Matrix.columns(columns)
Matrix.rows(columns, false).transpose
end
#
# Creates a matrix where the diagonal elements are composed of +values+.
# Matrix.diagonal(9, 5, -3)
# => 9 0 0
# 0 5 0
# 0 0 -3
#
def Matrix.diagonal(*values)
size = values.size
rows = (0 ... size).collect {|j|
row = Array.new(size).fill(0, 0, size)
row[j] = values[j]
row
}
new rows
end
#
# Creates an +n+ by +n+ diagonal matrix where each diagonal element is
# +value+.
# Matrix.scalar(2, 5)
# => 5 0
# 0 5
#
def Matrix.scalar(n, value)
Matrix.diagonal(*Array.new(n).fill(value, 0, n))
end
#
# Creates an +n+ by +n+ identity matrix.
# Matrix.identity(2)
# => 1 0
# 0 1
#
def Matrix.identity(n)
Matrix.scalar(n, 1)
end
class << Matrix
alias unit identity
alias I identity
end
#
# Creates an +n+ by +n+ zero matrix.
# Matrix.zero(2)
# => 0 0
# 0 0
#
def Matrix.zero(n)
Matrix.scalar(n, 0)
end
#
# Creates a single-row matrix where the values of that row are as given in
# +row+.
# Matrix.row_vector([4,5,6])
# => 4 5 6
#
def Matrix.row_vector(row)
row = Matrix.convert_to_array(row)
new [row]
end
#
# Creates a single-column matrix where the values of that column are as given
# in +column+.
# Matrix.column_vector([4,5,6])
# => 4
# 5
# 6
#
def Matrix.column_vector(column)
column = Matrix.convert_to_array(column)
new [column].transpose, 1
end
#
# Creates a empty matrix of +row_size+ x +column_size+.
# +row_size+ or +column_size+ must be 0.
#
# m = Matrix.empty(2, 0)
# m == Matrix[ [], [] ]
# => true
# n = Matrix.empty(0, 3)
# n == Matrix.columns([ [], [], [] ])
# => true
# m * n
# => Matrix[[0, 0, 0], [0, 0, 0]]
#
def Matrix.empty(row_size = 0, column_size = 0)
Matrix.Raise ErrDimensionMismatch if column_size != 0 && row_size != 0
new([[]]*row_size, column_size)
end
#
# Matrix.new is private; use Matrix.rows, columns, [], etc... to create.
#
def initialize(rows, column_size = rows[0].size)
# No checking is done at this point. rows must be an Array of Arrays.
# column_size must be the size of the first row, if there is one,
# otherwise it *must* be specified and can be any integer >= 0
@rows = rows
@column_size = column_size
end
def new_matrix(rows, column_size = rows[0].size) # :nodoc:
Matrix.send(:new, rows, column_size) # bypass privacy of Matrix.new
end
private :new_matrix
#
# Returns element (+i+,+j+) of the matrix. That is: row +i+, column +j+.
#
def [](i, j)
@rows.fetch(i){return nil}[j]
end
alias element []
alias component []
def []=(i, j, v)
@rows[i][j] = v
end
alias set_element []=
alias set_component []=
private :[]=, :set_element, :set_component
#
# Returns the number of rows.
#
def row_size
@rows.size
end
#
# Returns the number of columns.
#
attr_reader :column_size
#
# Returns row vector number +i+ of the matrix as a Vector (starting at 0 like
# an array). When a block is given, the elements of that vector are iterated.
#
def row(i, &block) # :yield: e
if block_given?
@rows.fetch(i){return self}.each(&block)
self
else
Vector.elements(@rows.fetch(i){return nil})
end
end
#
# Returns column vector number +j+ of the matrix as a Vector (starting at 0
# like an array). When a block is given, the elements of that vector are
# iterated.
#
def column(j) # :yield: e
if block_given?
return self if j >= column_size || j < -column_size
row_size.times do |i|
yield @rows[i][j]
end
self
else
return nil if j >= column_size || j < -column_size
col = (0 ... row_size).collect {|i|
@rows[i][j]
}
Vector.elements(col, false)
end
end
#
# Returns a matrix that is the result of iteration of the given block over all
# elements of the matrix.
# Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
# => 1 4
# 9 16
#
def collect(&block) # :yield: e
return to_enum(:collect) unless block_given?
