summaryrefslogtreecommitdiff
path: root/library/std/src/sys/sgx/waitqueue/mod.rs
blob: 5e1d859ee99c3dff556172da35c9e7c62fb060d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
//! A simple queue implementation for synchronization primitives.
//!
//! This queue is used to implement condition variable and mutexes.
//!
//! Users of this API are expected to use the `WaitVariable<T>` type. Since
//! that type is not `Sync`, it needs to be protected by e.g., a `SpinMutex` to
//! allow shared access.
//!
//! Since userspace may send spurious wake-ups, the wakeup event state is
//! recorded in the enclave. The wakeup event state is protected by a spinlock.
//! The queue and associated wait state are stored in a `WaitVariable`.

#[cfg(test)]
mod tests;

mod spin_mutex;
mod unsafe_list;

use crate::num::NonZeroUsize;
use crate::ops::{Deref, DerefMut};
use crate::time::Duration;

use super::abi::thread;
use super::abi::usercalls;
use fortanix_sgx_abi::{Tcs, EV_UNPARK, WAIT_INDEFINITE};

pub use self::spin_mutex::{try_lock_or_false, SpinMutex, SpinMutexGuard};
use self::unsafe_list::{UnsafeList, UnsafeListEntry};

/// An queue entry in a `WaitQueue`.
struct WaitEntry {
    /// TCS address of the thread that is waiting
    tcs: Tcs,
    /// Whether this thread has been notified to be awoken
    wake: bool,
}

/// Data stored with a `WaitQueue` alongside it. This ensures accesses to the
/// queue and the data are synchronized, since the type itself is not `Sync`.
///
/// Consumers of this API should use a synchronization primitive for shared
/// access, such as `SpinMutex`.
#[derive(Default)]
pub struct WaitVariable<T> {
    queue: WaitQueue,
    lock: T,
}

impl<T> WaitVariable<T> {
    pub const fn new(var: T) -> Self {
        WaitVariable { queue: WaitQueue::new(), lock: var }
    }

    pub fn queue_empty(&self) -> bool {
        self.queue.is_empty()
    }

    pub fn lock_var(&self) -> &T {
        &self.lock
    }

    pub fn lock_var_mut(&mut self) -> &mut T {
        &mut self.lock
    }
}

#[derive(Copy, Clone)]
pub enum NotifiedTcs {
    Single(Tcs),
    All { count: NonZeroUsize },
}

/// An RAII guard that will notify a set of target threads as well as unlock
/// a mutex on drop.
pub struct WaitGuard<'a, T: 'a> {
    mutex_guard: Option<SpinMutexGuard<'a, WaitVariable<T>>>,
    notified_tcs: NotifiedTcs,
}

/// A queue of threads that are waiting on some synchronization primitive.
///
/// `UnsafeList` entries are allocated on the waiting thread's stack. This
/// avoids any global locking that might happen in the heap allocator. This is
/// safe because the waiting thread will not return from that stack frame until
/// after it is notified. The notifying thread ensures to clean up any
/// references to the list entries before sending the wakeup event.
pub struct WaitQueue {
    // We use an inner Mutex here to protect the data in the face of spurious
    // wakeups.
    inner: UnsafeList<SpinMutex<WaitEntry>>,
}
unsafe impl Send for WaitQueue {}

impl Default for WaitQueue {
    fn default() -> Self {
        Self::new()
    }
}

impl<'a, T> WaitGuard<'a, T> {
    /// Returns which TCSes will be notified when this guard drops.
    pub fn notified_tcs(&self) -> NotifiedTcs {
        self.notified_tcs
    }

    /// Drop this `WaitGuard`, after dropping another `guard`.
    pub fn drop_after<U>(self, guard: U) {
        drop(guard);
        drop(self);
    }
}

impl<'a, T> Deref for WaitGuard<'a, T> {
    type Target = SpinMutexGuard<'a, WaitVariable<T>>;

    fn deref(&self) -> &Self::Target {
        self.mutex_guard.as_ref().unwrap()
    }
}

impl<'a, T> DerefMut for WaitGuard<'a, T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.mutex_guard.as_mut().unwrap()
    }
}

impl<'a, T> Drop for WaitGuard<'a, T> {
    fn drop(&mut self) {
        drop(self.mutex_guard.take());
        let target_tcs = match self.notified_tcs {
            NotifiedTcs::Single(tcs) => Some(tcs),
            NotifiedTcs::All { .. } => None,
        };
        rtunwrap!(Ok, usercalls::send(EV_UNPARK, target_tcs));
    }
}

