summaryrefslogtreecommitdiff
path: root/st.c
blob: 5d0c00cc0afb545a06021799ab2b338c81861e30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
/* This is a public domain general purpose hash table package
   originally written by Peter Moore @ UCB.

   The hash table data structures were redesigned and the package was
   rewritten by Vladimir Makarov <vmakarov@redhat.com>.  */

/* The original package implemented classic bucket-based hash tables
   with entries doubly linked for an access by their insertion order.
   To decrease pointer chasing and as a consequence to improve a data
   locality the current implementation is based on storing entries in
   an array and using hash tables with open addressing.  The current
   entries are more compact in comparison with the original ones and
   this also improves the data locality.

   The hash table has two arrays called *bins* and *entries*.

     bins:
    -------
   |       |                  entries array:
   |-------|            --------------------------------
   | index |           |      | entry:  |        |      |
   |-------|           |      |         |        |      |
   | ...   |           | ...  | hash    |  ...   | ...  |
   |-------|           |      | key     |        |      |
   | empty |           |      | record  |        |      |
   |-------|            --------------------------------
   | ...   |                   ^                  ^
   |-------|                   |_ entries start   |_ entries bound
   |deleted|
    -------

   o The entry array contains table entries in the same order as they
     were inserted.

     When the first entry is deleted, a variable containing index of
     the current first entry (*entries start*) is changed.  In all
     other cases of the deletion, we just mark the entry as deleted by
     using a reserved hash value.

     Such organization of the entry storage makes operations of the
     table shift and the entries traversal very fast.

   o The bins provide access to the entries by their keys.  The
     key hash is mapped to a bin containing *index* of the
     corresponding entry in the entry array.

     The bin array size is always power of two, it makes mapping very
     fast by using the corresponding lower bits of the hash.
     Generally it is not a good idea to ignore some part of the hash.
     But alternative approach is worse.  For example, we could use a
     modulo operation for mapping and a prime number for the size of
     the bin array.  Unfortunately, the modulo operation for big
     64-bit numbers are extremely slow (it takes more than 100 cycles
     on modern Intel CPUs).

     Still other bits of the hash value are used when the mapping
     results in a collision.  In this case we use a secondary hash
     value which is a result of a function of the collision bin
     index and the original hash value.  The function choice
     guarantees that we can traverse all bins and finally find the
     corresponding bin as after several iterations the function
     becomes a full cycle linear congruential generator because it
     satisfies requirements of the Hull-Dobell theorem.

     When an entry is removed from the table besides marking the
     hash in the corresponding entry described above, we also mark
     the bin by a special value in order to find entries which had
     a collision with the removed entries.

     There are two reserved values for the bins.  One denotes an
     empty bin, another one denotes a bin for a deleted entry.

   o The length of the bin array is at least two times more than the
     entry array length.  This keeps the table load factor healthy.
     The trigger of rebuilding the table is always a case when we can
     not insert an entry anymore at the entries bound.  We could
     change the entries bound too in case of deletion but than we need
     a special code to count bins with corresponding deleted entries
     and reset the bin values when there are too many bins
     corresponding deleted entries

     Table rebuilding is done by creation of a new entry array and
     bins of an appropriate size.  We also try to reuse the arrays
     in some cases by compacting the array and removing deleted
     entries.

   o To save memory very small tables have no allocated arrays
     bins.  We use a linear search for an access by a key.

   o To save more memory we use 8-, 16-, 32- and 64- bit indexes in
     bins depending on the current hash table size.

   o The implementation takes into account that the table can be
     rebuilt during hashing or comparison functions.  It can happen if
     the functions are implemented in Ruby and a thread switch occurs
     during their execution.

   This implementation speeds up the Ruby hash table benchmarks in
   average by more 40% on Intel Haswell CPU.

*/

#ifdef NOT_RUBY
#include "regint.h"
#include "st.h"
#else
#include "internal.h"
#endif

#include <stdio.h>
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#include <string.h>
#include <assert.h>

#ifdef __GNUC__
#define PREFETCH(addr, write_p) __builtin_prefetch(addr, write_p)
#define EXPECT(expr, val) __builtin_expect(expr, val)
#define ATTRIBUTE_UNUSED  __attribute__((unused))
#else
#define PREFETCH(addr, write_p)
#define EXPECT(expr, val) (expr)
#define ATTRIBUTE_UNUSED
#endif

#ifdef ST_DEBUG
#define st_assert assert
#else
#define st_assert(cond) ((void)(0 && (cond)))
#endif

/* The type of hashes.  */
typedef st_index_t st_hash_t;

struct st_table_entry {
    st_hash_t hash;
    st_data_t key;
    st_data_t record;
};

#define type_numhash st_hashtype_num
static const struct st_hash_type st_hashtype_num = {
    st_numcmp,
    st_numhash,
};

static int st_strcmp(st_data_t, st_data_t);
static st_index_t strhash(st_data_t);
static const struct st_hash_type type_strhash = {
    st_strcmp,
    strhash,
};

static int st_locale_insensitive_strcasecmp_i(st_data_t lhs, st_data_t rhs);
static st_index_t strcasehash(st_data_t);
static const struct st_hash_type type_strcasehash = {
    st_locale_insensitive_strcasecmp_i,
    strcasehash,
};

/* Value used to catch uninitialized entries/bins during debugging.
   There is a possibility for a false alarm, but its probability is
   extremely small.  */
#define ST_INIT_VAL 0xafafafafafafafaf
#define ST_INIT_VAL_BYTE 0xafa

#ifdef RUBY
#undef malloc
#undef realloc
#undef calloc
#undef free
#define malloc ruby_xmalloc
#define calloc ruby_xcalloc
#define realloc ruby_xrealloc
#define free ruby_xfree
#endif

#define EQUAL(tab,x,y) ((x) == (y) || (*(tab)->type->compare)((x),(y)) == 0)
#define PTR_EQUAL(tab, ptr, hash_val, key_) \
    ((ptr)->hash == (hash_val) && EQUAL((tab), (key_), (ptr)->key))

/* As PRT_EQUAL only its result is returned in RES.  REBUILT_P is set
   up to TRUE if the table is rebuilt during the comparison.  */
#define DO_PTR_EQUAL_CHECK(tab, ptr, hash_val, key, res, rebuilt_p) \
    do {							    \
	unsigned int _old_rebuilds_num = (tab)->rebuilds_num;       \
	res = PTR_EQUAL(tab, ptr, hash_val, key);		    \
	rebuilt_p = _old_rebuilds_num != (tab)->rebuilds_num;	    \
    } while (FALSE)

/* Features of a table.  */
struct st_features {
    /* Power of 2 used for number of allocated entries.  */
    unsigned char entry_power;
    /* Power of 2 used for number of allocated bins.  Depending on the
       table size, the number of bins is 2-4 times more than the
       number of entries.  */
    unsigned char bin_power;
    /* Enumeration of sizes of bins (8-bit, 16-bit etc).  */
    unsigned char size_ind;
    /* Bins are packed in words of type st_index_t.  The following is
       a size of bins counted by words.  */
    st_index_t bins_words;
};

/* Features of all possible size tables.  */
#if SIZEOF_ST_INDEX_T == 8
#define MAX_POWER2 62
static const struct st_features features[] = {
    {0, 1, 0, 0x0},
    {1, 2, 0, 0x1},
    {2, 3, 0, 0x1},
    {3, 4, 0, 0x2},
    {4, 5, 0, 0x4},
    {5, 6, 0, 0x8},
    {6, 7, 0, 0x10},
    {7, 8, 0, 0x20},
    {8, 9, 1, 0x80},
    {9, 10, 1, 0x100},
    {10, 11, 1, 0x200},
    {11, 12, 1, 0x400},
    {12, 13, 1, 0x800},
    {13, 14, 1, 0x1000},
    {14, 15, 1, 0x2000},
    {15, 16, 1, 0x4000},
    {16, 17, 2, 0x10000},
    {17, 18, 2, 0x20000},
    {18, 19, 2, 0x40000},
    {19, 20, 2, 0x80000},
    {20, 21, 2, 0x100000},
    {21, 22, 2, 0x200000},
    {22, 23, 2, 0x400000},
    {23, 24, 2, 0x800000},
    {24, 25, 2, 0x1000000},
    {25, 26, 2, 0x2000000},
    {26, 27, 2, 0x4000000},
    {27, 28, 2, 0x8000000},
    {28, 29, 2, 0x10000000},
    {29, 30, 2, 0x20000000},
    {30, 31, 2, 0x40000000},
    {31, 32, 2, 0x80000000},
    {32, 33, 3, 0x200000000},
    {33, 34, 3, 0x400000000},
    {34, 35, 3, 0x800000000},
    {35, 36, 3, 0x1000000000},
    {36, 37, 3, 0x2000000000},
    {37, 38, 3, 0x4000000000},
    {38, 39, 3, 0x8000000000},
    {39, 40, 3, 0x10000000000},
    {40, 41, 3, 0x20000000000},
    {41, 42, 3, 0x40000000000},
    {42, 43, 3, 0x80000000000},
    {43, 44, 3, 0x100000000000},
    {44, 45, 3, 0x200000000000},
    {45, 46, 3, 0x400000000000},
    {46, 47, 3, 0x800000000000},
    {47, 48, 3, 0x1000000000000},
    {48, 49, 3, 0x2000000000000},
    {49, 50, 3, 0x4000000000000},
    {50, 51, 3, 0x8000000000000},
    {51, 52, 3, 0x10000000000000},
    {52, 53, 3, 0x20000000000000},
    {53, 54, 3, 0x40000000000000},
    {54, 55, 3, 0x80000000000000},
    {55, 56, 3, 0x100000000000000},
    {56, 57, 3, 0x200000000000000},
    {57, 58, 3, 0x400000000000000},
    {58, 59, 3, 0x800000000000000},
    {59, 60, 3, 0x1000000000000000},
    {60, 61, 3, 0x2000000000000000},
    {61, 62, 3, 0x4000000000000000},
    {62, 63, 3, 0x8000000000000000},
};

