1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
|
require 'ruby_vm/rjit/assembler'
require 'ruby_vm/rjit/block'
require 'ruby_vm/rjit/branch_stub'
require 'ruby_vm/rjit/code_block'
require 'ruby_vm/rjit/context'
require 'ruby_vm/rjit/exit_compiler'
require 'ruby_vm/rjit/insn_compiler'
require 'ruby_vm/rjit/instruction'
require 'ruby_vm/rjit/invariants'
require 'ruby_vm/rjit/jit_state'
module RubyVM::RJIT
# Compilation status
KeepCompiling = :KeepCompiling
CantCompile = :CantCompile
EndBlock = :EndBlock
# Ruby constants
Qtrue = Fiddle::Qtrue
Qfalse = Fiddle::Qfalse
Qnil = Fiddle::Qnil
Qundef = Fiddle::Qundef
# Callee-saved registers
# TODO: support using r12/r13 here
EC = :r14
CFP = :r15
SP = :rbx
# Scratch registers: rax, rcx
# Mark objects in this Array during GC
GC_REFS = []
class Compiler
attr_accessor :write_pos
def self.decode_insn(encoded)
INSNS.fetch(C.rb_vm_insn_decode(encoded))
end
def initialize
mem_size = C.rjit_opts.exec_mem_size * 1024 * 1024
mem_block = C.mmap(mem_size)
@cb = CodeBlock.new(mem_block: mem_block, mem_size: mem_size / 2)
@ocb = CodeBlock.new(mem_block: mem_block + mem_size / 2, mem_size: mem_size / 2, outlined: true)
@exit_compiler = ExitCompiler.new
@insn_compiler = InsnCompiler.new(@cb, @ocb, @exit_compiler)
Invariants.initialize(@cb, @ocb, self, @exit_compiler)
end
# Compile an ISEQ from its entry point.
# @param iseq `RubyVM::RJIT::CPointer::Struct_rb_iseq_t`
# @param cfp `RubyVM::RJIT::CPointer::Struct_rb_control_frame_t`
def compile(iseq, cfp)
# TODO: Support has_opt
return if iseq.body.param.flags.has_opt
jit = JITState.new(iseq:, cfp:)
asm = Assembler.new
asm.comment("Block: #{iseq.body.location.label}@#{C.rb_iseq_path(iseq)}:#{iseq.body.location.first_lineno}")
compile_prologue(asm)
compile_block(asm, jit:)
iseq.body.jit_func = @cb.write(asm)
rescue Exception => e
$stderr.puts e.full_message
exit 1
end
# Compile a branch stub.
# @param branch_stub [RubyVM::RJIT::BranchStub]
# @param cfp `RubyVM::RJIT::CPointer::Struct_rb_control_frame_t`
# @param target0_p [TrueClass,FalseClass]
# @return [Integer] The starting address of the compiled branch stub
def branch_stub_hit(branch_stub, cfp, target0_p)
# Update cfp->pc for `jit.at_current_insn?`
target = target0_p ? branch_stub.target0 : branch_stub.target1
cfp.pc = target.pc
# Reuse an existing block if it already exists
block = find_block(branch_stub.iseq, target.pc, target.ctx)
# If the branch stub's jump is the last code, allow overwriting part of
# the old branch code with the new block code.
fallthrough = block.nil? && @cb.write_addr == branch_stub.end_addr
if fallthrough
# If the branch stub's jump is the last code, allow overwriting part of
# the old branch code with the new block code.
@cb.set_write_addr(branch_stub.start_addr)
branch_stub.shape = target0_p ? Next0 : Next1
Assembler.new.tap do |branch_asm|
branch_stub.compile.call(branch_asm)
@cb.write(branch_asm)
end
end
# Reuse or generate a block
if block
target.address = block.start_addr
else
jit = JITState.new(iseq: branch_stub.iseq, cfp:)
target.address = Assembler.new.then do |asm|
compile_block(asm, jit:, pc: target.pc, ctx: target.ctx.dup)
@cb.write(asm)
end
block = jit.block
end
block.incoming << branch_stub # prepare for invalidate_block
# Re-generate the branch code for non-fallthrough cases
unless fallthrough
@cb.with_write_addr(branch_stub.start_addr) do
branch_asm = Assembler.new
branch_stub.compile.call(branch_asm)
@cb.write(branch_asm)
end
end
return target.address
rescue Exception => e
$stderr.puts e.full_message
exit 1
end
# @param iseq `RubyVM::RJIT::CPointer::Struct_rb_iseq_t`
# @param pc [Integer]
def invalidate_blocks(iseq, pc)
list_blocks(iseq, pc).each do |block|
invalidate_block(block)
end
# If they were the ISEQ's first blocks, re-compile RJIT entry as well
if iseq.body.iseq_encoded.to_i == pc
iseq.body.jit_func = 0
iseq.body.total_calls = 0
end
end
def invalidate_block(block)
iseq = block.iseq
# Avoid touching GCed ISEQs. We assume it won't be re-entered.
return unless C.imemo_type_p(iseq, C.imemo_iseq)
# Remove this block from the version array
remove_block(iseq, block)
# Invalidate the block with entry exit
unless block.invalidated
@cb.with_write_addr(block.start_addr) do
asm = Assembler.new
asm.comment('invalidate_block')
asm.jmp(block.entry_exit)
@cb.write(asm)
end
block.invalidated = true
end
# Re-stub incoming branches
block.incoming.each do |branch_stub|
target = [branch_stub.target0, branch_stub.target1].compact.find do |target|
target.pc == block.pc && target.ctx == block.ctx
end
next if target.nil?
