1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
|
#![allow(dead_code)]
#![allow(unused_variables)]
#![allow(unused_imports)]
use crate::asm::{uimm_num_bits, CodeBlock};
use crate::asm::x86_64::*;
use crate::codegen::{JITState};
use crate::cruby::*;
use crate::backend::ir::{Assembler, Opnd, Target, Op, MemBase, Mem};
// Use the x86 register type for this platform
pub type Reg = X86Reg;
// Callee-saved registers
pub const _CFP: Opnd = Opnd::Reg(R13_REG);
pub const _EC: Opnd = Opnd::Reg(R12_REG);
pub const _SP: Opnd = Opnd::Reg(RBX_REG);
// C argument registers on this platform
pub const _C_ARG_OPNDS: [Opnd; 6] = [
Opnd::Reg(RDI_REG),
Opnd::Reg(RSI_REG),
Opnd::Reg(RDX_REG),
Opnd::Reg(RCX_REG),
Opnd::Reg(R8_REG),
Opnd::Reg(R9_REG)
];
// C return value register on this platform
pub const C_RET_REG: Reg = RAX_REG;
pub const _C_RET_OPND: Opnd = Opnd::Reg(RAX_REG);
/// Map Opnd to X86Opnd
impl From<Opnd> for X86Opnd {
fn from(opnd: Opnd) -> Self {
match opnd {
// NOTE: these operand types need to be lowered first
//Value(VALUE), // Immediate Ruby value, may be GC'd, movable
//InsnOut(usize), // Output of a preceding instruction in this block
Opnd::InsnOut{..} => panic!("InsnOut operand made it past register allocation"),
Opnd::None => X86Opnd::None,
Opnd::UImm(val) => uimm_opnd(val),
Opnd::Imm(val) => imm_opnd(val),
Opnd::Value(VALUE(uimm)) => uimm_opnd(uimm as u64),
// General-purpose register
Opnd::Reg(reg) => X86Opnd::Reg(reg),
// Memory operand with displacement
Opnd::Mem(Mem{ base: MemBase::Reg(reg_no), num_bits, disp }) => {
let reg = X86Reg {
reg_no,
num_bits: 64,
reg_type: RegType::GP
};
mem_opnd(num_bits, X86Opnd::Reg(reg), disp)
}
_ => panic!("unsupported x86 operand type")
}
}
}
impl Assembler
{
// A special scratch register for intermediate processing.
// Note: right now this is only used by LeaLabel because label_ref accepts
// a closure and we don't want it to have to capture anything.
const SCRATCH0: X86Opnd = X86Opnd::Reg(R11_REG);
/// Get the list of registers from which we can allocate on this platform
pub fn get_alloc_regs() -> Vec<Reg>
{
vec![
RAX_REG,
RCX_REG,
]
}
/// Get a list of all of the caller-save registers
pub fn get_caller_save_regs() -> Vec<Reg> {
vec![RAX_REG, RCX_REG, RDX_REG, RSI_REG, RDI_REG, R8_REG, R9_REG, R10_REG, R11_REG]
}
// These are the callee-saved registers in the x86-64 SysV ABI
// RBX, RSP, RBP, and R12–R15
/// Split IR instructions for the x86 platform
fn x86_split(mut self) -> Assembler
{
let live_ranges: Vec<usize> = std::mem::take(&mut self.live_ranges);
self.forward_pass(|asm, index, op, opnds, target, text| {
// Load heap object operands into registers because most
// instructions can't directly work with 64-bit constants
let opnds = match op {
Op::Load | Op::Mov => opnds,
_ => opnds.into_iter().map(|opnd| {
if let Opnd::Value(value) = opnd {
if !value.special_const_p() {
asm.load(opnd)
} else {
opnd
}
} else {
opnd
}
}).collect()
};
match op {
Op::Add | Op::Sub | Op::And => {
let (opnd0, opnd1) = match (opnds[0], opnds[1]) {
(Opnd::Mem(_), Opnd::Mem(_)) => {
(asm.load(opnds[0]), asm.load(opnds[1]))
},
(Opnd::Mem(_), Opnd::UImm(value)) => {
if uimm_num_bits(value) > 32 {
(asm.load(opnds[0]), asm.load(opnds[1]))
} else {
(asm.load(opnds[0]), opnds[1])
}
},