#else
#define MAX_POWER2 30

static const struct st_features features[] = {
    {0, 1, 0, 0x1},
    {1, 2, 0, 0x1},
    {2, 3, 0, 0x2},
    {3, 4, 0, 0x4},
    {4, 5, 0, 0x8},
    {5, 6, 0, 0x10},
    {6, 7, 0, 0x20},
    {7, 8, 0, 0x40},
    {8, 9, 1, 0x100},
    {9, 10, 1, 0x200},
    {10, 11, 1, 0x400},
    {11, 12, 1, 0x800},
    {12, 13, 1, 0x1000},
    {13, 14, 1, 0x2000},
    {14, 15, 1, 0x4000},
    {15, 16, 1, 0x8000},
    {16, 17, 2, 0x20000},
    {17, 18, 2, 0x40000},
    {18, 19, 2, 0x80000},
    {19, 20, 2, 0x100000},
    {20, 21, 2, 0x200000},
    {21, 22, 2, 0x400000},
    {22, 23, 2, 0x800000},
    {23, 24, 2, 0x1000000},
    {24, 25, 2, 0x2000000},
    {25, 26, 2, 0x4000000},
    {26, 27, 2, 0x8000000},
    {27, 28, 2, 0x10000000},
    {28, 29, 2, 0x20000000},
    {29, 30, 2, 0x40000000},
    {30, 31, 2, 0x80000000},
};

#endif

/* The reserved hash value and its substitution.  */
#define RESERVED_HASH_VAL (~(st_hash_t) 0)
#define RESERVED_HASH_SUBSTITUTION_VAL ((st_hash_t) 0)

const st_hash_t st_reserved_hash_val = RESERVED_HASH_VAL;
const st_hash_t st_reserved_hash_substitution_val = RESERVED_HASH_SUBSTITUTION_VAL;

/* Return hash value of KEY for table TAB.  */
static inline st_hash_t
do_hash(st_data_t key, st_table *tab)
{
    st_hash_t hash = (st_hash_t)(tab->type->hash)(key);

    /* RESERVED_HASH_VAL is used for a deleted entry.  Map it into
       another value.  Such mapping should be extremely rare.  */
    return hash == RESERVED_HASH_VAL ? RESERVED_HASH_SUBSTITUTION_VAL : hash;
}

/* Power of 2 defining the minimal number of allocated entries.  */
#define MINIMAL_POWER2 2

#if MINIMAL_POWER2 < 2
#error "MINIMAL_POWER2 should be >= 2"
#endif

/* If the power2 of the allocated `entries` is less than the following
   value, don't allocate bins and use a linear search.  */
#define MAX_POWER2_FOR_TABLES_WITHOUT_BINS 4

/* Return smallest n >= MINIMAL_POWER2 such 2^n > SIZE.  */
static int
get_power2(st_index_t size)
{
    unsigned int n = ST_INDEX_BITS - nlz_intptr(size);
    if (n <= MAX_POWER2)
        return n < MINIMAL_POWER2 ? MINIMAL_POWER2 : n;
#ifndef NOT_RUBY
    /* Ran out of the table entries */
    rb_raise(rb_eRuntimeError, "st_table too big");
#endif
    /* should raise exception */
    return -1;
}

/* Return value of N-th bin in array BINS of table with bins size
   index S.  */
static inline st_index_t
get_bin(st_index_t *bins, int s, st_index_t n)
{
    return (s == 0 ? ((unsigned char *) bins)[n]
	    : s == 1 ? ((unsigned short *) bins)[n]
	    : s == 2 ? ((unsigned int *) bins)[n]
	    : ((st_index_t *) bins)[n]);
}

/* Set up N-th bin in array BINS of table with bins size index S to
   value V.  */
static inline void
set_bin(st_index_t *bins, int s, st_index_t n, st_index_t v)
{
    if (s == 0) ((unsigned char *) bins)[n] = (unsigned char) v;
    else if (s == 1) ((unsigned short *) bins)[n] = (unsigned short) v;
    else if (s == 2) ((unsigned int *) bins)[n] = (unsigned int) v;
    else ((st_index_t *) bins)[n] = v;
}

/* These macros define reserved values for empty table bin and table
   bin which contains a deleted entry.  We will never use such values
   for an entry index in bins.  */
#define EMPTY_BIN    0
#define DELETED_BIN  1
/* Base of a real entry index in the bins.  */
#define ENTRY_BASE 2

/* Mark I-th bin of table TAB as empty, in other words not
   corresponding to any entry.  */
#define MARK_BIN_EMPTY(tab, i) (set_bin((tab)->bins, get_size_ind(tab), i, EMPTY_BIN))

/* Values used for not found entry and bin with given
   characteristics.  */
#define UNDEFINED_ENTRY_IND (~(st_index_t) 0)
#define UNDEFINED_BIN_IND (~(st_index_t) 0)

/* Entry and bin values returned when we found a table rebuild during
   the search.  */
#define REBUILT_TABLE_ENTRY_IND (~(st_index_t) 1)
#define REBUILT_TABLE_BIN_IND (~(st_index_t) 1)

/* Mark I-th bin of table TAB as corresponding to a deleted table
   entry.  Update number of entries in the table and number of bins
   corresponding to deleted entries. */
#define MARK_BIN_DELETED(tab, i)				\
    do {                                                        \
        st_assert(i != UNDEFINED_BIN_IND);			\
	st_assert(! IND_EMPTY_OR_DELETED_BIN_P(tab, i)); 	\
        set_bin((tab)->bins, get_size_ind(tab), i, DELETED_BIN); \
    } while (0)

/* Macros to check that value B is used empty bins and bins
   corresponding deleted entries.  */
#define EMPTY_BIN_P(b) ((b) == EMPTY_BIN)
#define DELETED_BIN_P(b) ((b) == DELETED_BIN)
#define EMPTY_OR_DELETED_BIN_P(b) ((b) <= DELETED_BIN)

/* Macros to check empty bins and bins corresponding to deleted
   entries.  Bins are given by their index I in table TAB.  */
#define IND_EMPTY_BIN_P(tab, i) (EMPTY_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i)))
#define IND_DELETED_BIN_P(tab, i) (DELETED_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i)))
#define IND_EMPTY_OR_DELETED_BIN_P(tab, i) (EMPTY_OR_DELETED_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i)))

/* Macros for marking and checking deleted entries given by their
   pointer E_PTR.  */
#define MARK_ENTRY_DELETED(e_ptr) ((e_ptr)->hash = RESERVED_HASH_VAL)
#define DELETED_ENTRY_P(e_ptr) ((e_ptr)->hash == RESERVED_HASH_VAL)

/* Return bin size index of table TAB.  */
static inline unsigned int
get_size_ind(const st_table *tab)
{
    return tab->size_ind;
}

/* Return the number of allocated bins of table TAB.  */
static inline st_index_t
get_bins_num(const st_table *tab)
{
    return ((st_index_t) 1)<<tab->bin_power;
}

/* Return mask for a bin index in table TAB.  */
static inline st_index_t
bins_mask(const st_table *tab)
{
    return get_bins_num(tab) - 1;
}

/* Return the index of table TAB bin corresponding to
   HASH_VALUE.  */
static inline st_index_t
hash_bin(st_hash_t hash_value, st_table *tab)
{
    return hash_value & bins_mask(tab);
}

/* Return the number of allocated entries of table TAB.  */
static inline st_index_t
get_allocated_entries(const st_table *tab)
{
    return ((st_index_t) 1)<<tab->entry_power;
}

/* Return size of the allocated bins of table TAB.  */
static inline st_index_t
bins_size(const st_table *tab)
{
    return features[tab->entry_power].bins_words * sizeof (st_index_t);
}

/* Mark all bins of table TAB as empty.  */
static void
initialize_bins(st_table *tab)
{
    memset(tab->bins, 0, bins_size(tab));
}

/* Make table TAB empty.  */
static void
make_tab_empty(st_table *tab)
{
    tab->num_entries = 0;
    tab->entries_start = tab->entries_bound = 0;
    if (tab->bins != NULL)
        initialize_bins(tab);
}

#ifdef ST_DEBUG
#define st_assert_notinitial(ent) \
    do { \
	st_assert(ent.hash != (st_hash_t) ST_INIT_VAL);  \
	st_assert(ent.key != ST_INIT_VAL); \
	st_assert(ent.record != ST_INIT_VAL); \
    } while (0)
/* Check the table T consistency.  It can be extremely slow.  So use
   it only for debugging.  */
static void
st_check(st_table *tab)
{
    st_index_t d, e, i, n, p;

    for (p = get_allocated_entries(tab), i = 0; p > 1; i++, p>>=1)
        ;
    p = i;
    st_assert(p >= MINIMAL_POWER2);
    st_assert(tab->entries_bound <= get_allocated_entries(tab));
    st_assert(tab->entries_start <= tab->entries_bound);
    n = 0;
    return;
    if (tab->entries_bound != 0)
        for (i = tab->entries_start; i < tab->entries_bound; i++) {
	    st_assert_notinitial(tab->entries[i]);
	    if (! DELETED_ENTRY_P(&tab->entries[i]))
	        n++;
	}
    st_assert(n == tab->num_entries);
    if (tab->bins == NULL)
        st_assert(p <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS);
    else {
        st_assert(p > MAX_POWER2_FOR_TABLES_WITHOUT_BINS);
	for (n = d = i = 0; i < get_bins_num(tab); i++) {
	    st_assert(get_bin(tab->bins, tab->size_ind, i) != ST_INIT_VAL);
	    if (IND_DELETED_BIN_P(tab, i)) {
	        d++;
		continue;
	    }
	    else if (IND_EMPTY_BIN_P(tab, i))
	        continue;
	    n++;
	    e = get_bin(tab->bins, tab->size_ind, i) - ENTRY_BASE;
	    st_assert(tab->entries_start <= e && e < tab->entries_bound);
	    st_assert(! DELETED_ENTRY_P(&tab->entries[e]));
	    st_assert_notinitial(tab->entries[e]);
	}
	st_assert(n == tab->num_entries);
	st_assert(n + d < get_bins_num(tab));
    }
}
#endif