rows = @rows.collect{|row| row.collect(&block)}
new_matrix rows, column_size
end
alias map collect
#
# Returns a section of the matrix. The parameters are either:
# * start_row, nrows, start_col, ncols; OR
# * col_range, row_range
#
# Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
# => 9 0 0
# 0 5 0
#
# Like Array#[], negative indices count backward from the end of the
# row or column (-1 is the last element). Returns nil if the starting
# row or column is greater than row_size or column_size respectively.
#
def minor(*param)
case param.size
when 2
from_row = param[0].first
from_row += row_size if from_row < 0
to_row = param[0].end
to_row += row_size if to_row < 0
to_row += 1 unless param[0].exclude_end?
size_row = to_row - from_row
from_col = param[1].first
from_col += column_size if from_col < 0
to_col = param[1].end
to_col += column_size if to_col < 0
to_col += 1 unless param[1].exclude_end?
size_col = to_col - from_col
when 4
from_row, size_row, from_col, size_col = param
return nil if size_row < 0 || size_col < 0
from_row += row_size if from_row < 0
from_col += column_size if from_col < 0
else
Matrix.Raise ArgumentError, param.inspect
end
return nil if from_row > row_size || from_col > column_size || from_row < 0 || from_col < 0
rows = @rows[from_row, size_row].collect{|row|
row[from_col, size_col]
}
new_matrix rows, column_size - from_col
end
#--
# TESTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Returns +true+ if this is a regular matrix.
#
def regular?
square? and rank == column_size
end
#
# Returns +true+ is this is a singular (i.e. non-regular) matrix.
#
def singular?
not regular?
end
#
# Returns +true+ is this is a square matrix.
#
def square?
column_size == row_size
end
#--
# OBJECT METHODS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Returns +true+ if and only if the two matrices contain equal elements.
#
def ==(other)
return false unless Matrix === other
rows == other.rows
end
def eql?(other)
return false unless Matrix === other
rows.eql? other.rows
end
def compare_by_row_vectors(rows, comparison = :==)
return false unless @rows.size == rows.size
@rows.size.times do |i|
return false unless @rows[i].send(comparison, rows[i])
end
true
end
#
# Returns a clone of the matrix, so that the contents of each do not reference
# identical objects.
# There should be no good reason to do this since Matrices are immutable.
#
def clone
new_matrix @rows.map{|row| row.dup}, column_size
end
#
# Returns a hash-code for the matrix.
#
def hash
@rows.hash
end
#--
# ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Matrix multiplication.
# Matrix[[2,4], [6,8]] * Matrix.identity(2)
# => 2 4
# 6 8
#
def *(m) # m is matrix or vector or number
case(m)
when Numeric
rows = @rows.collect {|row|
row.collect {|e|
e * m
}
}
return new_matrix rows, column_size
when Vector
m = Matrix.column_vector(m)
r = self * m
return r.column(0)
when Matrix
Matrix.Raise ErrDimensionMismatch if column_size != m.row_size
rows = (0 ... row_size).collect {|i|
(0 ... m.column_size).collect {|j|
(0 ... column_size).inject(0) do |vij, k|
vij + self[i, k] * m[k, j]
end
}
}
return new_matrix rows, m.column_size
else
x, y = m.coerce(self)
return x * y
end
end
#
# Matrix addition.
# Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
# => 6 0
# -4 12
#
def +(m)
case m
when Numeric
Matrix.Raise ErrOperationNotDefined, "+"
when Vector
m = Matrix.column_vector(m)
when Matrix
else
x, y = m.coerce(self)
return x + y
end
Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size
rows = (0 ... row_size).collect {|i|
(0 ... column_size).collect {|j|
self[i, j] + m[i, j]
}
}
new_matrix rows, column_size
end
#
# Matrix subtraction.
# Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
# => -8 2
# 8 1
#
def -(m)
case m
when Numeric
Matrix.Raise ErrOperationNotDefined, "-"
when Vector
m = Matrix.column_vector(m)
when Matrix
else
x, y = m.coerce(self)
return x - y
end
Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size
rows = (0 ... row_size).collect {|i|
(0 ... column_size).collect {|j|
self[i, j] - m[i, j]