# TODO: Could target.address be a stub address? Is invalidation not needed in that case?
# If the target being re-generated is currently a fallthrough block,
# the fallthrough code must be rewritten with a jump to the stub.
if target.address == branch_stub.end_addr
branch_stub.shape = Default
end
target.address = Assembler.new.then do |ocb_asm|
@exit_compiler.compile_branch_stub(block.ctx, ocb_asm, branch_stub, target == branch_stub.target0)
@ocb.write(ocb_asm)
end
@cb.with_write_addr(branch_stub.start_addr) do
branch_asm = Assembler.new
branch_stub.compile.call(branch_asm)
@cb.write(branch_asm)
end
end
end
private
# Callee-saved: rbx, rsp, rbp, r12, r13, r14, r15
# Caller-saved: rax, rdi, rsi, rdx, rcx, r8, r9, r10, r11
#
# @param asm [RubyVM::RJIT::Assembler]
def compile_prologue(asm)
asm.comment('RJIT entry point')
# Save callee-saved registers used by JITed code
asm.push(CFP)
asm.push(EC)
asm.push(SP)
# Move arguments EC and CFP to dedicated registers
asm.mov(EC, :rdi)
asm.mov(CFP, :rsi)
# Load sp to a dedicated register
asm.mov(SP, [CFP, C.rb_control_frame_t.offsetof(:sp)]) # rbx = cfp->sp
# Setup cfp->jit_return
asm.mov(:rax, leave_exit)
asm.mov([CFP, C.rb_control_frame_t.offsetof(:jit_return)], :rax)
end
# @param asm [RubyVM::RJIT::Assembler]
def compile_block(asm, jit:, pc: jit.iseq.body.iseq_encoded.to_i, ctx: Context.new)
# Mark the block start address and prepare an exit code storage
block = Block.new(iseq: jit.iseq, pc:, ctx: ctx.dup)
jit.block = block
asm.block(block)
# Compile each insn
iseq = jit.iseq
index = (pc - iseq.body.iseq_encoded.to_i) / C.VALUE.size
while index < iseq.body.iseq_size
insn = self.class.decode_insn(iseq.body.iseq_encoded[index])
jit.pc = (iseq.body.iseq_encoded + index).to_i
jit.stack_size_for_pc = ctx.stack_size
jit.side_exit_for_pc.clear
# If previous instruction requested to record the boundary
if jit.record_boundary_patch_point
# Generate an exit to this instruction and record it
exit_pos = Assembler.new.then do |ocb_asm|
@exit_compiler.compile_side_exit(jit.pc, ctx, ocb_asm)
@ocb.write(ocb_asm)
end
Invariants.record_global_inval_patch(asm, exit_pos)
jit.record_boundary_patch_point = false
end
case status = @insn_compiler.compile(jit, ctx, asm, insn)
when KeepCompiling
# For now, reset the chain depth after each instruction as only the
# first instruction in the block can concern itself with the depth.
ctx.chain_depth = 0
index += insn.len
when EndBlock
# TODO: pad nops if entry exit exists (not needed for x86_64?)
break
when CantCompile
# Rewind stack_size using ctx.with_stack_size to allow stack_size changes
# before you return CantCompile.
@exit_compiler.compile_side_exit(jit.pc, ctx.with_stack_size(jit.stack_size_for_pc), asm)
# If this is the first instruction, this block never needs to be invalidated.
if block.pc == iseq.body.iseq_encoded.to_i + index * C.VALUE.size
block.invalidated = true
end
break
else
raise "compiling #{insn.name} returned unexpected status: #{status.inspect}"
end
end
incr_counter(:compiled_block_count)
add_block(iseq, block)
end
def leave_exit
@leave_exit ||= Assembler.new.then do |asm|
@exit_compiler.compile_leave_exit(asm)
@ocb.write(asm)
end
end
def incr_counter(name)
if C.rjit_opts.stats
C.rb_rjit_counters[name][0] += 1
end
end
def list_blocks(iseq, pc)
rjit_blocks(iseq)[pc]
end
# @param [Integer] pc
# @param [RubyVM::RJIT::Context] ctx
# @return [RubyVM::RJIT::Block,NilClass]
def find_block(iseq, pc, ctx)
src = ctx
rjit_blocks(iseq)[pc].find do |block|
dst = block.ctx
# Can only lookup the first version in the chain
if dst.chain_depth != 0
next false
end
# Blocks with depth > 0 always produce new versions
# Sidechains cannot overlap
if src.chain_depth != 0
next false
end
src.stack_size == dst.stack_size &&
src.sp_offset == dst.sp_offset
end
end
# @param [RubyVM::RJIT::Block] block
def add_block(iseq, block)
rjit_blocks(iseq)[block.pc] << block
end
# @param [RubyVM::RJIT::Block] block
def remove_block(iseq, block)
rjit_blocks(iseq)[block.pc].delete(block)
end
def rjit_blocks(iseq)
# Guard against ISEQ GC at random moments
unless C.imemo_type_p(iseq, C.imemo_iseq)
return Hash.new { |h, k| h[k] = [] }
end
unless iseq.body.rjit_blocks
iseq.body.rjit_blocks = Hash.new { |blocks, pc| blocks[pc] = [] }
# For some reason, rb_rjit_iseq_mark didn't protect this Hash
# from being freed. So we rely on GC_REFS to keep the Hash.
GC_REFS << iseq.body.rjit_blocks
end
iseq.body.rjit_blocks
end
end
end
|