1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
|
#include <assert.h>
#include "insns.inc"
#include "internal.h"
#include "vm_core.h"
#include "vm_sync.h"
#include "vm_callinfo.h"
#include "builtin.h"
#include "internal/compile.h"
#include "insns_info.inc"
#include "ujit_compile.h"
#include "ujit_asm.h"
#include "ujit_utils.h"
// TODO: give ujit_examples.inc some more meaningful file name
// eg ujit_hook.h
#include "ujit_examples.inc"
#ifdef _WIN32
#define PLATFORM_SUPPORTED_P 0
#else
#define PLATFORM_SUPPORTED_P 1
#endif
bool rb_ujit_enabled;
// Hash table of encoded instructions
extern st_table *rb_encoded_insn_data;
// Code generation context
typedef struct ctx_struct
{
// Current PC
VALUE *pc;
// Difference between the current stack pointer and actual stack top
int32_t stack_diff;
const rb_iseq_t *iseq;
} ctx_t;
// MicroJIT code generation function signature
typedef bool (*codegen_fn)(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx);
// Map from YARV opcodes to code generation functions
static st_table *gen_fns;
// Code block into which we write machine code
static codeblock_t block;
static codeblock_t* cb = NULL;
// Code block into which we write out-of-line machine code
static codeblock_t outline_block;
static codeblock_t* ocb = NULL;
// Register MicroJIT receives the CFP and EC into
#define REG_CFP RDI
#define REG_EC RSI
// Register MicroJIT loads the SP into
#define REG_SP RDX
// Scratch registers used by MicroJIT
#define REG0 RAX
#define REG1 RCX
#define REG0_32 EAX
#define REG1_32 ECX
// Keep track of mapping from instructions to generated code
// See comment for rb_encoded_insn_data in iseq.c
static void
addr2insn_bookkeeping(void *code_ptr, int insn)
{
const void * const *table = rb_vm_get_insns_address_table();
const void * const translated_address = table[insn];
st_data_t encoded_insn_data;
if (st_lookup(rb_encoded_insn_data, (st_data_t)translated_address, &encoded_insn_data)) {
st_insert(rb_encoded_insn_data, (st_data_t)code_ptr, encoded_insn_data);
}
else {
rb_bug("ujit: failed to find info for original instruction while dealing with addr2insn");
}
}
static int
opcode_at_pc(const rb_iseq_t *iseq, const VALUE *pc)
{
const VALUE at_pc = *pc;
if (FL_TEST_RAW((VALUE)iseq, ISEQ_TRANSLATED)) {
return rb_vm_insn_addr2opcode((const void *)at_pc);
}
else {
return (int)at_pc;
}
}
// Get the current instruction opcode from the context object
int ctx_get_opcode(ctx_t *ctx)
{
return opcode_at_pc(ctx->iseq, ctx->pc);
}
// Get an instruction argument from the context object
VALUE ctx_get_arg(ctx_t* ctx, size_t arg_idx)
{
assert (arg_idx + 1 < insn_len(ctx_get_opcode(ctx)));
return *(ctx->pc + arg_idx + 1);
}
/*
Get an operand for the adjusted stack pointer address
*/
x86opnd_t ctx_sp_opnd(ctx_t* ctx)
{
int32_t offset = (ctx->stack_diff) * 8;
return mem_opnd(64, REG_SP, offset);
}
/*
Make space on the stack for N values
Return a pointer to the new stack top
*/
x86opnd_t ctx_stack_push(ctx_t* ctx, size_t n)
{
ctx->stack_diff += n;
// SP points just above the topmost value
int32_t offset = (ctx->stack_diff - 1) * 8;
return mem_opnd(64, REG_SP, offset);
}
/*
Pop N values off the stack
Return a pointer to the stack top before the pop operation
*/
x86opnd_t ctx_stack_pop(ctx_t* ctx, size_t n)
{
// SP points just above the topmost value
int32_t offset = (ctx->stack_diff - 1) * 8;
x86opnd_t top = mem_opnd(64, REG_SP, offset);
ctx->stack_diff -= n;
return top;
}
x86opnd_t ctx_stack_opnd(ctx_t* ctx, int32_t idx)
{
// SP points just above the topmost value
int32_t offset = (ctx->stack_diff - 1 - idx) * 8;