#ifdef HASH_LOG
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
static struct {
    int all, total, num, str, strcase;
}  collision;

/* Flag switching off output of package statistics at the end of
   program.  */
static int init_st = 0;

/* Output overall number of table searches and collisions into a
   temporary file.  */
static void
stat_col(void)
{
    char fname[10+sizeof(long)*3];
    FILE *f;
    if (!collision.total) return;
    f = fopen((snprintf(fname, sizeof(fname), "/tmp/col%ld", (long)getpid()), fname), "w");
    if (f == NULL)
        return;
    fprintf(f, "collision: %d / %d (%6.2f)\n", collision.all, collision.total,
            ((double)collision.all / (collision.total)) * 100);
    fprintf(f, "num: %d, str: %d, strcase: %d\n", collision.num, collision.str, collision.strcase);
    fclose(f);
}
#endif

/* Create and return table with TYPE which can hold at least SIZE
   entries.  The real number of entries which the table can hold is
   the nearest power of two for SIZE.  */
st_table *
st_init_table_with_size(const struct st_hash_type *type, st_index_t size)
{
    st_table *tab;
    int n;

#ifdef HASH_LOG
#if HASH_LOG+0 < 0
    {
        const char *e = getenv("ST_HASH_LOG");
        if (!e || !*e) init_st = 1;
    }
#endif
    if (init_st == 0) {
        init_st = 1;
        atexit(stat_col);
    }
#endif

    n = get_power2(size);
#ifndef RUBY
    if (n < 0)
        return NULL;
#endif
    tab = (st_table *) malloc(sizeof (st_table));
#ifndef RUBY
    if (tab == NULL)
        return NULL;
#endif
    tab->type = type;
    tab->entry_power = n;
    tab->bin_power = features[n].bin_power;
    tab->size_ind = features[n].size_ind;
    if (n <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS)
        tab->bins = NULL;
    else {
        tab->bins = (st_index_t *) malloc(bins_size(tab));
#ifndef RUBY
        if (tab->bins == NULL) {
            free(tab);
            return NULL;
        }
#endif
    }
    tab->entries = (st_table_entry *) malloc(get_allocated_entries(tab)
					     * sizeof(st_table_entry));
#ifndef RUBY
    if (tab->entries == NULL) {
        st_free_table(tab);
        return NULL;
    }
#endif
#ifdef ST_DEBUG
    memset(tab->entries, ST_INIT_VAL_BYTE,
	   get_allocated_entries(tab) * sizeof(st_table_entry));
    if (tab->bins != NULL)
        memset(tab->bins, ST_INIT_VAL_BYTE, bins_size(tab));
#endif
    make_tab_empty(tab);
    tab->rebuilds_num = 0;
#ifdef ST_DEBUG
    st_check(tab);
#endif
    return tab;
}

/* Create and return table with TYPE which can hold a minimal number
   of entries (see comments for get_power2).  */
st_table *
st_init_table(const struct st_hash_type *type)
{
    return st_init_table_with_size(type, 0);
}

/* Create and return table which can hold a minimal number of
   numbers.  */
st_table *
st_init_numtable(void)
{
    return st_init_table(&type_numhash);
}

/* Create and return table which can hold SIZE numbers.  */
st_table *
st_init_numtable_with_size(st_index_t size)
{
    return st_init_table_with_size(&type_numhash, size);
}

/* Create and return table which can hold a minimal number of
   strings.  */
st_table *
st_init_strtable(void)
{
    return st_init_table(&type_strhash);
}

/* Create and return table which can hold SIZE strings.  */
st_table *
st_init_strtable_with_size(st_index_t size)
{
    return st_init_table_with_size(&type_strhash, size);
}

/* Create and return table which can hold a minimal number of strings
   whose character case is ignored.  */
st_table *
st_init_strcasetable(void)
{
    return st_init_table(&type_strcasehash);
}

/* Create and return table which can hold SIZE strings whose character
   case is ignored.  */
st_table *
st_init_strcasetable_with_size(st_index_t size)
{
    return st_init_table_with_size(&type_strcasehash, size);
}

/* Make table TAB empty.  */
void
st_clear(st_table *tab)
{
    make_tab_empty(tab);
    tab->rebuilds_num++;
#ifdef ST_DEBUG
    st_check(tab);
#endif
}

/* Free table TAB space.  */
void
st_free_table(st_table *tab)
{
    if (tab->bins != NULL)
        free(tab->bins);
    free(tab->entries);
    free(tab);
}

/* Return byte size of memory allocted for table TAB.  */
size_t
st_memsize(const st_table *tab)
{
    return(sizeof(st_table)
           + (tab->bins == NULL ? 0 : bins_size(tab))
           + get_allocated_entries(tab) * sizeof(st_table_entry));
}

static st_index_t
find_table_entry_ind(st_table *tab, st_hash_t hash_value, st_data_t key);

static st_index_t
find_table_bin_ind(st_table *tab, st_hash_t hash_value, st_data_t key);

static st_index_t
find_table_bin_ind_direct(st_table *table, st_hash_t hash_value, st_data_t key);

static st_index_t
find_table_bin_ptr_and_reserve(st_table *tab, st_hash_t *hash_value,
			       st_data_t key, st_index_t *bin_ind);

#ifdef HASH_LOG
static void
count_collision(const struct st_hash_type *type)
{
    collision.all++;
    if (type == &type_numhash) {
        collision.num++;
    }
    else if (type == &type_strhash) {
        collision.strcase++;
    }
    else if (type == &type_strcasehash) {
        collision.str++;
    }
}

#define COLLISION (collision_check ? count_collision(tab->type) : (void)0)
#define FOUND_BIN (collision_check ? collision.total++ : (void)0)
#define collision_check 0
#else
#define COLLISION
#define FOUND_BIN
#endif

/* If the number of entries in the table is at least REBUILD_THRESHOLD
   times less than the entry array length, decrease the table
   size.  */
#define REBUILD_THRESHOLD 4

#if REBUILD_THRESHOLD < 2
#error "REBUILD_THRESHOLD should be >= 2"
#endif

/* Rebuild table TAB.  Rebuilding removes all deleted bins and entries
   and can change size of the table entries and bins arrays.
   Rebuilding is implemented by creation of a new table or by
   compaction of the existing one.  */
static void
rebuild_table(st_table *tab)
{
    st_index_t i, ni, bound;
    unsigned int size_ind;
    st_table *new_tab;
    st_table_entry *entries, *new_entries;
    st_table_entry *curr_entry_ptr;
    st_index_t *bins;
    st_index_t bin_ind;

    st_assert(tab != NULL);
    bound = tab->entries_bound;
    entries = tab->entries;
    if ((2 * tab->num_entries <= get_allocated_entries(tab)
	 && REBUILD_THRESHOLD * tab->num_entries > get_allocated_entries(tab))
	|| tab->num_entries < (1 << MINIMAL_POWER2)) {
        /* Compaction: */
        tab->num_entries = 0;
	if (tab->bins != NULL)
	    initialize_bins(tab);
	new_tab = tab;
	new_entries = entries;
    }
    else {
        new_tab = st_init_table_with_size(tab->type,
					  2 * tab->num_entries - 1);
	new_entries = new_tab->entries;
    }
    ni = 0;
    bins = new_tab->bins;
    size_ind = get_size_ind(new_tab);
    for (i = tab->entries_start; i < bound; i++) {
        curr_entry_ptr = &entries[i];
	PREFETCH(entries + i + 1, 0);
	if (EXPECT(DELETED_ENTRY_P(curr_entry_ptr), 0))
	    continue;
	if (&new_entries[ni] != curr_entry_ptr)
	    new_entries[ni] = *curr_entry_ptr;
	if (EXPECT(bins != NULL, 1)) {
	    bin_ind = find_table_bin_ind_direct(new_tab, curr_entry_ptr->hash,
						curr_entry_ptr->key);
	    st_assert(bin_ind != UNDEFINED_BIN_IND);
	    st_assert(tab == new_tab || new_tab->rebuilds_num == 0);
	    st_assert(IND_EMPTY_BIN_P(new_tab, bin_ind));
	    set_bin(bins, size_ind, bin_ind, ni + ENTRY_BASE);
	}
	new_tab->num_entries++;
	ni++;
    }
    if (new_tab != tab) {
        tab->entry_power = new_tab->entry_power;
	tab->bin_power = new_tab->bin_power;
	tab->size_ind = new_tab->size_ind;
	st_assert(tab->num_entries == ni);
	st_assert(new_tab->num_entries == ni);
	if (tab->bins != NULL)
	    free(tab->bins);
	tab->bins = new_tab->bins;
	free(tab->entries);
	tab->entries = new_tab->entries;
	free(new_tab);
    }
    tab->entries_start = 0;
    tab->entries_bound = tab->num_entries;
    tab->rebuilds_num++;
#ifdef ST_DEBUG
    st_check(tab);
#endif
}

/* Return the next secondary hash index for table TAB using previous
   index IND and PERTERB.  Finally modulo of the function becomes a
   full *cycle linear congruential generator*, in other words it
   guarantees traversing all table bins in extreme case.

   According the Hull-Dobell theorem a generator
   "Xnext = (a*Xprev + c) mod m" is a full cycle generator iff
     o m and c are relatively prime
     o a-1 is divisible by all prime factors of m
     o a-1 is divisible by 4 if m is divisible by 4.