}
}
new_matrix rows, column_size
end
#
# Matrix division (multiplication by the inverse).
# Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
# => -7 1
# -3 -6
#
def /(other)
case other
when Numeric
rows = @rows.collect {|row|
row.collect {|e|
e / other
}
}
return new_matrix rows, column_size
when Matrix
return self * other.inverse
else
x, y = other.coerce(self)
return x / y
end
end
#
# Returns the inverse of the matrix.
# Matrix[[1, 2], [2, 1]].inverse
# => -1 1
# 0 -1
#
def inverse
Matrix.Raise ErrDimensionMismatch unless square?
Matrix.I(row_size).inverse_from(self)
end
alias inv inverse
#
# Not for public consumption?
#
def inverse_from(src)
size = row_size
a = src.to_a
size.times do |k|
i = k
akk = a[k][k].abs
(k+1 ... size).each do |j|
v = a[j][k].abs
if v > akk
i = j
akk = v
end
end
Matrix.Raise ErrNotRegular if akk == 0
if i != k
a[i], a[k] = a[k], a[i]
@rows[i], @rows[k] = @rows[k], @rows[i]
end
akk = a[k][k]
size.times do |i|
next if i == k
q = a[i][k].quo(akk)
a[i][k] = 0
(k + 1 ... size).each do |j|
a[i][j] -= a[k][j] * q
end
size.times do |j|
@rows[i][j] -= @rows[k][j] * q
end
end
(k + 1 ... size).each do |j|
a[k][j] = a[k][j].quo(akk)
end
size.times do |j|
@rows[k][j] = @rows[k][j].quo(akk)
end
end
self
end
#alias reciprocal inverse
#
# Matrix exponentiation. Defined for integer powers only. Equivalent to
# multiplying the matrix by itself N times.
# Matrix[[7,6], [3,9]] ** 2
# => 67 96
# 48 99
#
def ** (other)
if other.kind_of?(Integer)
x = self
if other <= 0
x = self.inverse
return Matrix.identity(self.column_size) if other == 0
other = -other
end
z = nil
loop do
z = z ? z * x : x if other[0] == 1
return z if (other >>= 1).zero?
x *= x
end
elsif other.kind_of?(Float) || defined?(Rational) && other.kind_of?(Rational)
Matrix.Raise ErrOperationNotDefined, "**"
else
Matrix.Raise ErrOperationNotDefined, "**"
end
end
#--
# MATRIX FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Returns the determinant of the matrix. If the matrix is not square, the
# result is 0. This method's algorithm is Gaussian elimination method
# and using Numeric#quo(). Beware that using Float values, with their
# usual lack of precision, can affect the value returned by this method. Use
# Rational values or Matrix#det_e instead if this is important to you.
#
# Matrix[[7,6], [3,9]].determinant
# => 45.0
#
def determinant
return 0 unless square?
size = row_size
a = to_a
det = 1
size.times do |k|
if (akk = a[k][k]) == 0
i = (k+1 ... size).find {|i|
a[i][k] != 0
}
return 0 if i.nil?
a[i], a[k] = a[k], a[i]
akk = a[k][k]
det *= -1
end
(k + 1 ... size).each do |i|
q = a[i][k].quo(akk)
(k + 1 ... size).each do |j|
a[i][j] -= a[k][j] * q
end
end
det *= akk
end
det
end
alias det determinant
#
# Returns the determinant of the matrix. If the matrix is not square, the
# result is 0. This method's algorithm is Gaussian elimination method.
# This method uses Euclidean algorithm. If all elements are integer,
# really exact value. But, if an element is a float, can't return
# exact value.
#
# Matrix[[7,6], [3,9]].determinant
# => 63
#
def determinant_e
return 0 unless square?
size = row_size
a = to_a
det = 1
size.times do |k|
if a[k][k].zero?
i = (k+1 ... size).find {|i|
a[i][k] != 0
}
return 0 if i.nil?