x86opnd_t opnd = mem_opnd(64, REG_SP, offset);
return opnd;
}
// Ruby instruction entry
static void
ujit_gen_entry(codeblock_t* cb)
{
for (size_t i = 0; i < sizeof(ujit_pre_call_with_ec_bytes); ++i)
cb_write_byte(cb, ujit_pre_call_with_ec_bytes[i]);
}
/**
Generate an inline exit to return to the interpreter
*/
static void
ujit_gen_exit(codeblock_t* cb, ctx_t* ctx, VALUE* exit_pc)
{
// Write the adjusted SP back into the CFP
if (ctx->stack_diff != 0)
{
x86opnd_t stack_pointer = ctx_sp_opnd(ctx);
lea(cb, REG_SP, stack_pointer);
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP);
}
// Directly return the next PC, which is a constant
mov(cb, RAX, const_ptr_opnd(exit_pc));
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), RAX);
// Write the post call bytes
for (size_t i = 0; i < sizeof(ujit_post_call_with_ec_bytes); ++i)
cb_write_byte(cb, ujit_post_call_with_ec_bytes[i]);
}
/**
Generate an out-of-line exit to return to the interpreter
*/
uint8_t*
ujit_side_exit(codeblock_t* cb, ctx_t* ctx, VALUE* exit_pc)
{
uint8_t* code_ptr = cb_get_ptr(cb, cb->write_pos);
// Write back the old instruction at the exit PC
// Otherwise the interpreter may jump right back to the
// JITted code we're trying to exit
const void * const *table = rb_vm_get_insns_address_table();
int opcode = opcode_at_pc(ctx->iseq, exit_pc);
void* old_instr = (void*)table[opcode];
mov(cb, RAX, const_ptr_opnd(exit_pc));
mov(cb, RCX, const_ptr_opnd(old_instr));
mov(cb, mem_opnd(64, RAX, 0), RCX);
// Generate the code to exit to the interpreters
ujit_gen_exit(cb, ctx, exit_pc);
return code_ptr;
}
/*
Generate a chunk of machine code for one individual bytecode instruction
Eventually, this will handle multiple instructions in a sequence
*/
uint8_t *
ujit_compile_insn(const rb_iseq_t *iseq, unsigned int insn_idx, unsigned int* next_ujit_idx)
{
assert (cb != NULL);
VALUE *encoded = iseq->body->iseq_encoded;
// NOTE: if we are ever deployed in production, we
// should probably just log an error and return NULL here,
// so we can fail more gracefully
if (cb->write_pos + 1024 >= cb->mem_size)
{
rb_bug("out of executable memory");
}
if (ocb->write_pos + 1024 >= ocb->mem_size)
{
rb_bug("out of executable memory (outlined block)");
}
// Align the current write positon to cache line boundaries
cb_align_pos(cb, 64);
// Get a pointer to the current write position in the code block
uint8_t *code_ptr = &cb->mem_block[cb->write_pos];
//printf("write pos: %ld\n", cb->write_pos);
// Get the first opcode in the sequence
int first_opcode = opcode_at_pc(iseq, &encoded[insn_idx]);
// Create codegen context
ctx_t ctx;
ctx.pc = NULL;
ctx.stack_diff = 0;
ctx.iseq = iseq;
// For each instruction to compile
size_t num_instrs;
for (num_instrs = 0;; ++num_instrs)
{
// Set the current PC
ctx.pc = &encoded[insn_idx];
// Get the current opcode
int opcode = ctx_get_opcode(&ctx);
// Lookup the codegen function for this instruction
st_data_t st_gen_fn;
if (!rb_st_lookup(gen_fns, opcode, &st_gen_fn))
{
//print_int(cb, imm_opnd(num_instrs));
//print_str(cb, insn_name(opcode));
break;
}
// Write the pre call bytes before the first instruction
if (num_instrs == 0)
{
ujit_gen_entry(cb);
// Load the current SP from the CFP into REG_SP
mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
}
// Call the code generation function
codegen_fn gen_fn = (codegen_fn)st_gen_fn;
if (!gen_fn(cb, ocb, &ctx))
{
break;
}
// Move to the next instruction
insn_idx += insn_len(opcode);
}
// Let the caller know how many instructions ujit compiled
*next_ujit_idx = insn_idx;
// If no instructions were compiled
if (num_instrs == 0)
{
