1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
|
# frozen_string_literal: true
#--
# tsort.rb - provides a module for topological sorting and strongly connected components.
#++
#
#
# TSort implements topological sorting using Tarjan's algorithm for
# strongly connected components.
#
# TSort is designed to be able to be used with any object which can be
# interpreted as a directed graph.
#
# TSort requires two methods to interpret an object as a graph,
# tsort_each_node and tsort_each_child.
#
# * tsort_each_node is used to iterate for all nodes over a graph.
# * tsort_each_child is used to iterate for child nodes of a given node.
#
# The equality of nodes are defined by eql? and hash since
# TSort uses Hash internally.
#
# == A Simple Example
#
# The following example demonstrates how to mix the TSort module into an
# existing class (in this case, Hash). Here, we're treating each key in
# the hash as a node in the graph, and so we simply alias the required
# #tsort_each_node method to Hash's #each_key method. For each key in the
# hash, the associated value is an array of the node's child nodes. This
# choice in turn leads to our implementation of the required #tsort_each_child
# method, which fetches the array of child nodes and then iterates over that
# array using the user-supplied block.
#
# require 'tsort'
#
# class Hash
# include TSort
# alias tsort_each_node each_key
# def tsort_each_child(node, &block)
# fetch(node).each(&block)
# end
# end
#
# {1=>[2, 3], 2=>[3], 3=>[], 4=>[]}.tsort
# #=> [3, 2, 1, 4]
#
# {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}.strongly_connected_components
# #=> [[4], [2, 3], [1]]
#
# == A More Realistic Example
#
# A very simple `make' like tool can be implemented as follows:
#
# require 'tsort'
#
# class Make
# def initialize
# @dep = {}
# @dep.default = []
# end
#
# def rule(outputs, inputs=[], &block)
# triple = [outputs, inputs, block]
# outputs.each {|f| @dep[f] = [triple]}
# @dep[triple] = inputs
# end
#
# def build(target)
# each_strongly_connected_component_from(target) {|ns|
# if ns.length != 1
# fs = ns.delete_if {|n| Array === n}
# raise TSort::Cyclic.new("cyclic dependencies: #{fs.join ', '}")
# end
# n = ns.first
# if Array === n
# outputs, inputs, block = n
# inputs_time = inputs.map {|f| File.mtime f}.max
# begin
# outputs_time = outputs.map {|f| File.mtime f}.min
# rescue Errno::ENOENT
# outputs_time = nil
# end
# if outputs_time == nil ||
# inputs_time != nil && outputs_time <= inputs_time
# sleep 1 if inputs_time != nil && inputs_time.to_i == Time.now.to_i
# block.call
# end
# end
# }
# end
#
# def tsort_each_child(node, &block)
# @dep[node].each(&block)
# end
# include TSort
# end
#
# def command(arg)
# print arg, "\n"
# system arg
# end
#
# m = Make.new
# m.rule(%w[t1]) { command 'date > t1' }
# m.rule(%w[t2]) { command 'date > t2' }
# m.rule(%w[t3]) { command 'date > t3' }
# m.rule(%w[t4], %w[t1 t3]) { command 'cat t1 t3 > t4' }
# m.rule(%w[t5], %w[t4 t2]) { command 'cat t4 t2 > t5' }
# m.build('t5')
#
# == Bugs
#
# * 'tsort.rb' is wrong name because this library uses
# Tarjan's algorithm for strongly connected components.
# Although 'strongly_connected_components.rb' is correct but too long.
#
# == References
#
# R. E. Tarjan, "Depth First Search and Linear Graph Algorithms",
# <em>SIAM Journal on Computing</em>, Vol. 1, No. 2, pp. 146-160, June 1972.
#
module TSort
class Cyclic < StandardError
end
# Returns a topologically sorted array of nodes.
# The array is sorted from children to parents, i.e.
# the first element has no child and the last node has no parent.
#
# If there is a cycle, TSort::Cyclic is raised.
#
# class G
# include TSort
# def initialize(g)
# @g = g
# end
# def tsort_each_child(n, &b) @g[n].each(&b) end
# def tsort_each_node(&b) @g.each_key(&b) end
# end
#
# graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
# p graph.tsort #=> [4, 2, 3, 1]
#
# graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
# p graph.tsort # raises TSort::Cyclic
#
def tsort
each_node = method(:tsort_each_node)
each_child = method(:tsort_each_child)
TSort.tsort(each_node, each_child)