a[i], a[k] = a[k], a[i]
det *= -1
end
(k + 1 ... size).each do |i|
q = a[i][k].quo(a[k][k])
(k ... size).each do |j|
a[i][j] -= a[k][j] * q
end
unless a[i][k].zero?
a[i], a[k] = a[k], a[i]
det *= -1
redo
end
end
det *= a[k][k]
end
det
end
alias det_e determinant_e
#
# Returns the rank of the matrix. Beware that using Float values,
# probably return faild value. Use Rational values or Matrix#rank_e
# for getting exact result.
#
# Matrix[[7,6], [3,9]].rank
# => 2
#
def rank
if column_size > row_size
a = transpose.to_a
a_column_size = row_size
a_row_size = column_size
else
a = to_a
a_column_size = column_size
a_row_size = row_size
end
rank = 0
a_column_size.times do |k|
if (akk = a[k][k]) == 0
i = (k+1 ... a_row_size).find {|i|
a[i][k] != 0
}
if i
a[i], a[k] = a[k], a[i]
akk = a[k][k]
else
i = (k+1 ... a_column_size).find {|i|
a[k][i] != 0
}
next if i.nil?
(k ... a_column_size).each do |j|
a[j][k], a[j][i] = a[j][i], a[j][k]
end
akk = a[k][k]
end
end
(k + 1 ... a_row_size).each do |i|
q = a[i][k].quo(akk)
(k + 1... a_column_size).each do |j|
a[i][j] -= a[k][j] * q
end
end
rank += 1
end
return rank
end
#
# Returns the rank of the matrix. This method uses Euclidean
# algorithm. If all elements are integer, really exact value. But, if
# an element is a float, can't return exact value.
#
# Matrix[[7,6], [3,9]].rank
# => 2
#
def rank_e
a = to_a
a_column_size = column_size
a_row_size = row_size
pi = 0
a_column_size.times do |j|
if i = (pi ... a_row_size).find{|i0| !a[i0][j].zero?}
if i != pi
a[pi], a[i] = a[i], a[pi]
end
(pi + 1 ... a_row_size).each do |k|
q = a[k][j].quo(a[pi][j])
(pi ... a_column_size).each do |j0|
a[k][j0] -= q * a[pi][j0]
end
if k > pi && !a[k][j].zero?
a[k], a[pi] = a[pi], a[k]
redo
end
end
pi += 1
end
end
pi
end
#
# Returns the trace (sum of diagonal elements) of the matrix.
# Matrix[[7,6], [3,9]].trace
# => 16
#
def trace
Matrix.Raise ErrDimensionMismatch unless square?
(0...column_size).inject(0) do |tr, i|
tr + @rows[i][i]
end
end
alias tr trace
#
# Returns the transpose of the matrix.
# Matrix[[1,2], [3,4], [5,6]]
# => 1 2
# 3 4
# 5 6
# Matrix[[1,2], [3,4], [5,6]].transpose
# => 1 3 5
# 2 4 6
#
def transpose
return Matrix.empty(column_size, 0) if row_size.zero?
new_matrix @rows.transpose, row_size
end
alias t transpose
#--
# CONVERTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# FIXME: describe #coerce.
#
def coerce(other)
case other
when Numeric
return Scalar.new(other), self
else
raise TypeError, "#{self.class} can't be coerced into #{other.class}"
end
end
#
# Returns an array of the row vectors of the matrix. See Vector.
#
def row_vectors
(0 ... row_size).collect {|i|
row(i)
}
end
#
# Returns an array of the column vectors of the matrix. See Vector.
#
def column_vectors
(0 ... column_size).collect {|i|
column(i)
}
end
#
# Returns an array of arrays that describe the rows of the matrix.
#
def to_a
@rows.collect{|row| row.dup}
end
def elements_to_f
collect{|e| e.to_f}
end
def elements_to_i
collect{|e| e.to_i}
end
def elements_to_r
collect{|e| e.to_r}
end
#--
# PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Overrides Object#to_s
#
def to_s
if row_size == 0 || column_size == 0
"Matrix.empty(#{row_size}, #{column_size})"
else
"Matrix[" + @rows.collect{|row|
"[" + row.collect{|e| e.to_s}.join(", ") + "]"
}.join(", ")+"]"
end
end
alias_method :inspect_org, :inspect
#
# Overrides Object#inspect
#
def inspect
if row_size == 0 || column_size == 0
"Matrix.empty(#{row_size}, #{column_size})"
else
"Matrix#{@rows.inspect}"