return NULL;
}
// Generate code to exit to the interpreter
ujit_gen_exit(cb, &ctx, ctx.pc);
addr2insn_bookkeeping(code_ptr, first_opcode);
return code_ptr;
}
bool
gen_dup(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
x86opnd_t dup_val = ctx_stack_pop(ctx, 1);
x86opnd_t loc0 = ctx_stack_push(ctx, 1);
x86opnd_t loc1 = ctx_stack_push(ctx, 1);
mov(cb, RAX, dup_val);
mov(cb, loc0, RAX);
mov(cb, loc1, RAX);
return true;
}
bool
gen_nop(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Do nothing
return true;
}
bool
gen_pop(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Decrement SP
ctx_stack_pop(ctx, 1);
return true;
}
bool
gen_putnil(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Write constant at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, imm_opnd(Qnil));
return true;
}
bool
gen_putobject(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Load the argument from the bytecode sequence.
// We need to do this as the argument can chanage due to GC compaction.
x86opnd_t pc_imm = const_ptr_opnd((void*)ctx->pc);
mov(cb, RAX, pc_imm);
mov(cb, RAX, mem_opnd(64, RAX, 8)); // One after the opcode
// Write argument at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, RAX);
return true;
}
bool
gen_putobject_int2fix(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
int opcode = ctx_get_opcode(ctx);
int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1;
// Write constant at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, imm_opnd(INT2FIX(cst_val)));
return true;
}
bool
gen_putself(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Load self from CFP
mov(cb, RAX, member_opnd(REG_CFP, rb_control_frame_t, self));
// Write it on the stack
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, RAX);
return true;
}
bool
gen_getlocal_wc0(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Load environment pointer EP from CFP
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
// Compute the offset from BP to the local
int32_t local_idx = (int32_t)ctx_get_arg(ctx, 0);
const int32_t offs = -8 * local_idx;
// Load the local from the block
mov(cb, REG0, mem_opnd(64, REG0, offs));
// Write the local at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, REG0);
return true;
}
bool
gen_setlocal_wc0(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
/*
vm_env_write(const VALUE *ep, int index, VALUE v)
{
VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS];
if (LIKELY((flags & VM_ENV_FLAG_WB_REQUIRED) == 0)) {
VM_STACK_ENV_WRITE(ep, index, v);
}
else {
vm_env_write_slowpath(ep, index, v);
}
}
*/
// Load environment pointer EP from CFP
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
// flags & VM_ENV_FLAG_WB_REQUIRED
x86opnd_t flags_opnd = mem_opnd(64, REG0, 8 * VM_ENV_DATA_INDEX_FLAGS);
test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED));
// Create a size-exit to fall back to the interpreter
uint8_t* side_exit = ujit_side_exit(ocb, ctx, ctx->pc);
// if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
jnz_ptr(cb, side_exit);
// Pop the value to write from the stack
x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
mov(cb, REG1, stack_top);
// Write the value at the environment pointer
int32_t local_idx = (int32_t)ctx_get_arg(ctx, 0);
const int32_t offs = -8 * local_idx;
mov(cb, mem_opnd(64, REG0, offs), REG1);
return true;
}
bool
gen_opt_minus(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Create a size-exit to fall back to the interpreter
// Note: we generate the side-exit before popping operands from the stack
uint8_t* side_exit = ujit_side_exit(ocb, ctx, ctx->pc);