end
# Returns a topologically sorted array of nodes.
# The array is sorted from children to parents, i.e.
# the first element has no child and the last node has no parent.
#
# The graph is represented by _each_node_ and _each_child_.
# _each_node_ should have +call+ method which yields for each node in the graph.
# _each_child_ should have +call+ method which takes a node argument and yields for each child node.
#
# If there is a cycle, TSort::Cyclic is raised.
#
# g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
# each_node = lambda {|&b| g.each_key(&b) }
# each_child = lambda {|n, &b| g[n].each(&b) }
# p TSort.tsort(each_node, each_child) #=> [4, 2, 3, 1]
#
# g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
# each_node = lambda {|&b| g.each_key(&b) }
# each_child = lambda {|n, &b| g[n].each(&b) }
# p TSort.tsort(each_node, each_child) # raises TSort::Cyclic
#
def TSort.tsort(each_node, each_child)
TSort.tsort_each(each_node, each_child).to_a
end
# The iterator version of the #tsort method.
# <tt><em>obj</em>.tsort_each</tt> is similar to <tt><em>obj</em>.tsort.each</tt>, but
# modification of _obj_ during the iteration may lead to unexpected results.
#
# #tsort_each returns +nil+.
# If there is a cycle, TSort::Cyclic is raised.
#
# class G
# include TSort
# def initialize(g)
# @g = g
# end
# def tsort_each_child(n, &b) @g[n].each(&b) end
# def tsort_each_node(&b) @g.each_key(&b) end
# end
#
# graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
# graph.tsort_each {|n| p n }
# #=> 4
# # 2
# # 3
# # 1
#
def tsort_each(&block) # :yields: node
each_node = method(:tsort_each_node)
each_child = method(:tsort_each_child)
TSort.tsort_each(each_node, each_child, &block)
end
# The iterator version of the TSort.tsort method.
#
# The graph is represented by _each_node_ and _each_child_.
# _each_node_ should have +call+ method which yields for each node in the graph.
# _each_child_ should have +call+ method which takes a node argument and yields for each child node.
#
# g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
# each_node = lambda {|&b| g.each_key(&b) }
# each_child = lambda {|n, &b| g[n].each(&b) }
# TSort.tsort_each(each_node, each_child) {|n| p n }
# #=> 4
# # 2
# # 3
# # 1
#
def TSort.tsort_each(each_node, each_child) # :yields: node
return to_enum(__method__, each_node, each_child) unless block_given?
TSort.each_strongly_connected_component(each_node, each_child) {|component|
if component.size == 1
yield component.first
else
raise Cyclic.new("topological sort failed: #{component.inspect}")
end
}
end
# Returns strongly connected components as an array of arrays of nodes.
# The array is sorted from children to parents.
# Each elements of the array represents a strongly connected component.
#
# class G
# include TSort
# def initialize(g)
# @g = g
# end
# def tsort_each_child(n, &b) @g[n].each(&b) end
# def tsort_each_node(&b) @g.each_key(&b) end
# end
#
# graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
# p graph.strongly_connected_components #=> [[4], [2], [3], [1]]
#
# graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
# p graph.strongly_connected_components #=> [[4], [2, 3], [1]]
#
def strongly_connected_components
each_node = method(:tsort_each_node)
each_child = method(:tsort_each_child)
TSort.strongly_connected_components(each_node, each_child)
end
# Returns strongly connected components as an array of arrays of nodes.
# The array is sorted from children to parents.
# Each elements of the array represents a strongly connected component.
#
# The graph is represented by _each_node_ and _each_child_.
# _each_node_ should have +call+ method which yields for each node in the graph.
# _each_child_ should have +call+ method which takes a node argument and yields for each child node.
#
# g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
# each_node = lambda {|&b| g.each_key(&b) }
# each_child = lambda {|n, &b| g[n].each(&b) }
# p TSort.strongly_connected_components(each_node, each_child)
# #=> [[4], [2], [3], [1]]
#
# g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
# each_node = lambda {|&b| g.each_key(&b) }
# each_child = lambda {|n, &b| g[n].each(&b) }
# p TSort.strongly_connected_components(each_node, each_child)
# #=> [[4], [2, 3], [1]]
#
def TSort.strongly_connected_components(each_node, each_child)