end
end
#
# Converts the obj to an Array. If copy is set to true
# a copy of obj will be made if necessary.
#
def Matrix.convert_to_array(obj, copy = false)
case obj
when Array
copy ? obj.dup : obj
when Vector
obj.to_a
else
begin
converted = obj.to_ary
rescue Exception => e
raise TypeError, "can't convert #{obj.class} into an Array (#{e.message})"
end
raise TypeError, "#{obj.class}#to_ary should return an Array" unless converted.is_a? Array
converted
end
end
# Private CLASS
class Scalar < Numeric # :nodoc:
include ExceptionForMatrix
def initialize(value)
@value = value
end
# ARITHMETIC
def +(other)
case other
when Numeric
Scalar.new(@value + other)
when Vector, Matrix
Scalar.Raise WrongArgType, other.class, "Numeric or Scalar"
when Scalar
Scalar.new(@value + other.value)
else
x, y = other.coerce(self)
x + y
end
end
def -(other)
case other
when Numeric
Scalar.new(@value - other)
when Vector, Matrix
Scalar.Raise WrongArgType, other.class, "Numeric or Scalar"
when Scalar
Scalar.new(@value - other.value)
else
x, y = other.coerce(self)
x - y
end
end
def *(other)
case other
when Numeric
Scalar.new(@value * other)
when Vector, Matrix
other.collect{|e| @value * e}
else
x, y = other.coerce(self)
x * y
end
end
def / (other)
case other
when Numeric
Scalar.new(@value / other)
when Vector
Scalar.Raise WrongArgType, other.class, "Numeric or Scalar or Matrix"
when Matrix
self * other.inverse
else
x, y = other.coerce(self)
x.quo(y)
end
end
def ** (other)
case other
when Numeric
Scalar.new(@value ** other)
when Vector
Scalar.Raise WrongArgType, other.class, "Numeric or Scalar or Matrix"
when Matrix
other.powered_by(self)
else
x, y = other.coerce(self)
x ** y
end
end
end
end
#
# The +Vector+ class represents a mathematical vector, which is useful in its own right, and
# also constitutes a row or column of a Matrix.
#
# == Method Catalogue
#
# To create a Vector:
# * <tt> Vector.[](*array) </tt>
# * <tt> Vector.elements(array, copy = true) </tt>
#
# To access elements:
# * <tt> [](i) </tt>
#
# To enumerate the elements:
# * <tt> #each2(v) </tt>
# * <tt> #collect2(v) </tt>
#
# Vector arithmetic:
# * <tt> *(x) "is matrix or number" </tt>
# * <tt> +(v) </tt>
# * <tt> -(v) </tt>
#
# Vector functions:
# * <tt> #inner_product(v) </tt>
# * <tt> #collect </tt>
# * <tt> #map </tt>
# * <tt> #map2(v) </tt>
# * <tt> #r </tt>
# * <tt> #size </tt>
#
# Conversion to other data types:
# * <tt> #covector </tt>
# * <tt> #to_a </tt>
# * <tt> #coerce(other) </tt>
#
# String representations:
# * <tt> #to_s </tt>
# * <tt> #inspect </tt>
#
class Vector
include ExceptionForMatrix
#INSTANCE CREATION
private_class_method :new
attr_reader :elements
protected :elements
#
# Creates a Vector from a list of elements.
# Vector[7, 4, ...]
#
def Vector.[](*array)
new Matrix.convert_to_array(array, copy = false)
end
#
# Creates a vector from an Array. The optional second argument specifies
# whether the array itself or a copy is used internally.
#
def Vector.elements(array, copy = true)
new Matrix.convert_to_array(array, copy)
end
#
# Vector.new is private; use Vector[] or Vector.elements to create.
#
def initialize(array)
# No checking is done at this point.
@elements = array
end
# ACCESSING
#
# Returns element number +i+ (starting at zero) of the vector.
#
def [](i)
@elements[i]
end
alias element []
alias component []
def []=(i, v)
@elements[i]= v
end
alias set_element []=
alias set_component []=
private :[]=, :set_element, :set_component
#
# Returns the number of elements in the vector.
#
def size
@elements.size
end
#--
# ENUMERATIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Iterate over the elements of this vector and +v+ in conjunction.