   For our case a is 5, c is 1, and m is a power of two.  */
static inline st_index_t
secondary_hash(st_index_t ind, st_table *tab, st_index_t *perterb)
{
    *perterb >>= 11;
    ind = (ind << 2) + ind + *perterb + 1;
    return hash_bin(ind, tab);
}

/* Find an entry with HASH_VALUE and KEY in TABLE using a linear
   search.  Return the index of the found entry in array `entries`.
   If it is not found, return UNDEFINED_ENTRY_IND.  If the table was
   rebuilt during the search, return REBUILT_TABLE_ENTRY_IND.  */
static inline st_index_t
find_entry(st_table *tab, st_hash_t hash_value, st_data_t key)
{
    int eq_p, rebuilt_p;
    st_index_t i, bound;
    st_table_entry *entries;

    bound = tab->entries_bound;
    entries = tab->entries;
    for (i = tab->entries_start; i < bound; i++) {
	DO_PTR_EQUAL_CHECK(tab, &entries[i], hash_value, key, eq_p, rebuilt_p);
	if (EXPECT(rebuilt_p, 0))
	    return REBUILT_TABLE_ENTRY_IND;
	if (eq_p)
	    return i;
    }
    return UNDEFINED_ENTRY_IND;
}

/* Use the quadratic probing.  The method has a better data locality
   but more collisions than the current approach.  In average it
   results in a bit slower search.  */
/*#define QUADRATIC_PROBE*/

/* Return index of entry with HASH_VALUE and KEY in table TAB.  If
   there is no such entry, return UNDEFINED_ENTRY_IND.  If the table
   was rebuilt during the search, return REBUILT_TABLE_ENTRY_IND.  */
static st_index_t
find_table_entry_ind(st_table *tab, st_hash_t hash_value, st_data_t key)
{
    int eq_p, rebuilt_p;
    st_index_t ind;
#ifdef QUADRATIC_PROBE
    st_index_t d;
#else
    st_index_t peterb;
#endif
    st_index_t bin;
    st_table_entry *entries = tab->entries;

    st_assert(tab != NULL);
    st_assert(tab->bins != NULL);
    ind = hash_bin(hash_value, tab);
#ifdef QUADRATIC_PROBE
    d = 1;
#else
    peterb = hash_value;
#endif
    FOUND_BIN;
    for (;;) {
        bin = get_bin(tab->bins, get_size_ind(tab), ind);
        if (! EMPTY_OR_DELETED_BIN_P(bin)) {
	    DO_PTR_EQUAL_CHECK(tab, &entries[bin - ENTRY_BASE], hash_value, key, eq_p, rebuilt_p);
	    if (EXPECT(rebuilt_p, 0))
		return REBUILT_TABLE_ENTRY_IND;
	    if (eq_p)
		break;
	} else if (EMPTY_BIN_P(bin))
            return UNDEFINED_ENTRY_IND;
#ifdef QUADRATIC_PROBE
	ind = hash_bin(ind + d, tab);
	d++;
#else
        ind = secondary_hash(ind, tab, &peterb);
#endif
        COLLISION;
    }
    return bin;
}

/* Find and return index of table TAB bin corresponding to an entry
   with HASH_VALUE and KEY.  If there is no such bin, return
   UNDEFINED_BIN_IND.  If the table was rebuilt during the search,
   return REBUILT_TABLE_BIN_IND.  */
static st_index_t
find_table_bin_ind(st_table *tab, st_hash_t hash_value, st_data_t key)
{
    int eq_p, rebuilt_p;
    st_index_t ind;
#ifdef QUADRATIC_PROBE
    st_index_t d;
#else
    st_index_t peterb;
#endif
    st_index_t bin;
    st_table_entry *entries = tab->entries;

    st_assert(tab != NULL);
    st_assert(tab->bins != NULL);
    ind = hash_bin(hash_value, tab);
#ifdef QUADRATIC_PROBE
    d = 1;
#else
    peterb = hash_value;
#endif
    FOUND_BIN;
    for (;;) {
        bin = get_bin(tab->bins, get_size_ind(tab), ind);
        if (! EMPTY_OR_DELETED_BIN_P(bin)) {
	    DO_PTR_EQUAL_CHECK(tab, &entries[bin - ENTRY_BASE], hash_value, key, eq_p, rebuilt_p);
	    if (EXPECT(rebuilt_p, 0))
		return REBUILT_TABLE_BIN_IND;
	    if (eq_p)
		break;
	} else if (EMPTY_BIN_P(bin))
            return UNDEFINED_BIN_IND;
#ifdef QUADRATIC_PROBE
	ind = hash_bin(ind + d, tab);
	d++;
#else
        ind = secondary_hash(ind, tab, &peterb);
#endif
        COLLISION;
    }
    return ind;
}

/* Find and return index of table TAB bin corresponding to an entry
   with HASH_VALUE and KEY.  The entry should be in the table
   already.  */
static st_index_t
find_table_bin_ind_direct(st_table *tab, st_hash_t hash_value, st_data_t key)
{
    st_index_t ind;
#ifdef QUADRATIC_PROBE
    st_index_t d;
#else
    st_index_t peterb;
#endif
    st_index_t bin;
    st_table_entry *entries = tab->entries;

    st_assert(tab != NULL);
    st_assert(tab->bins != NULL);
    ind = hash_bin(hash_value, tab);
#ifdef QUADRATIC_PROBE
    d = 1;
#else
    peterb = hash_value;
#endif
    FOUND_BIN;
    for (;;) {
        bin = get_bin(tab->bins, get_size_ind(tab), ind);
        if (EMPTY_OR_DELETED_BIN_P(bin))
	    return ind;
	st_assert (entries[bin - ENTRY_BASE].hash != hash_value);
#ifdef QUADRATIC_PROBE
	ind = hash_bin(ind + d, tab);
	d++;
#else
        ind = secondary_hash(ind, tab, &peterb);
#endif
        COLLISION;
    }
}

/* Return index of table TAB bin for HASH_VALUE and KEY through
   BIN_IND and the pointed value as the function result.  Reserve the
   bin for inclusion of the corresponding entry into the table if it
   is not there yet.  We always find such bin as bins array length is
   bigger entries array.  Although we can reuse a deleted bin, the
   result bin value is always empty if the table has no entry with
   KEY.  Return the entries array index of the found entry or
   UNDEFINED_ENTRY_IND if it is not found.  If the table was rebuilt
   during the search, return REBUILT_TABLE_ENTRY_IND.  */
static st_index_t
find_table_bin_ptr_and_reserve(st_table *tab, st_hash_t *hash_value,
			       st_data_t key, st_index_t *bin_ind)
{
    int eq_p, rebuilt_p;
    st_index_t ind;
    st_hash_t curr_hash_value = *hash_value;
#ifdef QUADRATIC_PROBE
    st_index_t d;
#else
    st_index_t peterb;
#endif
    st_index_t entry_index;
    st_index_t first_deleted_bin_ind;
    st_table_entry *entries;

    st_assert(tab != NULL);
    st_assert(tab->bins != NULL);
    st_assert(tab->entries_bound <= get_allocated_entries(tab));
    st_assert(tab->entries_start <= tab->entries_bound);
    ind = hash_bin(curr_hash_value, tab);
#ifdef QUADRATIC_PROBE
    d = 1;
#else
    peterb = curr_hash_value;
#endif
    FOUND_BIN;
    first_deleted_bin_ind = UNDEFINED_BIN_IND;
    entries = tab->entries;
    for (;;) {
        entry_index = get_bin(tab->bins, get_size_ind(tab), ind);
        if (EMPTY_BIN_P(entry_index)) {
            tab->num_entries++;
	    entry_index = UNDEFINED_ENTRY_IND;
            if (first_deleted_bin_ind != UNDEFINED_BIN_IND) {
                /* We can reuse bin of a deleted entry.  */
                ind = first_deleted_bin_ind;
                MARK_BIN_EMPTY(tab, ind);
            }
            break;
	}
	else if (! DELETED_BIN_P(entry_index)) {
	    DO_PTR_EQUAL_CHECK(tab, &entries[entry_index - ENTRY_BASE], curr_hash_value, key, eq_p, rebuilt_p);
	    if (EXPECT(rebuilt_p, 0))
		return REBUILT_TABLE_ENTRY_IND;
            if (eq_p)
                break;
	}
	else if (first_deleted_bin_ind == UNDEFINED_BIN_IND)
            first_deleted_bin_ind = ind;
#ifdef QUADRATIC_PROBE
	ind = hash_bin(ind + d, tab);
	d++;
#else
        ind = secondary_hash(ind, tab, &peterb);
#endif
        COLLISION;
    }
    *bin_ind = ind;
    return entry_index;
}

/* Find an entry with KEY in table TAB.  Return non-zero if we found
   it.  Set up *RECORD to the found entry record.  */
int
st_lookup(st_table *tab, st_data_t key, st_data_t *value)
{
    st_index_t bin;
    st_hash_t hash = do_hash(key, tab);

 retry:
    if (tab->bins == NULL) {
        bin = find_entry(tab, hash, key);
	if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
	    goto retry;
	if (bin == UNDEFINED_ENTRY_IND)
	    return 0;
    }
    else {
        bin = find_table_entry_ind(tab, hash, key);
	if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
	    goto retry;
	if (bin == UNDEFINED_ENTRY_IND)
	    return 0;
	bin -= ENTRY_BASE;
    }
    if (value != 0)
        *value = tab->entries[bin].record;
    return 1;
}

