summaryrefslogtreecommitdiff
path: root/src/tools/clippy/clippy_lints/src/matches/match_same_arms.rs
blob: a48f4c77f857fb5cd8119d9c5aea9d1958eca4e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
use clippy_utils::diagnostics::span_lint_and_then;
use clippy_utils::source::snippet;
use clippy_utils::{path_to_local, search_same, SpanlessEq, SpanlessHash};
use core::cmp::Ordering;
use core::iter;
use core::slice;
use rustc_arena::DroplessArena;
use rustc_ast::ast::LitKind;
use rustc_errors::Applicability;
use rustc_hir::def_id::DefId;
use rustc_hir::{Arm, Expr, ExprKind, HirId, HirIdMap, HirIdMapEntry, HirIdSet, Pat, PatKind, RangeEnd};
use rustc_lint::LateContext;
use rustc_middle::ty;
use rustc_span::Symbol;

use super::MATCH_SAME_ARMS;

#[expect(clippy::too_many_lines)]
pub(super) fn check<'tcx>(cx: &LateContext<'tcx>, arms: &'tcx [Arm<'_>]) {
    let hash = |&(_, arm): &(usize, &Arm<'_>)| -> u64 {
        let mut h = SpanlessHash::new(cx);
        h.hash_expr(arm.body);
        h.finish()
    };

    let arena = DroplessArena::default();
    let normalized_pats: Vec<_> = arms
        .iter()
        .map(|a| NormalizedPat::from_pat(cx, &arena, a.pat))
        .collect();

    // The furthest forwards a pattern can move without semantic changes
    let forwards_blocking_idxs: Vec<_> = normalized_pats
        .iter()
        .enumerate()
        .map(|(i, pat)| {
            normalized_pats[i + 1..]
                .iter()
                .enumerate()
                .find_map(|(j, other)| pat.has_overlapping_values(other).then_some(i + 1 + j))
                .unwrap_or(normalized_pats.len())
        })
        .collect();

    // The furthest backwards a pattern can move without semantic changes
    let backwards_blocking_idxs: Vec<_> = normalized_pats
        .iter()
        .enumerate()
        .map(|(i, pat)| {
            normalized_pats[..i]
                .iter()
                .enumerate()
                .rev()
                .zip(forwards_blocking_idxs[..i].iter().copied().rev())
                .skip_while(|&(_, forward_block)| forward_block > i)
                .find_map(|((j, other), forward_block)| {
                    (forward_block == i || pat.has_overlapping_values(other)).then_some(j)
                })
                .unwrap_or(0)
        })
        .collect();

    let eq = |&(lindex, lhs): &(usize, &Arm<'_>), &(rindex, rhs): &(usize, &Arm<'_>)| -> bool {
        let min_index = usize::min(lindex, rindex);
        let max_index = usize::max(lindex, rindex);

        let mut local_map: HirIdMap<HirId> = HirIdMap::default();
        let eq_fallback = |a: &Expr<'_>, b: &Expr<'_>| {
            if_chain! {
                if let Some(a_id) = path_to_local(a);
                if let Some(b_id) = path_to_local(b);
                let entry = match local_map.entry(a_id) {
                    HirIdMapEntry::Vacant(entry) => entry,
                    // check if using the same bindings as before
                    HirIdMapEntry::Occupied(entry) => return *entry.get() == b_id,
                };
                // the names technically don't have to match; this makes the lint more conservative
                if cx.tcx.hir().name(a_id) == cx.tcx.hir().name(b_id);
                if cx.typeck_results().expr_ty(a) == cx.typeck_results().expr_ty(b);
                if pat_contains_local(lhs.pat, a_id);
                if pat_contains_local(rhs.pat, b_id);
                then {
                    entry.insert(b_id);
                    true
                } else {
                    false
                }
            }
        };
        // Arms with a guard are ignored, those can’t always be merged together
        // If both arms overlap with an arm in between then these can't be merged either.
        !(backwards_blocking_idxs[max_index] > min_index && forwards_blocking_idxs[min_index] < max_index)
                && lhs.guard.is_none()
                && rhs.guard.is_none()
                && SpanlessEq::new(cx)
                    .expr_fallback(eq_fallback)
                    .eq_expr(lhs.body, rhs.body)
                // these checks could be removed to allow unused bindings
                && bindings_eq(lhs.pat, local_map.keys().copied().collect())
                && bindings_eq(rhs.pat, local_map.values().copied().collect())
    };

    let indexed_arms: Vec<(usize, &Arm<'_>)> = arms.iter().enumerate().collect();
    for (&(i, arm1), &(j, arm2)) in search_same(&indexed_arms, hash, eq) {
        if matches!(arm2.pat.kind, PatKind::Wild) {
            span_lint_and_then(
                cx,
                MATCH_SAME_ARMS,
                arm1.span,
                "this match arm has an identical body to the `_` wildcard arm",
                |diag| {
                    diag.span_suggestion(arm1.span, "try removing the arm", "", Applicability::MaybeIncorrect)
                        .help("or try changing either arm body")
                        .span_note(arm2.span, "`_` wildcard arm here");
                },
            );
        } else {
            let back_block = backwards_blocking_idxs[j];
            let (keep_arm, move_arm) = if back_block < i || (back_block == 0 && forwards_blocking_idxs[i] <= j) {
                (arm1, arm2)
            } else {
                (arm2, arm1)
            };

            span_lint_and_then(
                cx,
                MATCH_SAME_ARMS,
                keep_arm.span,
                "this match arm has an identical body to another arm",
                |diag| {
                    let move_pat_snip = snippet(cx, move_arm.pat.span, "<pat2>");
                    let keep_pat_snip = snippet(cx, keep_arm.pat.span, "<pat1>");

                    diag.span_suggestion(
                        keep_arm.pat.span,
                        "try merging the arm patterns",
                        format!("{keep_pat_snip} | {move_pat_snip}"),
                        Applicability::MaybeIncorrect,
                    )
                    .help("or try changing either arm body")
                    .span_note(move_arm.span, "other arm here");
                },
            );
        }
    }
}