#
def each2(v) # :yield: e1, e2
Vector.Raise ErrDimensionMismatch if size != v.size
return to_enum(:each2) unless block_given?
size.times do |i|
yield @elements[i], v[i]
end
end
#
# Collects (as in Enumerable#collect) over the elements of this vector and +v+
# in conjunction.
#
def collect2(v) # :yield: e1, e2
Vector.Raise ErrDimensionMismatch if size != v.size
return to_enum(:collect2) unless block_given?
(0 ... size).collect do |i|
yield @elements[i], v[i]
end
end
#--
# COMPARING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Returns +true+ iff the two vectors have the same elements in the same order.
#
def ==(other)
return false unless Vector === other
@elements == other.elements
end
def eql?(other)
return false unless Vector === other
@elements.eql? other.elements
end
def compare_by(elements, comparison = :==)
@elements.send(comparison, elements)
end
#
# Return a copy of the vector.
#
def clone
Vector.elements(@elements)
end
#
# Return a hash-code for the vector.
#
def hash
@elements.hash
end
#--
# ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Multiplies the vector by +x+, where +x+ is a number or another vector.
#
def *(x)
case x
when Numeric
els = @elements.collect{|e| e * x}
Vector.elements(els, false)
when Matrix
Matrix.column_vector(self) * x
else
s, x = x.coerce(self)
s * x
end
end
#
# Vector addition.
#
def +(v)
case v
when Vector
Vector.Raise ErrDimensionMismatch if size != v.size
els = collect2(v) {|v1, v2|
v1 + v2
}
Vector.elements(els, false)
when Matrix
Matrix.column_vector(self) + v
else
s, x = v.coerce(self)
s + x
end
end
#
# Vector subtraction.
#
def -(v)
case v
when Vector
Vector.Raise ErrDimensionMismatch if size != v.size
els = collect2(v) {|v1, v2|
v1 - v2
}
Vector.elements(els, false)
when Matrix
Matrix.column_vector(self) - v
else
s, x = v.coerce(self)
s - x
end
end
#--
# VECTOR FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Returns the inner product of this vector with the other.
# Vector[4,7].inner_product Vector[10,1] => 47
#
def inner_product(v)
Vector.Raise ErrDimensionMismatch if size != v.size
p = 0
each2(v) {|v1, v2|
p += v1 * v2
}
p
end
#
# Like Array#collect.
#
def collect(&block) # :yield: e
return to_enum(:collect) unless block_given?
els = @elements.collect(&block)
Vector.elements(els, false)
end
alias map collect
#
# Like Vector#collect2, but returns a Vector instead of an Array.
#
def map2(v, &block) # :yield: e1, e2
return to_enum(:map2) unless block_given?
els = collect2(v, &block)
Vector.elements(els, false)
end
#
# Returns the modulus (Pythagorean distance) of the vector.
# Vector[5,8,2].r => 9.643650761
#
def r
Math.sqrt(@elements.inject(0) {|v, e| v + e*e})
end
#--
# CONVERTING
#++
#
# Creates a single-row matrix from this vector.
#
def covector
Matrix.row_vector(self)
end
#
# Returns the elements of the vector in an array.
#
def to_a
@elements.dup
end
def elements_to_f
collect{|e| e.to_f}
end
def elements_to_i
collect{|e| e.to_i}
end
def elements_to_r
collect{|e| e.to_r}
end
#
# FIXME: describe Vector#coerce.
#
def coerce(other)
case other
when Numeric
return Matrix::Scalar.new(other), self
else
raise TypeError, "#{self.class} can't be coerced into #{other.class}"
end
end
#--
# PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Overrides Object#to_s
#
def to_s
"Vector[" + @elements.join(", ") + "]"
end
#
# Overrides Object#inspect
#
def inspect
str = "Vector"+@elements.inspect
end
end
# Documentation comments:
# - Matrix#coerce and Vector#coerce need to be documented
|