// TODO: make a helper function for this
// Make sure that minus isn't redefined for integers
mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
test(
cb,
member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_MINUS),
imm_opnd(INTEGER_REDEFINED_OP_FLAG)
);
jnz_ptr(cb, side_exit);
// Get the operands and destination from the stack
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
// If not fixnums, fall back
test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
jz_ptr(cb, side_exit);
test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
jz_ptr(cb, side_exit);
// Subtract arg0 - arg1 and test for overflow
mov(cb, RAX, arg0);
sub(cb, RAX, arg1);
jo_ptr(cb, side_exit);
add(cb, RAX, imm_opnd(1));
// Push the output on the stack
x86opnd_t dst = ctx_stack_push(ctx, 1);
mov(cb, dst, RAX);
return true;
}
bool
gen_opt_send_without_block(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Relevant definitions:
// vm_call_cfunc_with_frame : vm_insnhelper.c
// rb_callcache : vm_callinfo.h
// invoker, cfunc logic : method.h, vm_method.c
// rb_callable_method_entry_t: method.h
struct rb_call_data * cd = (struct rb_call_data *)ctx_get_arg(ctx, 0);
int32_t argc = (int32_t)vm_ci_argc(cd->ci);
// Don't JIT calls with keyword splat
if (vm_ci_flag(cd->ci) & VM_CALL_KW_SPLAT)
{
return false;
}
// Don't JIT calls that aren't simple
if (!(vm_ci_flag(cd->ci) & VM_CALL_ARGS_SIMPLE))
{
return false;
}
// Don't JIT if the inline cache is not set
if (cd->cc == vm_cc_empty())
{
//printf("call cache is empty\n");
return false;
}
const rb_callable_method_entry_t *me = vm_cc_cme(cd->cc);
// Don't JIT if this is not a C call
if (me->def->type != VM_METHOD_TYPE_CFUNC)
{
return false;
}
const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(me->def, body.cfunc);
// Don't JIT if the argument count doesn't match
if (cfunc->argc < 0 || cfunc->argc != argc)
{
return false;
}
// Don't JIT functions that need C stack arguments for now
if (argc + 1 > NUM_C_ARG_REGS)
{
return false;
}
// Create a size-exit to fall back to the interpreter
uint8_t* side_exit = ujit_side_exit(ocb, ctx, ctx->pc);
// Check for interrupts
// RUBY_VM_CHECK_INTS(ec)
mov(cb, REG0_32, member_opnd(REG_EC, rb_execution_context_t, interrupt_mask));
not(cb, REG0_32);
test(cb, member_opnd(REG_EC, rb_execution_context_t, interrupt_flag), REG0_32);
jnz_ptr(cb, side_exit);
// Points to the receiver operand on the stack
x86opnd_t recv = ctx_stack_opnd(ctx, argc);
mov(cb, REG0, recv);
// Callee method ID
//ID mid = vm_ci_mid(cd->ci);
//printf("JITting call to C function \"%s\", argc: %lu\n", rb_id2name(mid), argc);
//print_str(cb, "");
//print_str(cb, "calling CFUNC:");
//print_str(cb, rb_id2name(mid));
//print_str(cb, "recv");
//print_ptr(cb, recv);
// Check that the receiver is a heap object
test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
jnz_ptr(cb, side_exit);
cmp(cb, REG0, imm_opnd(Qfalse));
je_ptr(cb, side_exit);
cmp(cb, REG0, imm_opnd(Qnil));
je_ptr(cb, side_exit);
// Pointer to the klass field of the receiver &(recv->klass)
x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
// Load the call cache pointer into REG1
mov(cb, REG1, const_ptr_opnd(cd));
x86opnd_t ptr_to_cc = member_opnd(REG1, struct rb_call_data, cc);
mov(cb, REG1, ptr_to_cc);
// Check the class of the receiver against the call cache
mov(cb, REG0, klass_opnd);
cmp(cb, REG0, mem_opnd(64, REG1, offsetof(struct rb_callcache, klass)));
jne_ptr(cb, side_exit);
// NOTE: there *has to be* a way to optimize the entry invalidated check
// Could we have Ruby invalidate the JIT code instead of invalidating CME?