/* Find an entry with KEY in table TAB.  Return non-zero if we found
   it.  Set up *RESULT to the found table entry key.  */
int
st_get_key(st_table *tab, st_data_t key, st_data_t *result)
{
    st_index_t bin;
    st_hash_t hash = do_hash(key, tab);

 retry:
    if (tab->bins == NULL) {
        bin = find_entry(tab, hash, key);
	if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
	    goto retry;
	if (bin == UNDEFINED_ENTRY_IND)
	    return 0;
    }
    else {
        bin = find_table_entry_ind(tab, hash, key);
	if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
	    goto retry;
	if (bin == UNDEFINED_ENTRY_IND)
	    return 0;
	bin -= ENTRY_BASE;
    }
    if (result != 0)
        *result = tab->entries[bin].key;
    return 1;
}

/* Check the table and rebuild it if it is necessary.  */
static inline void
rebuild_table_if_necessary (st_table *tab)
{
    st_index_t bound = tab->entries_bound;

    if (bound == get_allocated_entries(tab))
        rebuild_table(tab);
    st_assert(tab->entries_bound < get_allocated_entries(tab));
}

/* Insert (KEY, VALUE) into table TAB and return zero.  If there is
   already entry with KEY in the table, return nonzero and and update
   the value of the found entry.  */
int
st_insert(st_table *tab, st_data_t key, st_data_t value)
{
    st_table_entry *entry;
    st_index_t bin;
    st_index_t ind;
    st_hash_t hash_value;
    st_index_t bin_ind;
    int new_p;

    hash_value = do_hash(key, tab);
 retry:
    rebuild_table_if_necessary(tab);
    if (tab->bins == NULL) {
        bin = find_entry(tab, hash_value, key);
	if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
	    goto retry;
	new_p = bin == UNDEFINED_ENTRY_IND;
	if (new_p)
	    tab->num_entries++;
	bin_ind = UNDEFINED_BIN_IND;
    }
    else {
        bin = find_table_bin_ptr_and_reserve(tab, &hash_value,
					     key, &bin_ind);
	if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
	    goto retry;
	new_p = bin == UNDEFINED_ENTRY_IND;
	bin -= ENTRY_BASE;
    }
    if (new_p) {
        st_assert(tab->entries_bound < get_allocated_entries(tab));
	ind = tab->entries_bound++;
        entry = &tab->entries[ind];
        entry->hash = hash_value;
        entry->key = key;
        entry->record = value;
	if (bin_ind != UNDEFINED_BIN_IND)
	    set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE);
#ifdef ST_DEBUG
	st_check(tab);
#endif
        return 0;
    }
    tab->entries[bin].record = value;
#ifdef ST_DEBUG
    st_check(tab);
#endif
    return 1;
}

/* Insert (KEY, VALUE, HASH) into table TAB.  The table should not have
   entry with KEY before the insertion.  */
static inline void
st_add_direct_with_hash(st_table *tab,
			st_data_t key, st_data_t value, st_hash_t hash)
{
    st_table_entry *entry;
    st_index_t ind;
    st_index_t bin_ind;

    rebuild_table_if_necessary(tab);
    ind = tab->entries_bound++;
    entry = &tab->entries[ind];
    entry->hash = hash;
    entry->key = key;
    entry->record = value;
    tab->num_entries++;
    if (tab->bins != NULL) {
        bin_ind = find_table_bin_ind_direct(tab, hash, key);
	st_assert (bin_ind != UNDEFINED_BIN_IND);
	set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE);
    }
#ifdef ST_DEBUG
    st_check(tab);
#endif
}

/* Insert (KEY, VALUE) into table TAB.  The table should not have
   entry with KEY before the insertion.  */
void
st_add_direct(st_table *tab, st_data_t key, st_data_t value)
{
    st_hash_t hash_value;

    hash_value = do_hash(key, tab);
    st_add_direct_with_hash(tab, key, value, hash_value);
}

/* Insert (FUNC(KEY), VALUE) into table TAB and return zero.  If
   there is already entry with KEY in the table, return nonzero and
   and update the value of the found entry.  */
int
st_insert2(st_table *tab, st_data_t key, st_data_t value,
           st_data_t (*func)(st_data_t))
{
    st_table_entry *entry;
    st_index_t bin;
    st_index_t ind, check;
    st_hash_t hash_value;
    st_index_t bin_ind;
    int new_p;

    hash_value = do_hash(key, tab);
 retry:
    rebuild_table_if_necessary (tab);
    if (tab->bins == NULL) {
        bin = find_entry(tab, hash_value, key);
	if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
	    goto retry;
	new_p = bin == UNDEFINED_ENTRY_IND;
	if (new_p)
	    tab->num_entries++;
	bin_ind = UNDEFINED_BIN_IND;
    }
    else {
        bin = find_table_bin_ptr_and_reserve(tab, &hash_value,
					     key, &bin_ind);
	if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
	    goto retry;
	new_p = bin == UNDEFINED_ENTRY_IND;
	bin -= ENTRY_BASE;
    }
    if (new_p) {
        st_assert(tab->entries_bound < get_allocated_entries(tab));
        check = tab->rebuilds_num;
        key = (*func)(key);
        st_assert(check == tab->rebuilds_num);
        ind = tab->entries_bound++;
        entry = &tab->entries[ind];
        entry->hash = hash_value;
        entry->key = key;
        entry->record = value;
	if (bin_ind != UNDEFINED_BIN_IND)
	    set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE);
	st_assert(do_hash(key, tab) == hash_value);
#ifdef ST_DEBUG
	st_check(tab);
#endif
        return 0;
    }
    tab->entries[bin].record = value;
#ifdef ST_DEBUG
    st_check(tab);
#endif
    return 1;
}

/* Create and return a copy of table OLD_TAB.  */
st_table *
st_copy(st_table *old_tab)
{
    st_table *new_tab;

    new_tab = (st_table *) malloc(sizeof(st_table));
#ifndef RUBY
    if (new_tab == NULL)
        return NULL;
#endif
    *new_tab = *old_tab;
    if (old_tab->bins == NULL)
        new_tab->bins = NULL;
    else {
        new_tab->bins = (st_index_t *) malloc(bins_size(old_tab));
#ifndef RUBY
        if (new_tab->bins == NULL) {
            free(new_tab);
            return NULL;
        }
#endif
    }
    new_tab->entries = (st_table_entry *) malloc(get_allocated_entries(old_tab)
						 * sizeof(st_table_entry));
#ifndef RUBY
    if (new_tab->entries == NULL) {
        st_free_table(new_tab);
        return NULL;
    }
#endif
    MEMCPY(new_tab->entries, old_tab->entries, st_table_entry,
	   get_allocated_entries(old_tab));
    if (old_tab->bins != NULL)
        MEMCPY(new_tab->bins, old_tab->bins, char, bins_size(old_tab));
#ifdef ST_DEBUG
    st_check(new_tab);
#endif
    return new_tab;
}

/* Update the entries start of table TAB after removing an entry
   with index N in the array entries.  */
static inline void
update_range_for_deleted(st_table *tab, st_index_t n)
{
    /* Do not update entries_bound here.  Otherwise, we can fill all
       bins by deleted entry value before rebuilding the table.  */
    if (tab->entries_start == n)
        tab->entries_start = n + 1;
}

/* Delete entry with KEY from table TAB, set up *VALUE (unless
   VALUE is zero) from deleted table entry, and return non-zero.  If
   there is no entry with KEY in the table, clear *VALUE (unless VALUE
   is zero), and return zero.  */
static int
st_general_delete(st_table *tab, st_data_t *key, st_data_t *value)
{
    st_table_entry *entry;
    st_index_t bin;
    st_index_t bin_ind;
    st_hash_t hash;

    st_assert(tab != NULL);
    hash = do_hash(*key, tab);
 retry:
    if (tab->bins == NULL) {
        bin = find_entry(tab, hash, *key);
	if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
	    goto retry;
	if (bin == UNDEFINED_ENTRY_IND) {
	    if (value != 0) *value = 0;
	    return 0;
	}
    }
    else {
        bin_ind = find_table_bin_ind(tab, hash, *key);
	if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0))
	    goto retry;
	if (bin_ind == UNDEFINED_BIN_IND) {
	    if (value != 0) *value = 0;
	    return 0;
	}
	bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE;
	MARK_BIN_DELETED(tab, bin_ind);
    }
    entry = &tab->entries[bin];
    *key = entry->key;
    if (value != 0) *value = entry->record;
    MARK_ENTRY_DELETED(entry);
    tab->num_entries--;
    update_range_for_deleted(tab, bin);
#ifdef ST_DEBUG
    st_check(tab);
#endif
    return 1;
}

int
st_delete(st_table *tab, st_data_t *key, st_data_t *value)
{
    return st_general_delete(tab, key, value);
}

/* The function and other functions with suffix '_safe' or '_check'
   are originated from the previous implementation of the hash tables.
   It was necessary for correct deleting entries during traversing
   tables.  The current implementation permits deletion during
   traversing without a specific way to do this.  */
int
st_delete_safe(st_table *tab, st_data_t *key, st_data_t *value,
               st_data_t never ATTRIBUTE_UNUSED)
{
    return st_general_delete(tab, key, value);
}

