1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
#![allow(dead_code)] // Some functions for print debugging in here
use crate::backend::ir::*;
use crate::cruby::*;
use std::slice;
/// Trait for casting to [usize] that allows you to say `.as_usize()`.
/// Implementation conditional on the the cast preserving the numeric value on
/// all inputs and being inexpensive.
///
/// [usize] is only guaranteed to be more than 16-bit wide, so we can't use
/// `.into()` to cast an `u32` or an `u64` to a `usize` even though in all
/// the platforms YJIT supports these two casts are pretty much no-ops.
/// We could say `as usize` or `.try_convert().unwrap()` everywhere
/// for those casts but they both have undesirable consequences if and when
/// we decide to support 32-bit platforms. Unfortunately we can't implement
/// [::core::convert::From] for [usize] since both the trait and the type are
/// external. Naming the method `into()` also runs into naming conflicts.
pub(crate) trait IntoUsize {
/// Convert to usize. Implementation conditional on width of [usize].
fn as_usize(self) -> usize;
}
#[cfg(target_pointer_width = "64")]
impl IntoUsize for u64 {
fn as_usize(self) -> usize {
self as usize
}
}
#[cfg(target_pointer_width = "64")]
impl IntoUsize for u32 {
fn as_usize(self) -> usize {
self as usize
}
}
impl IntoUsize for u16 {
/// Alias for `.into()`. For convenience so you could use the trait for
/// all unsgined types.
fn as_usize(self) -> usize {
self.into()
}
}
impl IntoUsize for u8 {
/// Alias for `.into()`. For convenience so you could use the trait for
/// all unsgined types.
fn as_usize(self) -> usize {
self.into()
}
}
/// Compute an offset in bytes of a given struct field
#[allow(unused)]
macro_rules! offset_of {
($struct_type:ty, $field_name:tt) => {{
// This is basically the exact example for
// "creating a pointer to uninitialized data" from `std::ptr::addr_of_mut`.
// We make a dummy local that hopefully is optimized away because we never
// read or write its contents. Doing this dance to avoid UB.
let mut instance = std::mem::MaybeUninit::<$struct_type>::uninit();
let base_ptr = instance.as_mut_ptr();
let field_ptr = unsafe { std::ptr::addr_of_mut!((*base_ptr).$field_name) };
(field_ptr as usize) - (base_ptr as usize)
}};
}
#[allow(unused)]
pub(crate) use offset_of;
// Convert a CRuby UTF-8-encoded RSTRING into a Rust string.
// This should work fine on ASCII strings and anything else
// that is considered legal UTF-8, including embedded nulls.
fn ruby_str_to_rust(v: VALUE) -> String {
// Make sure the CRuby encoding is UTF-8 compatible
let encoding = unsafe { rb_ENCODING_GET(v) } as u32;
assert!(encoding == RUBY_ENCINDEX_ASCII_8BIT || encoding == RUBY_ENCINDEX_UTF_8 || encoding == RUBY_ENCINDEX_US_ASCII);
let str_ptr = unsafe { rb_RSTRING_PTR(v) } as *mut u8;
let str_len: usize = unsafe { rb_RSTRING_LEN(v) }.try_into().unwrap();
let str_slice: &[u8] = unsafe { slice::from_raw_parts(str_ptr, str_len) };
String::from_utf8(str_slice.to_vec()).unwrap() // does utf8 validation
}
// Location is the file defining the method, colon, method name.
// Filenames are sometimes internal strings supplied to eval,
// so be careful with them.
pub fn iseq_get_location(iseq: IseqPtr) -> String {
let iseq_path = unsafe { rb_iseq_path(iseq) };
let iseq_method = unsafe { rb_iseq_method_name(iseq) };
let mut s = if iseq_path == Qnil {
"None".to_string()
} else {
ruby_str_to_rust(iseq_path)
};
s.push_str(":");
if iseq_method == Qnil {
s.push_str("None");
} else {
s.push_str(& ruby_str_to_rust(iseq_method));
}
s
}
// TODO: we may want to move this function into yjit.c, maybe add a convenient Rust-side wrapper
/*
// For debugging. Print the bytecode for an iseq.