impl WaitQueue {
    pub const fn new() -> Self {
        WaitQueue { inner: UnsafeList::new() }
    }

    pub fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    /// Adds the calling thread to the `WaitVariable`'s wait queue, then wait
    /// until a wakeup event.
    ///
    /// This function does not return until this thread has been awoken.
    pub fn wait<T, F: FnOnce()>(mut guard: SpinMutexGuard<'_, WaitVariable<T>>, before_wait: F) {
        // very unsafe: check requirements of UnsafeList::push
        unsafe {
            let mut entry = UnsafeListEntry::new(SpinMutex::new(WaitEntry {
                tcs: thread::current(),
                wake: false,
            }));
            let entry = guard.queue.inner.push(&mut entry);
            drop(guard);
            before_wait();
            while !entry.lock().wake {
                // don't panic, this would invalidate `entry` during unwinding
                let eventset = rtunwrap!(Ok, usercalls::wait(EV_UNPARK, WAIT_INDEFINITE));
                rtassert!(eventset & EV_UNPARK == EV_UNPARK);
            }
        }
    }

    /// Adds the calling thread to the `WaitVariable`'s wait queue, then wait
    /// until a wakeup event or timeout. If event was observed, returns true.
    /// If not, it will remove the calling thread from the wait queue.
    pub fn wait_timeout<T, F: FnOnce()>(
        lock: &SpinMutex<WaitVariable<T>>,
        timeout: Duration,
        before_wait: F,
    ) -> bool {
        // very unsafe: check requirements of UnsafeList::push
        unsafe {
            let mut entry = UnsafeListEntry::new(SpinMutex::new(WaitEntry {
                tcs: thread::current(),
                wake: false,
            }));
            let entry_lock = lock.lock().queue.inner.push(&mut entry);
            before_wait();
            usercalls::wait_timeout(EV_UNPARK, timeout, || entry_lock.lock().wake);
            // acquire the wait queue's lock first to avoid deadlock.
            let mut guard = lock.lock();
            let success = entry_lock.lock().wake;
            if !success {
                // nobody is waking us up, so remove our entry from the wait queue.
                guard.queue.inner.remove(&mut entry);
            }
            success
        }
    }

    /// Either find the next waiter on the wait queue, or return the mutex
    /// guard unchanged.
    ///
    /// If a waiter is found, a `WaitGuard` is returned which will notify the
    /// waiter when it is dropped.
    pub fn notify_one<T>(
        mut guard: SpinMutexGuard<'_, WaitVariable<T>>,
    ) -> Result<WaitGuard<'_, T>, SpinMutexGuard<'_, WaitVariable<T>>> {
        // SAFETY: lifetime of the pop() return value is limited to the map
        // closure (The closure return value is 'static). The underlying
        // stack frame won't be freed until after the WaitGuard created below
        // is dropped.
        unsafe {
            let tcs = guard.queue.inner.pop().map(|entry| -> Tcs {
                let mut entry_guard = entry.lock();
                entry_guard.wake = true;
                entry_guard.tcs
            });

            if let Some(tcs) = tcs {
                Ok(WaitGuard { mutex_guard: Some(guard), notified_tcs: NotifiedTcs::Single(tcs) })
            } else {
                Err(guard)
            }
        }
    }

    /// Either find any and all waiters on the wait queue, or return the mutex
    /// guard unchanged.
    ///
    /// If at least one waiter is found, a `WaitGuard` is returned which will
    /// notify all waiters when it is dropped.
    pub fn notify_all<T>(
        mut guard: SpinMutexGuard<'_, WaitVariable<T>>,
    ) -> Result<WaitGuard<'_, T>, SpinMutexGuard<'_, WaitVariable<T>>> {
        // SAFETY: lifetime of the pop() return values are limited to the
        // while loop body. The underlying stack frames won't be freed until
        // after the WaitGuard created below is dropped.
        unsafe {
            let mut count = 0;
            while let Some(entry) = guard.queue.inner.pop() {
                count += 1;
                let mut entry_guard = entry.lock();
                entry_guard.wake = true;
            }

            if let Some(count) = NonZeroUsize::new(count) {
                Ok(WaitGuard { mutex_guard: Some(guard), notified_tcs: NotifiedTcs::All { count } })
            } else {
                Err(guard)
            }
        }
    }
}