/* If table TAB is empty, clear *VALUE (unless VALUE is zero), and
   return zero.  Otherwise, remove the first entry in the table.
   Return its key through KEY and its record through VALUE (unless
   VALUE is zero).  */
int
st_shift(st_table *tab, st_data_t *key, st_data_t *value)
{
    st_index_t i, bound;
    st_index_t bin;
    st_table_entry *entries, *curr_entry_ptr;
    st_index_t bin_ind;

    entries = tab->entries;
    bound = tab->entries_bound;
    for (i = tab->entries_start; i < bound; i++) {
        curr_entry_ptr = &entries[i];
	if (! DELETED_ENTRY_P(curr_entry_ptr)) {
	    st_hash_t entry_hash = curr_entry_ptr->hash;
	    st_data_t entry_key = curr_entry_ptr->key;

	    if (value != 0) *value = curr_entry_ptr->record;
	    *key = entry_key;
	retry:
	    if (tab->bins == NULL) {
	        bin = find_entry(tab, entry_hash, entry_key);
		if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) {
		    entries = tab->entries;
		    goto retry;
		}
		st_assert(bin != UNDEFINED_ENTRY_IND);
		curr_entry_ptr = &entries[bin];
	    }
	    else {
	        bin_ind = find_table_bin_ind(tab, entry_hash, entry_key);
		if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0)) {
		    entries = tab->entries;
		    goto retry;
		}
		st_assert(bin_ind != UNDEFINED_BIN_IND);
		curr_entry_ptr = &entries[get_bin(tab->bins, get_size_ind(tab), bin_ind)
					  - ENTRY_BASE];
		MARK_BIN_DELETED(tab, bin_ind);
	    }
	    st_assert(entry_hash != curr_entry_ptr->hash && entry_key == curr_entry_ptr->key);
	    MARK_ENTRY_DELETED(curr_entry_ptr);
	    tab->num_entries--;
	    update_range_for_deleted(tab, i);
#ifdef ST_DEBUG
	    st_check(tab);
#endif
	    return 1;
	}
    }
    st_assert(tab->num_entries == 0);
    tab->entries_start = tab->entries_bound = 0;
    if (value != 0) *value = 0;
    return 0;
}

/* See comments for function st_delete_safe.  */
void
st_cleanup_safe(st_table *tab ATTRIBUTE_UNUSED,
                st_data_t never ATTRIBUTE_UNUSED)
{
}

/* Find entry with KEY in table TAB, call FUNC with the key and the
   value of the found entry, and non-zero as the 3rd argument.  If the
   entry is not found, call FUNC with KEY, and 2 zero arguments.  If
   the call returns ST_CONTINUE, the table will have an entry with key
   and value returned by FUNC through the 1st and 2nd parameters.  If
   the call of FUNC returns ST_DELETE, the table will not have entry
   with KEY.  The function returns flag of that the entry with KEY was
   in the table before the call.  */
int
st_update(st_table *tab, st_data_t key,
	  st_update_callback_func *func, st_data_t arg)
{
    st_table_entry *entry = NULL; /* to avoid uninitialized value warning */
    st_index_t bin = 0; /* Ditto */
    st_table_entry *entries;
    st_index_t bin_ind;
    st_data_t value = 0, old_key;
    st_index_t check;
    int retval, existing;
    st_hash_t hash = do_hash(key, tab);

 retry:
    entries = tab->entries;
    if (tab->bins == NULL) {
        bin = find_entry(tab, hash, key);
	if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
	    goto retry;
	existing = bin != UNDEFINED_ENTRY_IND;
	entry = &entries[bin];
	bin_ind = UNDEFINED_BIN_IND;
    }
    else {
        bin_ind = find_table_bin_ind(tab, hash, key);
	if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0))
	    goto retry;
	existing = bin_ind != UNDEFINED_BIN_IND;
	if (existing) {
	    bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE;
	    entry = &entries[bin];
	}
    }
    if (existing) {
        key = entry->key;
        value = entry->record;
    }
    old_key = key;
    check = tab->rebuilds_num;
    retval = (*func)(&key, &value, arg, existing);
    st_assert(check == tab->rebuilds_num);
    switch (retval) {
      case ST_CONTINUE:
        if (! existing) {
	    st_add_direct_with_hash(tab, key, value, hash);
            break;
        }
        if (old_key != key) {
            entry->key = key;
        }
        entry->record = value;
        break;
      case ST_DELETE:
        if (existing) {
	    if (bin_ind != UNDEFINED_BIN_IND)
	        MARK_BIN_DELETED(tab, bin_ind);
            MARK_ENTRY_DELETED(entry);
	    tab->num_entries--;
	    update_range_for_deleted(tab, bin);
#ifdef ST_DEBUG
	    st_check(tab);
#endif
        }
        break;
    }
#ifdef ST_DEBUG
    st_check(tab);
#endif
    return existing;
}

/* Traverse all entries in table TAB calling FUNC with current entry
   key and value and zero.  If the call returns ST_STOP, stop
   traversing.  If the call returns ST_DELETE, delete the current
   entry from the table.  In case of ST_CHECK or ST_CONTINUE, continue
   traversing.  The function returns zero unless an error is found.
   CHECK_P is flag of st_foreach_check call.  The behavior is a bit
   different for ST_CHECK and when the current element is removed
   during traversing.  */
static inline int
st_general_foreach(st_table *tab, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg,
		   int check_p)
{
    st_index_t bin;
    st_index_t bin_ind;
    st_table_entry *entries, *curr_entry_ptr;
    enum st_retval retval;
    st_index_t i, rebuilds_num;
    st_hash_t hash;
    st_data_t key;
    int error_p, packed_p = tab->bins == NULL;

    st_assert(tab->entries_start <= tab->entries_bound);
    entries = tab->entries;
    /* The bound can change inside the loop even without rebuilding
       the table, e.g. by an entry inesrtion.  */
    for (i = tab->entries_start; i < tab->entries_bound; i++) {
        curr_entry_ptr = &entries[i];
	if (EXPECT(DELETED_ENTRY_P(curr_entry_ptr), 0))
	    continue;
	key = curr_entry_ptr->key;
	rebuilds_num = tab->rebuilds_num;
	hash = curr_entry_ptr->hash;
	retval = (*func)(key, curr_entry_ptr->record, arg, 0);

        if (retval == ST_REPLACE && replace) {
            st_data_t value;
            value = curr_entry_ptr->record;
            retval = (*replace)(&key, &value, arg, TRUE);
            curr_entry_ptr->key = key;
            curr_entry_ptr->record = value;
        }

	if (rebuilds_num != tab->rebuilds_num) {
	retry:
	    entries = tab->entries;
	    packed_p = tab->bins == NULL;
	    if (packed_p) {
	        i = find_entry(tab, hash, key);
		if (EXPECT(i == REBUILT_TABLE_ENTRY_IND, 0))
		    goto retry;
		error_p = i == UNDEFINED_ENTRY_IND;
	    }
	    else {
	        i = find_table_entry_ind(tab, hash, key);
		if (EXPECT(i == REBUILT_TABLE_ENTRY_IND, 0))
		    goto retry;
		error_p = i == UNDEFINED_ENTRY_IND;
		i -= ENTRY_BASE;
	    }
	    if (error_p && check_p) {
	        /* call func with error notice */
	        retval = (*func)(0, 0, arg, 1);
#ifdef ST_DEBUG
		st_check(tab);
#endif
		return 1;
	    }
	    curr_entry_ptr = &entries[i];
	}
	switch (retval) {
            case ST_REPLACE:
                break;
	  case ST_CONTINUE:
	      break;
	  case ST_CHECK:
	      if (check_p)
		  break;
	  case ST_STOP:
#ifdef ST_DEBUG
	      st_check(tab);
#endif
	      return 0;
	  case ST_DELETE: {
	      st_data_t key = curr_entry_ptr->key;

	      again:
	      if (packed_p) {
		  bin = find_entry(tab, hash, key);
		  if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
		      goto again;
		  if (bin == UNDEFINED_ENTRY_IND)
		      break;
	      }
	      else {
		  bin_ind = find_table_bin_ind(tab, hash, key);
		  if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0))
		      goto again;
		  if (bin_ind == UNDEFINED_BIN_IND)
		      break;
		  bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE;
		  MARK_BIN_DELETED(tab, bin_ind);
	      }
	      curr_entry_ptr = &entries[bin];
	      MARK_ENTRY_DELETED(curr_entry_ptr);
	      tab->num_entries--;
	      update_range_for_deleted(tab, bin);
#ifdef ST_DEBUG
	      st_check(tab);
#endif
	      break;
	  }
	}
    }
#ifdef ST_DEBUG
    st_check(tab);
#endif
    return 0;
}

int
st_foreach_with_replace(st_table *tab, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg)
{
    return st_general_foreach(tab, func, replace, arg, TRUE);
}

struct functor {
    st_foreach_callback_func *func;
    st_data_t arg;
};

static int
apply_functor(st_data_t k, st_data_t v, st_data_t d, int _)
{
    const struct functor *f = (void *)d;
    return f->func(k, v, f->arg);
}

int
st_foreach(st_table *tab, st_foreach_callback_func *func, st_data_t arg)
{
    const struct functor f = { func, arg };
    return st_general_foreach(tab, apply_functor, NULL, (st_data_t)&f, FALSE);
}

/* See comments for function st_delete_safe.  */
int
st_foreach_check(st_table *tab, st_foreach_check_callback_func *func, st_data_t arg,
                 st_data_t never ATTRIBUTE_UNUSED)
{
    return st_general_foreach(tab, func, NULL, arg, TRUE);
}

/* Set up array KEYS by at most SIZE keys of head table TAB entries.
   Return the number of keys set up in array KEYS.  */
static inline st_index_t
st_general_keys(st_table *tab, st_data_t *keys, st_index_t size)
{
    st_index_t i, bound;
    st_data_t key, *keys_start, *keys_end;
    st_table_entry *curr_entry_ptr, *entries = tab->entries;

    bound = tab->entries_bound;
    keys_start = keys;
    keys_end = keys + size;
    for (i = tab->entries_start; i < bound; i++) {
	if (keys == keys_end)
	    break;
	curr_entry_ptr = &entries[i];
	key = curr_entry_ptr->key;
        if (! DELETED_ENTRY_P(curr_entry_ptr))
	    *keys++ = key;
    }

    return keys - keys_start;
}

st_index_t
st_keys(st_table *tab, st_data_t *keys, st_index_t size)
{
    return st_general_keys(tab, keys, size);
}

/* See comments for function st_delete_safe.  */
st_index_t
st_keys_check(st_table *tab, st_data_t *keys, st_index_t size,
              st_data_t never ATTRIBUTE_UNUSED)
{
    return st_general_keys(tab, keys, size);
}