//
// Check that the method entry is not invalidated
// cd->cc->cme->flags
// #define METHOD_ENTRY_INVALIDATED(me) ((me)->flags & IMEMO_FL_USER5)
x86opnd_t ptr_to_cme_ = mem_opnd(64, REG1, offsetof(struct rb_callcache, cme_));
mov(cb, REG1, ptr_to_cme_);
x86opnd_t flags_opnd = mem_opnd(64, REG1, offsetof(rb_callable_method_entry_t, flags));
test(cb, flags_opnd, imm_opnd(IMEMO_FL_USER5));
jnz_ptr(cb, side_exit);
// IDEA: stack frame setup may not be needed for some C functions
// We could profile the most called C functions and identify which are safe
// This may help us eliminate stack overflow checks as well
// TODO: do we need this check?
//vm_check_frame(type, specval, cref_or_me, iseq);
// TODO: stack overflow check
//vm_check_canary(ec, sp);
// Increment the stack pointer by 3 (in the callee)
// sp += 3
lea(cb, REG0, ctx_sp_opnd(ctx));
add(cb, REG0, imm_opnd(8 * 3));
// Write method entry at sp[-3]
// sp[-3] = me;
mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);
// Write block handler at sp[-2]
// sp[-2] = block_handler;
mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));
// Write env flags at sp[-1]
// sp[-1] = frame_type;
uint64_t frame_type = VM_FRAME_MAGIC_CFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL;
mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));
// Allocate a new CFP (ec->cfp--)
sub(
cb,
member_opnd(REG_EC, rb_execution_context_t, cfp),
imm_opnd(sizeof(rb_control_frame_t))
);
// Setup the new frame
// *cfp = (const struct rb_control_frame_struct) {
// .pc = 0,
// .sp = sp,
// .iseq = 0,
// .self = recv,
// .ep = sp - 1,
// .block_code = 0,
// .__bp__ = sp,
// };
mov(cb, REG1, member_opnd(REG_EC, rb_execution_context_t, cfp));
mov(cb, member_opnd(REG1, rb_control_frame_t, pc), imm_opnd(0));
mov(cb, member_opnd(REG1, rb_control_frame_t, sp), REG0);
mov(cb, member_opnd(REG1, rb_control_frame_t, iseq), imm_opnd(0));
mov(cb, member_opnd(REG1, rb_control_frame_t, block_code), imm_opnd(0));
mov(cb, member_opnd(REG1, rb_control_frame_t, __bp__), REG0);
sub(cb, REG0, imm_opnd(sizeof(VALUE)));
mov(cb, member_opnd(REG1, rb_control_frame_t, ep), REG0);
mov(cb, REG0, recv);
mov(cb, member_opnd(REG1, rb_control_frame_t, self), REG0);
// Save the MicroJIT registers
push(cb, REG_CFP);
push(cb, REG_EC);
push(cb, REG_SP);
// Maintain 16-byte RSP alignment
sub(cb, RSP, imm_opnd(8));
// Copy SP into RAX because REG_SP will get overwritten
lea(cb, RAX, ctx_sp_opnd(ctx));
// Copy the arguments from the stack to the C argument registers
// self is the 0th argument and is at index argc from the stack top
for (int32_t i = 0; i < argc + 1; ++i)
{
x86opnd_t stack_opnd = mem_opnd(64, RAX, -(argc + 1 - i) * 8);
//print_ptr(cb, stack_opnd);
x86opnd_t c_arg_reg = C_ARG_REGS[i];
mov(cb, c_arg_reg, stack_opnd);