// Instruction output whose live range spans beyond this instruction
(Opnd::InsnOut { idx, .. }, _) => {
if live_ranges[idx] > index {
(asm.load(opnds[0]), opnds[1])
} else {
(opnds[0], opnds[1])
}
},
// We have to load memory and register operands to avoid corrupting them
(Opnd::Mem(_) | Opnd::Reg(_), _) => {
(asm.load(opnds[0]), opnds[1])
},
_ => (opnds[0], opnds[1])
};
asm.push_insn(op, vec![opnd0, opnd1], target, text);
},
Op::Mov => {
match (opnds[0], opnds[1]) {
(Opnd::Mem(_), Opnd::Mem(_)) => {
// We load opnd1 because for mov, opnd0 is the output
let opnd1 = asm.load(opnds[1]);
asm.mov(opnds[0], opnd1);
},
(Opnd::Mem(_), Opnd::UImm(value)) => {
if uimm_num_bits(value) > 32 {
let opnd1 = asm.load(opnds[1]);
asm.mov(opnds[0], opnd1);
} else {
asm.mov(opnds[0], opnds[1]);
}
},
_ => {
asm.mov(opnds[0], opnds[1]);
}
}
},
Op::Not => {
let opnd0 = match opnds[0] {
// If we have an instruction output whose live range
// spans beyond this instruction, we have to load it.
Opnd::InsnOut { idx, .. } => {
if live_ranges[idx] > index {
asm.load(opnds[0])
} else {
opnds[0]
}
},
// We have to load memory and register operands to avoid
// corrupting them.
Opnd::Mem(_) | Opnd::Reg(_) => asm.load(opnds[0]),
// Otherwise we can just reuse the existing operand.
_ => opnds[0]
};
asm.not(opnd0);
},
_ => {
asm.push_insn(op, opnds, target, text);
}
};
})
}
/// Emit platform-specific machine code
pub fn x86_emit(&mut self, cb: &mut CodeBlock) -> Vec<u32>
{
//dbg!(&self.insns);
// List of GC offsets
let mut gc_offsets: Vec<u32> = Vec::new();
// For each instruction
for insn in &self.insns {
match insn.op {
Op::Comment => {
if cfg!(feature = "asm_comments") {
cb.add_comment(&insn.text.as_ref().unwrap());
}
},
// Write the label at the current position
Op::Label => {
cb.write_label(insn.target.unwrap().unwrap_label_idx());
},
Op::BakeString => {
for byte in insn.text.as_ref().unwrap().as_bytes() {
cb.write_byte(*byte);
}
// Add a null-terminator byte for safety (in case we pass
// this to C code)
cb.write_byte(0);
},
Op::Add => {
add(cb, insn.opnds[0].into(), insn.opnds[1].into())
},
Op::Sub => {
sub(cb, insn.opnds[0].into(), insn.opnds[1].into())
},
Op::And => {
and(cb, insn.opnds[0].into(), insn.opnds[1].into())
},
Op::Not => {
not(cb, insn.opnds[0].into())
},
Op::Store => mov(cb, insn.opnds[0].into(), insn.opnds[1].into()),
// This assumes only load instructions can contain references to GC'd Value operands
Op::Load => {
mov(cb, insn.out.into(), insn.opnds[0].into());
// If the value being loaded is a heap object
if let Opnd::Value(val) = insn.opnds[0] {
if !val.special_const_p() {
// The pointer immediate is encoded as the last part of the mov written out
let ptr_offset: u32 = (cb.get_write_pos() as u32) - (SIZEOF_VALUE as u32);
gc_offsets.push(ptr_offset);
}
}
},
Op::LoadSExt => {
movsx(cb, insn.out.into(), insn.opnds[0].into())
},
Op::Mov => mov(cb, insn.opnds[0].into(), insn.opnds[1].into()),
// Load effective address
Op::Lea => lea(cb, insn.out.into(), insn.opnds[0].into()),
// Load relative address
Op::LeaLabel => {
let label_idx = insn.target.unwrap().unwrap_label_idx();
cb.label_ref(label_idx, 7, |cb, src_addr, dst_addr| {
let disp = dst_addr - src_addr;
lea(cb, Self::SCRATCH0, mem_opnd(8, RIP, disp.try_into().unwrap()));
});
mov(cb, insn.out.into(), Self::SCRATCH0);