/* Set up array VALUES by at most SIZE values of head table TAB
   entries.  Return the number of values set up in array VALUES.  */
static inline st_index_t
st_general_values(st_table *tab, st_data_t *values, st_index_t size)
{
    st_index_t i, bound;
    st_data_t *values_start, *values_end;
    st_table_entry *curr_entry_ptr, *entries = tab->entries;

    values_start = values;
    values_end = values + size;
    bound = tab->entries_bound;
    st_assert(bound != 0);
    for (i = tab->entries_start; i < bound; i++) {
	if (values == values_end)
	    break;
        curr_entry_ptr = &entries[i];
        if (! DELETED_ENTRY_P(curr_entry_ptr))
	    *values++ = curr_entry_ptr->record;
    }

    return values - values_start;
}

st_index_t
st_values(st_table *tab, st_data_t *values, st_index_t size)
{
    return st_general_values(tab, values, size);
}

/* See comments for function st_delete_safe.  */
st_index_t
st_values_check(st_table *tab, st_data_t *values, st_index_t size,
		st_data_t never ATTRIBUTE_UNUSED)
{
    return st_general_values(tab, values, size);
}

#define FNV1_32A_INIT 0x811c9dc5

/*
 * 32 bit magic FNV-1a prime
 */
#define FNV_32_PRIME 0x01000193

#ifndef UNALIGNED_WORD_ACCESS
# if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
     defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || \
     defined(__powerpc64__) || \
     defined(__mc68020__)
#   define UNALIGNED_WORD_ACCESS 1
# endif
#endif
#ifndef UNALIGNED_WORD_ACCESS
# define UNALIGNED_WORD_ACCESS 0
#endif

/* This hash function is quite simplified MurmurHash3
 * Simplification is legal, cause most of magic still happens in finalizator.
 * And finalizator is almost the same as in MurmurHash3 */
#define BIG_CONSTANT(x,y) ((st_index_t)(x)<<32|(st_index_t)(y))
#define ROTL(x,n) ((x)<<(n)|(x)>>(SIZEOF_ST_INDEX_T*CHAR_BIT-(n)))

#if ST_INDEX_BITS <= 32
#define C1 (st_index_t)0xcc9e2d51
#define C2 (st_index_t)0x1b873593
#else
#define C1 BIG_CONSTANT(0x87c37b91,0x114253d5);
#define C2 BIG_CONSTANT(0x4cf5ad43,0x2745937f);
#endif
NO_SANITIZE("unsigned-integer-overflow", static inline st_index_t murmur_step(st_index_t h, st_index_t k));
NO_SANITIZE("unsigned-integer-overflow", static inline st_index_t murmur_finish(st_index_t h));
NO_SANITIZE("unsigned-integer-overflow", extern st_index_t st_hash(const void *ptr, size_t len, st_index_t h));

static inline st_index_t
murmur_step(st_index_t h, st_index_t k)
{
#if ST_INDEX_BITS <= 32
#define r1 (17)
#define r2 (11)
#else
#define r1 (33)
#define r2 (24)
#endif
    k *= C1;
    h ^= ROTL(k, r1);
    h *= C2;
    h = ROTL(h, r2);
    return h;
}
#undef r1
#undef r2

static inline st_index_t
murmur_finish(st_index_t h)
{
#if ST_INDEX_BITS <= 32
#define r1 (16)
#define r2 (13)
#define r3 (16)
    const st_index_t c1 = 0x85ebca6b;
    const st_index_t c2 = 0xc2b2ae35;
#else
/* values are taken from Mix13 on http://zimbry.blogspot.ru/2011/09/better-bit-mixing-improving-on.html */
#define r1 (30)
#define r2 (27)
#define r3 (31)
    const st_index_t c1 = BIG_CONSTANT(0xbf58476d,0x1ce4e5b9);
    const st_index_t c2 = BIG_CONSTANT(0x94d049bb,0x133111eb);
#endif
#if ST_INDEX_BITS > 64
    h ^= h >> 64;
    h *= c2;
    h ^= h >> 65;
#endif
    h ^= h >> r1;
    h *= c1;
    h ^= h >> r2;
    h *= c2;
    h ^= h >> r3;
    return h;
}
#undef r1
#undef r2
#undef r3

st_index_t
st_hash(const void *ptr, size_t len, st_index_t h)
{
    const char *data = ptr;
    st_index_t t = 0;
    size_t l = len;

#define data_at(n) (st_index_t)((unsigned char)data[(n)])
#define UNALIGNED_ADD_4 UNALIGNED_ADD(2); UNALIGNED_ADD(1); UNALIGNED_ADD(0)
#if SIZEOF_ST_INDEX_T > 4
#define UNALIGNED_ADD_8 UNALIGNED_ADD(6); UNALIGNED_ADD(5); UNALIGNED_ADD(4); UNALIGNED_ADD(3); UNALIGNED_ADD_4
#if SIZEOF_ST_INDEX_T > 8
#define UNALIGNED_ADD_16 UNALIGNED_ADD(14); UNALIGNED_ADD(13); UNALIGNED_ADD(12); UNALIGNED_ADD(11); \
    UNALIGNED_ADD(10); UNALIGNED_ADD(9); UNALIGNED_ADD(8); UNALIGNED_ADD(7); UNALIGNED_ADD_8
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_16
#endif
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_8
#else
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_4
#endif
#undef SKIP_TAIL
    if (len >= sizeof(st_index_t)) {
#if !UNALIGNED_WORD_ACCESS
	int align = (int)((st_data_t)data % sizeof(st_index_t));
	if (align) {
	    st_index_t d = 0;
	    int sl, sr, pack;

	    switch (align) {
#ifdef WORDS_BIGENDIAN
# define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1: \
		t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 2)
#else
# define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1:	\
		t |= data_at(n) << CHAR_BIT*(n)
#endif
		UNALIGNED_ADD_ALL;
#undef UNALIGNED_ADD
	    }

#ifdef WORDS_BIGENDIAN
	    t >>= (CHAR_BIT * align) - CHAR_BIT;
#else
	    t <<= (CHAR_BIT * align);
#endif

	    data += sizeof(st_index_t)-align;
	    len -= sizeof(st_index_t)-align;

	    sl = CHAR_BIT * (SIZEOF_ST_INDEX_T-align);
	    sr = CHAR_BIT * align;

	    while (len >= sizeof(st_index_t)) {
		d = *(st_index_t *)data;
#ifdef WORDS_BIGENDIAN
		t = (t << sr) | (d >> sl);
#else
		t = (t >> sr) | (d << sl);
#endif
		h = murmur_step(h, t);
		t = d;
		data += sizeof(st_index_t);
		len -= sizeof(st_index_t);
	    }

	    pack = len < (size_t)align ? (int)len : align;
	    d = 0;
	    switch (pack) {
#ifdef WORDS_BIGENDIAN
# define UNALIGNED_ADD(n) case (n) + 1: \
		d |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1)
#else
# define UNALIGNED_ADD(n) case (n) + 1: \
		d |= data_at(n) << CHAR_BIT*(n)
#endif
		UNALIGNED_ADD_ALL;
#undef UNALIGNED_ADD
	    }
#ifdef WORDS_BIGENDIAN
	    t = (t << sr) | (d >> sl);
#else
	    t = (t >> sr) | (d << sl);
#endif

	    if (len < (size_t)align) goto skip_tail;
# define SKIP_TAIL 1
	    h = murmur_step(h, t);
	    data += pack;
	    len -= pack;
	}
	else
#endif
#ifdef HAVE_BUILTIN___BUILTIN_ASSUME_ALIGNED
#define aligned_data __builtin_assume_aligned(data, sizeof(st_index_t))
#else
#define aligned_data data
#endif
	{
	    do {
		h = murmur_step(h, *(st_index_t *)aligned_data);
		data += sizeof(st_index_t);
		len -= sizeof(st_index_t);
	    } while (len >= sizeof(st_index_t));
	}
    }

    t = 0;
    switch (len) {
#if UNALIGNED_WORD_ACCESS && SIZEOF_ST_INDEX_T <= 8 && CHAR_BIT == 8
    /* in this case byteorder doesn't really matter */
#if SIZEOF_ST_INDEX_T > 4
      case 7: t |= data_at(6) << 48;
      case 6: t |= data_at(5) << 40;
      case 5: t |= data_at(4) << 32;
      case 4:
	t |= (st_index_t)*(uint32_t*)aligned_data;
	goto skip_tail;
# define SKIP_TAIL 1
#endif
      case 3: t |= data_at(2) << 16;
      case 2: t |= data_at(1) << 8;
      case 1: t |= data_at(0);
#else
#ifdef WORDS_BIGENDIAN
# define UNALIGNED_ADD(n) case (n) + 1: \
	t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1)
#else
# define UNALIGNED_ADD(n) case (n) + 1: \
	t |= data_at(n) << CHAR_BIT*(n)
#endif
	UNALIGNED_ADD_ALL;
#undef UNALIGNED_ADD
#endif
#ifdef SKIP_TAIL
      skip_tail:
#endif
	h ^= t; h -= ROTL(t, 7);
	h *= C2;
    }
    h ^= l;
#undef aligned_data

    return murmur_finish(h);
}

st_index_t
st_hash_uint32(st_index_t h, uint32_t i)
{
    return murmur_step(h, i);
}