}
// Pop the C function arguments from the stack (in the caller)
ctx_stack_pop(ctx, argc + 1);
//print_str(cb, "before C call");
// Call the C function
// VALUE ret = (cfunc->func)(recv, argv[0], argv[1]);
call_ptr(cb, REG0, (void*)cfunc->func);
//print_str(cb, "after C call");
// Maintain 16-byte RSP alignment
add(cb, RSP, imm_opnd(8));
// Restore MicroJIT registers
pop(cb, REG_SP);
pop(cb, REG_EC);
pop(cb, REG_CFP);
// Push the return value on the Ruby stack
x86opnd_t stack_ret = ctx_stack_push(ctx, 1);
mov(cb, stack_ret, RAX);
// Pop the stack frame (ec->cfp++)
add(
cb,
member_opnd(REG_EC, rb_execution_context_t, cfp),
imm_opnd(sizeof(rb_control_frame_t))
);
return true;
}
void
rb_ujit_compile_iseq(const rb_iseq_t *iseq)
{
#if OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE
RB_VM_LOCK();
VALUE *encoded = (VALUE *)iseq->body->iseq_encoded;
unsigned int insn_idx;
unsigned int next_ujit_idx = 0;
for (insn_idx = 0; insn_idx < iseq->body->iseq_size; /* */) {
int insn = opcode_at_pc(iseq, &encoded[insn_idx]);
int len = insn_len(insn);
uint8_t *native_code_ptr = NULL;
// If ujit hasn't already compiled this instruction
if (insn_idx >= next_ujit_idx) {
native_code_ptr = ujit_compile_insn(iseq, insn_idx, &next_ujit_idx);
}
if (native_code_ptr) {
encoded[insn_idx] = (VALUE)native_code_ptr;
}
insn_idx += len;
}
RB_VM_UNLOCK();
#endif
}
void
rb_ujit_init(void)
{
if (!ujit_scrape_successful || !PLATFORM_SUPPORTED_P)
{
return;
}
rb_ujit_enabled = true;
// Initialize the code blocks
size_t mem_size = 128 * 1024 * 1024;
uint8_t* mem_block = alloc_exec_mem(mem_size);
cb = █
cb_init(cb, mem_block, mem_size/2);
ocb = &outline_block;
cb_init(ocb, mem_block + mem_size/2, mem_size/2);
// Initialize the codegen function table
gen_fns = rb_st_init_numtable();
// Map YARV opcodes to the corresponding codegen functions
st_insert(gen_fns, (st_data_t)BIN(dup), (st_data_t)&gen_dup);
st_insert(gen_fns, (st_data_t)BIN(nop), (st_data_t)&gen_nop);
st_insert(gen_fns, (st_data_t)BIN(pop), (st_data_t)&gen_pop);
st_insert(gen_fns, (st_data_t)BIN(putnil), (st_data_t)&gen_putnil);
st_insert(gen_fns, (st_data_t)BIN(putobject), (st_data_t)&gen_putobject);
st_insert(gen_fns, (st_data_t)BIN(putobject_INT2FIX_0_), (st_data_t)&gen_putobject_int2fix);
st_insert(gen_fns, (st_data_t)BIN(putobject_INT2FIX_1_), (st_data_t)&gen_putobject_int2fix);
st_insert(gen_fns, (st_data_t)BIN(putself), (st_data_t)&gen_putself);
st_insert(gen_fns, (st_data_t)BIN(getlocal_WC_0), (st_data_t)&gen_getlocal_wc0);
st_insert(gen_fns, (st_data_t)BIN(setlocal_WC_0), (st_data_t)&gen_setlocal_wc0);
st_insert(gen_fns, (st_data_t)BIN(opt_minus), (st_data_t)&gen_opt_minus);
st_insert(gen_fns, (st_data_t)BIN(opt_send_without_block), (st_data_t)&gen_opt_send_without_block);
}
|