},
// Push and pop to/from the C stack
Op::CPush => push(cb, insn.opnds[0].into()),
Op::CPop => pop(cb, insn.out.into()),
Op::CPopInto => pop(cb, insn.opnds[0].into()),
// Push and pop to the C stack all caller-save registers and the
// flags
Op::CPushAll => {
let regs = Assembler::get_caller_save_regs();
for reg in regs {
push(cb, X86Opnd::Reg(reg));
}
pushfq(cb);
},
Op::CPopAll => {
let regs = Assembler::get_caller_save_regs();
popfq(cb);
for reg in regs.into_iter().rev() {
pop(cb, X86Opnd::Reg(reg));
}
},
// C function call
Op::CCall => {
// Temporary
assert!(insn.opnds.len() < C_ARG_REGS.len());
// For each operand
for (idx, opnd) in insn.opnds.iter().enumerate() {
mov(cb, C_ARG_REGS[idx], insn.opnds[idx].into());
}
let ptr = insn.target.unwrap().unwrap_fun_ptr();
call_ptr(cb, RAX, ptr);
},
Op::CRet => {
// TODO: bias allocation towards return register
if insn.opnds[0] != Opnd::Reg(C_RET_REG) {
mov(cb, RAX, insn.opnds[0].into());
}
ret(cb);
}
// Compare
Op::Cmp => test(cb, insn.opnds[0].into(), insn.opnds[1].into()),
// Test and set flags
Op::Test => test(cb, insn.opnds[0].into(), insn.opnds[1].into()),
Op::JmpOpnd => jmp_rm(cb, insn.opnds[0].into()),
// Conditional jump to a label
Op::Jmp => {
match insn.target.unwrap() {
Target::CodePtr(code_ptr) => jmp_ptr(cb, code_ptr),
Target::Label(label_idx) => jmp_label(cb, label_idx),
_ => unreachable!()
}
}
Op::Je => {
match insn.target.unwrap() {
Target::CodePtr(code_ptr) => je_ptr(cb, code_ptr),
Target::Label(label_idx) => je_label(cb, label_idx),
_ => unreachable!()
}
}
Op::Jbe => {
match insn.target.unwrap() {
Target::CodePtr(code_ptr) => jbe_ptr(cb, code_ptr),
Target::Label(label_idx) => jbe_label(cb, label_idx),
_ => unreachable!()
}
},
Op::Jz => {
match insn.target.unwrap() {
Target::CodePtr(code_ptr) => jz_ptr(cb, code_ptr),
Target::Label(label_idx) => jz_label(cb, label_idx),
_ => unreachable!()
}
}
Op::Jnz => {
match insn.target.unwrap() {
Target::CodePtr(code_ptr) => jnz_ptr(cb, code_ptr),
Target::Label(label_idx) => jnz_label(cb, label_idx),
_ => unreachable!()
}
}
Op::Jo => {
match insn.target.unwrap() {
Target::CodePtr(code_ptr) => jo_ptr(cb, code_ptr),
Target::Label(label_idx) => jo_label(cb, label_idx),
_ => unreachable!()
}
}
// Atomically increment a counter at a given memory location
Op::IncrCounter => {
assert!(matches!(insn.opnds[0], Opnd::Mem(_)));
assert!(matches!(insn.opnds[1], Opnd::UImm(_) | Opnd::Imm(_) ) );
write_lock_prefix(cb);
add(cb, insn.opnds[0].into(), insn.opnds[1].into());
},
Op::Breakpoint => int3(cb),
// We want to keep the panic here because some instructions that
// we feed to the backend could get lowered into other
// instructions. So it's possible that some of our backend
// instructions can never make it to the emit stage.
_ => panic!("unsupported instruction passed to x86 backend: {:?}", insn.op)
};
}
gc_offsets
}
/// Optimize and compile the stored instructions
pub fn compile_with_regs(self, cb: &mut CodeBlock, regs: Vec<Reg>) -> Vec<u32>
{
let mut asm = self.x86_split().alloc_regs(regs);
// Create label instances in the code block
for (idx, name) in asm.label_names.iter().enumerate() {
let label_idx = cb.new_label(name.to_string());
assert!(label_idx == idx);
}
let gc_offsets = asm.x86_emit(cb);
cb.link_labels();
gc_offsets
}
}
|