NO_SANITIZE("unsigned-integer-overflow", extern st_index_t st_hash_uint(st_index_t h, st_index_t i));
st_index_t
st_hash_uint(st_index_t h, st_index_t i)
{
    i += h;
/* no matter if it is BigEndian or LittleEndian,
 * we hash just integers */
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 8*8
    h = murmur_step(h, i >> 8*8);
#endif
    h = murmur_step(h, i);
    return h;
}

st_index_t
st_hash_end(st_index_t h)
{
    h = murmur_finish(h);
    return h;
}

#undef st_hash_start
st_index_t
rb_st_hash_start(st_index_t h)
{
    return h;
}

static st_index_t
strhash(st_data_t arg)
{
    register const char *string = (const char *)arg;
    return st_hash(string, strlen(string), FNV1_32A_INIT);
}

int
st_locale_insensitive_strcasecmp(const char *s1, const char *s2)
{
    char c1, c2;

    while (1) {
        c1 = *s1++;
        c2 = *s2++;
        if (c1 == '\0' || c2 == '\0') {
            if (c1 != '\0') return 1;
            if (c2 != '\0') return -1;
            return 0;
        }
        if (('A' <= c1) && (c1 <= 'Z')) c1 += 'a' - 'A';
        if (('A' <= c2) && (c2 <= 'Z')) c2 += 'a' - 'A';
        if (c1 != c2) {
            if (c1 > c2)
                return 1;
            else
                return -1;
        }
    }
}

int
st_locale_insensitive_strncasecmp(const char *s1, const char *s2, size_t n)
{
    char c1, c2;
    size_t i;

    for (i = 0; i < n; i++) {
        c1 = *s1++;
        c2 = *s2++;
        if (c1 == '\0' || c2 == '\0') {
            if (c1 != '\0') return 1;
            if (c2 != '\0') return -1;
            return 0;
        }
        if (('A' <= c1) && (c1 <= 'Z')) c1 += 'a' - 'A';
        if (('A' <= c2) && (c2 <= 'Z')) c2 += 'a' - 'A';
        if (c1 != c2) {
            if (c1 > c2)
                return 1;
            else
                return -1;
        }
    }
    return 0;
}

static int
st_strcmp(st_data_t lhs, st_data_t rhs)
{
    const char *s1 = (char *)lhs;
    const char *s2 = (char *)rhs;
    return strcmp(s1, s2);
}

static int
st_locale_insensitive_strcasecmp_i(st_data_t lhs, st_data_t rhs)
{
    const char *s1 = (char *)lhs;
    const char *s2 = (char *)rhs;
    return st_locale_insensitive_strcasecmp(s1, s2);
}

NO_SANITIZE("unsigned-integer-overflow", PUREFUNC(static st_index_t strcasehash(st_data_t)));
static st_index_t
strcasehash(st_data_t arg)
{
    register const char *string = (const char *)arg;
    register st_index_t hval = FNV1_32A_INIT;

    /*
     * FNV-1a hash each octet in the buffer
     */
    while (*string) {
	unsigned int c = (unsigned char)*string++;
	if ((unsigned int)(c - 'A') <= ('Z' - 'A')) c += 'a' - 'A';
	hval ^= c;

	/* multiply by the 32 bit FNV magic prime mod 2^32 */
	hval *= FNV_32_PRIME;
    }
    return hval;
}

int
st_numcmp(st_data_t x, st_data_t y)
{
    return x != y;
}

st_index_t
st_numhash(st_data_t n)
{
    enum {s1 = 11, s2 = 3};
    return (st_index_t)((n>>s1|(n<<s2)) ^ (n>>s2));
}

/* Expand TAB to be suitable for holding SIZ entries in total.
   Pre-existing entries remain not deleted inside of TAB, but its bins
   are cleared to expect future reconstruction. See rehash below. */
static void
st_expand_table(st_table *tab, st_index_t siz)
{
    st_table *tmp;
    st_index_t n;

    if (siz <= get_allocated_entries(tab))
        return; /* enough room already */

    tmp = st_init_table_with_size(tab->type, siz);
    n = get_allocated_entries(tab);
    MEMCPY(tmp->entries, tab->entries, st_table_entry, n);
    free(tab->entries);
    if (tab->bins != NULL)
        free(tab->bins);
    if (tmp->bins != NULL)
        free(tmp->bins);
    tab->entry_power = tmp->entry_power;
    tab->bin_power = tmp->bin_power;
    tab->size_ind = tmp->size_ind;
    tab->entries = tmp->entries;
    tab->bins = NULL;
    tab->rebuilds_num++;
    free(tmp);
}

/* Rehash using linear search.  Return TRUE if we found that the table
   was rebuilt.  */
static int
st_rehash_linear(st_table *tab)
{
    int eq_p, rebuilt_p;
    st_index_t i, j;
    st_table_entry *p, *q;
    if (tab->bins) {
        free(tab->bins);
        tab->bins = NULL;
    }
    for (i = tab->entries_start; i < tab->entries_bound; i++) {
        p = &tab->entries[i];
        if (DELETED_ENTRY_P(p))
            continue;
        for (j = i + 1; j < tab->entries_bound; j++) {
            q = &tab->entries[j];
            if (DELETED_ENTRY_P(q))
                continue;
	    DO_PTR_EQUAL_CHECK(tab, p, q->hash, q->key, eq_p, rebuilt_p);
	    if (EXPECT(rebuilt_p, 0))
		return TRUE;
	    if (eq_p) {
                st_assert(p < q);
                *p = *q;
                MARK_ENTRY_DELETED(q);
                tab->num_entries--;
                update_range_for_deleted(tab, j);
            }
        }
    }
    return FALSE;
}

/* Rehash using index.  Return TRUE if we found that the table was
   rebuilt.  */
static int
st_rehash_indexed(st_table *tab)
{
    int eq_p, rebuilt_p;
    st_index_t i;
    st_index_t const n = bins_size(tab);
    unsigned int const size_ind = get_size_ind(tab);
    st_index_t *bins = realloc(tab->bins, n);
    st_assert(bins != NULL);
    tab->bins = bins;
    initialize_bins(tab);
    for (i = tab->entries_start; i < tab->entries_bound; i++) {
        st_table_entry *p = &tab->entries[i];
        st_index_t ind;
#ifdef QUADRATIC_PROBE
        st_index_t d = 1;
#else
        st_index_t peterb = p->hash;
#endif

        if (DELETED_ENTRY_P(p))
            continue;

        ind = hash_bin(p->hash, tab);
        for(;;) {
            st_index_t bin = get_bin(bins, size_ind, ind);
            if (EMPTY_OR_DELETED_BIN_P(bin)) {
                /* ok, new room */
                set_bin(bins, size_ind, ind, i + ENTRY_BASE);
                break;
            }
            else {
                st_table_entry *q = &tab->entries[bin - ENTRY_BASE];
		DO_PTR_EQUAL_CHECK(tab, q, p->hash, p->key, eq_p, rebuilt_p);
		if (EXPECT(rebuilt_p, 0))
		    return TRUE;
		if (eq_p) {
		    /* duplicated key; delete it */
		    st_assert(q < p);
		    q->record = p->record;
		    MARK_ENTRY_DELETED(p);
		    tab->num_entries--;
		    update_range_for_deleted(tab, bin);
		    break;
		}
		else {
		    /* hash collision; skip it */
#ifdef QUADRATIC_PROBE
		    ind = hash_bin(ind + d, tab);
		    d++;
#else
		    ind = secondary_hash(ind, tab, &peterb);
#endif
		}
	    }
        }
    }
    return FALSE;
}

/* Reconstruct TAB's bins according to TAB's entries. This function
   permits conflicting keys inside of entries.  No errors are reported
   then.  All but one of them are discarded silently. */
static void
st_rehash(st_table *tab)
{
    int rebuilt_p;

    do {
	if (tab->bin_power <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS)
	    rebuilt_p = st_rehash_linear(tab);
	else
	    rebuilt_p = st_rehash_indexed(tab);
    } while (rebuilt_p);
}

#ifdef RUBY
static st_data_t
st_stringify(VALUE key)
{
    return (rb_obj_class(key) == rb_cString && !RB_OBJ_FROZEN(key)) ?
        rb_hash_key_str(key) : key;
}

static void
st_insert_single(st_table *tab, VALUE hash, VALUE key, VALUE val)
{
    st_data_t k = st_stringify(key);
    st_table_entry e;
    e.hash = do_hash(k, tab);
    e.key = k;
    e.record = val;

    tab->entries[tab->entries_bound++] = e;
    tab->num_entries++;
    RB_OBJ_WRITTEN(hash, Qundef, k);
    RB_OBJ_WRITTEN(hash, Qundef, val);
}

static void
st_insert_linear(st_table *tab, long argc, const VALUE *argv, VALUE hash)
{
    long i;

    for (i = 0; i < argc; /* */) {
        st_data_t k = st_stringify(argv[i++]);
        st_data_t v = argv[i++];
        st_insert(tab, k, v);
        RB_OBJ_WRITTEN(hash, Qundef, k);
        RB_OBJ_WRITTEN(hash, Qundef, v);
    }
}

static void
st_insert_generic(st_table *tab, long argc, const VALUE *argv, VALUE hash)
{
    long i;

    /* push elems */
    for (i = 0; i < argc; /* */) {
        VALUE key = argv[i++];
        VALUE val = argv[i++];
        st_insert_single(tab, hash, key, val);
    }

    /* reindex */
    st_rehash(tab);
}

/* Mimics ruby's { foo => bar } syntax. This function is subpart
   of rb_hash_bulk_insert. */
void
rb_hash_bulk_insert_into_st_table(long argc, const VALUE *argv, VALUE hash)
{
    st_index_t n, size = argc / 2;
    st_table *tab = RHASH_ST_TABLE(hash);

    tab = RHASH_TBL_RAW(hash);
    n = tab->entries_bound + size;
    st_expand_table(tab, n);
    if (UNLIKELY(tab->num_entries))
        st_insert_generic(tab, argc, argv, hash);
    else if (argc <= 2)
        st_insert_single(tab, hash, argv[0], argv[1]);
    else if (tab->bin_power <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS)
        st_insert_linear(tab, argc, argv, hash);
    else
        st_insert_generic(tab, argc, argv, hash);
}
#endif