TSort.each_strongly_connected_component(each_node, each_child).to_a
end
# The iterator version of the #strongly_connected_components method.
# <tt><em>obj</em>.each_strongly_connected_component</tt> is similar to
# <tt><em>obj</em>.strongly_connected_components.each</tt>, but
# modification of _obj_ during the iteration may lead to unexpected results.
#
# #each_strongly_connected_component returns +nil+.
#
# class G
# include TSort
# def initialize(g)
# @g = g
# end
# def tsort_each_child(n, &b) @g[n].each(&b) end
# def tsort_each_node(&b) @g.each_key(&b) end
# end
#
# graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
# graph.each_strongly_connected_component {|scc| p scc }
# #=> [4]
# # [2]
# # [3]
# # [1]
#
# graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
# graph.each_strongly_connected_component {|scc| p scc }
# #=> [4]
# # [2, 3]
# # [1]
#
def each_strongly_connected_component(&block) # :yields: nodes
each_node = method(:tsort_each_node)
each_child = method(:tsort_each_child)
TSort.each_strongly_connected_component(each_node, each_child, &block)
end
# The iterator version of the TSort.strongly_connected_components method.
#
# The graph is represented by _each_node_ and _each_child_.
# _each_node_ should have +call+ method which yields for each node in the graph.
# _each_child_ should have +call+ method which takes a node argument and yields for each child node.
#
# g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
# each_node = lambda {|&b| g.each_key(&b) }
# each_child = lambda {|n, &b| g[n].each(&b) }
# TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc }
# #=> [4]
# # [2]
# # [3]
# # [1]
#
# g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
# each_node = lambda {|&b| g.each_key(&b) }
# each_child = lambda {|n, &b| g[n].each(&b) }
# TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc }
# #=> [4]
# # [2, 3]
# # [1]
#
def TSort.each_strongly_connected_component(each_node, each_child) # :yields: nodes
return to_enum(__method__, each_node, each_child) unless block_given?
id_map = {}
stack = []
each_node.call {|node|
unless id_map.include? node
TSort.each_strongly_connected_component_from(node, each_child, id_map, stack) {|c|
yield c
}
end
}
nil
end
# Iterates over strongly connected component in the subgraph reachable from
# _node_.
#
# Return value is unspecified.
#
# #each_strongly_connected_component_from doesn't call #tsort_each_node.
#
# class G
# include TSort
# def initialize(g)
# @g = g
# end
# def tsort_each_child(n, &b) @g[n].each(&b) end
# def tsort_each_node(&b) @g.each_key(&b) end
# end
#
# graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
# graph.each_strongly_connected_component_from(2) {|scc| p scc }
# #=> [4]
# # [2]
#
# graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
# graph.each_strongly_connected_component_from(2) {|scc| p scc }
# #=> [4]
# # [2, 3]
#
def each_strongly_connected_component_from(node, id_map={}, stack=[], &block) # :yields: nodes
TSort.each_strongly_connected_component_from(node, method(:tsort_each_child), id_map, stack, &block)
end
# Iterates over strongly connected components in a graph.
# The graph is represented by _node_ and _each_child_.
#
# _node_ is the first node.
# _each_child_ should have +call+ method which takes a node argument
# and yields for each child node.
#
# Return value is unspecified.
#
# #TSort.each_strongly_connected_component_from is a class method and
# it doesn't need a class to represent a graph which includes TSort.
#
# graph = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
# each_child = lambda {|n, &b| graph[n].each(&b) }
# TSort.each_strongly_connected_component_from(1, each_child) {|scc|
# p scc
# }
# #=> [4]
# # [2, 3]
# # [1]
#
def TSort.each_strongly_connected_component_from(node, each_child, id_map={}, stack=[]) # :yields: nodes
return to_enum(__method__, node, each_child, id_map, stack) unless block_given?
minimum_id = node_id = id_map[node] = id_map.size
stack_length = stack.length
stack << node
each_child.call(node) {|child|
if id_map.include? child
child_id = id_map[child]
minimum_id = child_id if child_id && child_id < minimum_id
else
sub_minimum_id =
TSort.each_strongly_connected_component_from(child, each_child, id_map, stack) {|c|
yield c
}
minimum_id = sub_minimum_id if sub_minimum_id < minimum_id
end
}
if node_id == minimum_id
component = stack.slice!(stack_length .. -1)
component.each {|n| id_map[n] = nil}
yield component
end
minimum_id
end
# Should be implemented by a extended class.
#
# #tsort_each_node is used to iterate for all nodes over a graph.
#
def tsort_each_node # :yields: node
raise NotImplementedError.new
end
# Should be implemented by a extended class.
#
# #tsort_each_child is used to iterate for child nodes of _node_.
#
def tsort_each_child(node) # :yields: child
raise NotImplementedError.new
end
end
|