RBIMPL_ATTR_MAYBE_UNUSED()
static void
yjit_print_iseq(const rb_iseq_t *iseq)
{
char *ptr;
long len;
VALUE disassembly = rb_iseq_disasm(iseq);
RSTRING_GETMEM(disassembly, ptr, len);
fprintf(stderr, "%.*s\n", (int)len, ptr);
}
*/
#[cfg(target_arch = "aarch64")]
macro_rules! c_callable {
(fn $f:ident $args:tt $(-> $ret:ty)? $body:block) => { extern "C" fn $f $args $(-> $ret)? $body };
}
#[cfg(target_arch = "x86_64")]
macro_rules! c_callable {
(fn $f:ident $args:tt $(-> $ret:ty)? $body:block) => { extern "sysv64" fn $f $args $(-> $ret)? $body };
}
pub(crate) use c_callable;
pub fn print_int(asm: &mut Assembler, opnd: Opnd) {
c_callable!{
fn print_int_fn(val: i64) {
println!("{}", val);
}
}
asm.cpush_all();
let argument = match opnd {
Opnd::Mem(_) | Opnd::Reg(_) | Opnd::InsnOut { .. } => {
// Sign-extend the value if necessary
if opnd.rm_num_bits() < 64 {
asm.load_sext(opnd)
} else {
opnd
}
},
Opnd::Imm(_) | Opnd::UImm(_) => opnd,
_ => unreachable!(),
};
asm.ccall(print_int_fn as *const u8, vec![argument]);
asm.cpop_all();
}
/// Generate code to print a pointer
pub fn print_ptr(asm: &mut Assembler, opnd: Opnd) {
c_callable!{
fn print_ptr_fn(ptr: *const u8) {
println!("{:p}", ptr);
}
}
assert!(opnd.rm_num_bits() == 64);
asm.cpush_all();
asm.ccall(print_ptr_fn as *const u8, vec![opnd]);
asm.cpop_all();
}
/// Generate code to print a value
pub fn print_value(asm: &mut Assembler, opnd: Opnd) {
c_callable!{
fn print_value_fn(val: VALUE) {
unsafe { rb_obj_info_dump(val) }
}
}
assert!(matches!(opnd, Opnd::Value(_)));
asm.cpush_all();
asm.ccall(print_value_fn as *const u8, vec![opnd]);
asm.cpop_all();
}
/// Generate code to print constant string to stdout
pub fn print_str(asm: &mut Assembler, str: &str) {
c_callable!{
fn print_str_cfun(ptr: *const u8, num_bytes: usize) {
unsafe {
let slice = slice::from_raw_parts(ptr, num_bytes);
let str = std::str::from_utf8(slice).unwrap();
println!("{}", str);
}
}
}
asm.cpush_all();
let string_data = asm.new_label("string_data");
let after_string = asm.new_label("after_string");
asm.jmp(after_string);
asm.write_label(string_data);
asm.bake_string(str);
asm.write_label(after_string);
let opnd = asm.lea_label(string_data);
asm.ccall(print_str_cfun as *const u8, vec![opnd, Opnd::UImm(str.len() as u64)]);
asm.cpop_all();
}
#[cfg(test)]
mod tests {
use super::*;
use crate::asm::CodeBlock;
#[test]
fn min_max_preserved_after_cast_to_usize() {
use crate::utils::IntoUsize;
let min: usize = u64::MIN.as_usize();
assert_eq!(min, u64::MIN.try_into().unwrap());
let max: usize = u64::MAX.as_usize();
assert_eq!(max, u64::MAX.try_into().unwrap());
let min: usize = u32::MIN.as_usize();
assert_eq!(min, u32::MIN.try_into().unwrap());
let max: usize = u32::MAX.as_usize();
assert_eq!(max, u32::MAX.try_into().unwrap());
}
#[test]
fn test_offset_of() {
#[repr(C)]
struct Foo {
a: u8,
b: u64,
}
assert_eq!(0, offset_of!(Foo, a), "C99 6.7.2.1p13 says no padding at the front");
assert_eq!(8, offset_of!(Foo, b), "ABI dependent, but should hold");
}
#[test]
fn test_print_int() {
let mut asm = Assembler::new();
let mut cb = CodeBlock::new_dummy(1024);
print_int(&mut asm, Opnd::Imm(42));
asm.compile(&mut cb);
}
#[test]
fn test_print_str() {
let mut asm = Assembler::new();
let mut cb = CodeBlock::new_dummy(1024);
print_str(&mut asm, "Hello, world!");
asm.compile(&mut cb);
}
}
|