#[derive(Clone, Copy)]
enum NormalizedPat<'a> {
    Wild,
    Struct(Option<DefId>, &'a [(Symbol, Self)]),
    Tuple(Option<DefId>, &'a [Self]),
    Or(&'a [Self]),
    Path(Option<DefId>),
    LitStr(Symbol),
    LitBytes(&'a [u8]),
    LitInt(u128),
    LitBool(bool),
    Range(PatRange),
    /// A slice pattern. If the second value is `None`, then this matches an exact size. Otherwise
    /// the first value contains everything before the `..` wildcard pattern, and the second value
    /// contains everything afterwards. Note that either side, or both sides, may contain zero
    /// patterns.
    Slice(&'a [Self], Option<&'a [Self]>),
}

#[derive(Clone, Copy)]
struct PatRange {
    start: u128,
    end: u128,
    bounds: RangeEnd,
}
impl PatRange {
    fn contains(&self, x: u128) -> bool {
        x >= self.start
            && match self.bounds {
                RangeEnd::Included => x <= self.end,
                RangeEnd::Excluded => x < self.end,
            }
    }

    fn overlaps(&self, other: &Self) -> bool {
        // Note: Empty ranges are impossible, so this is correct even though it would return true if an
        // empty exclusive range were to reside within an inclusive range.
        (match self.bounds {
            RangeEnd::Included => self.end >= other.start,
            RangeEnd::Excluded => self.end > other.start,
        } && match other.bounds {
            RangeEnd::Included => self.start <= other.end,
            RangeEnd::Excluded => self.start < other.end,
        })
    }
}

/// Iterates over the pairs of fields with matching names.
fn iter_matching_struct_fields<'a>(
    left: &'a [(Symbol, NormalizedPat<'a>)],
    right: &'a [(Symbol, NormalizedPat<'a>)],
) -> impl Iterator<Item = (&'a NormalizedPat<'a>, &'a NormalizedPat<'a>)> + 'a {
    struct Iter<'a>(
        slice::Iter<'a, (Symbol, NormalizedPat<'a>)>,
        slice::Iter<'a, (Symbol, NormalizedPat<'a>)>,
    );
    impl<'a> Iterator for Iter<'a> {
        type Item = (&'a NormalizedPat<'a>, &'a NormalizedPat<'a>);
        fn next(&mut self) -> Option<Self::Item> {
            // Note: all the fields in each slice are sorted by symbol value.
            let mut left = self.0.next()?;
            let mut right = self.1.next()?;
            loop {
                match left.0.cmp(&right.0) {
                    Ordering::Equal => return Some((&left.1, &right.1)),
                    Ordering::Less => left = self.0.next()?,
                    Ordering::Greater => right = self.1.next()?,
                }
            }
        }
    }
    Iter(left.iter(), right.iter())
}

#[expect(clippy::similar_names)]
impl<'a> NormalizedPat<'a> {
    fn from_pat(cx: &LateContext<'_>, arena: &'a DroplessArena, pat: &'a Pat<'_>) -> Self {
        match pat.kind {
            PatKind::Wild | PatKind::Binding(.., None) => Self::Wild,
            PatKind::Binding(.., Some(pat)) | PatKind::Box(pat) | PatKind::Ref(pat, _) => {
                Self::from_pat(cx, arena, pat)
            },
            PatKind::Struct(ref path, fields, _) => {
                let fields =
                    arena.alloc_from_iter(fields.iter().map(|f| (f.ident.name, Self::from_pat(cx, arena, f.pat))));
                fields.sort_by_key(|&(name, _)| name);
                Self::Struct(cx.qpath_res(path, pat.hir_id).opt_def_id(), fields)
            },
            PatKind::TupleStruct(ref path, pats, wild_idx) => {
                let Some(adt) = cx.typeck_results().pat_ty(pat).ty_adt_def() else {
                    return Self::Wild
                };
                let (var_id, variant) = if adt.is_enum() {
                    match cx.qpath_res(path, pat.hir_id).opt_def_id() {
                        Some(x) => (Some(x), adt.variant_with_ctor_id(x)),
                        None => return Self::Wild,
                    }
                } else {
                    (None, adt.non_enum_variant())
                };
                let (front, back) = match wild_idx.as_opt_usize() {
                    Some(i) => pats.split_at(i),
                    None => (pats, [].as_slice()),
                };
                let pats = arena.alloc_from_iter(
                    front
                        .iter()
                        .map(|pat| Self::from_pat(cx, arena, pat))
                        .chain(iter::repeat_with(|| Self::Wild).take(variant.fields.len() - pats.len()))
                        .chain(back.iter().map(|pat| Self::from_pat(cx, arena, pat))),
                );
                Self::Tuple(var_id, pats)
            },
            PatKind::Or(pats) => Self::Or(arena.alloc_from_iter(pats.iter().map(|pat| Self::from_pat(cx, arena, pat)))),
            PatKind::Path(ref path) => Self::Path(cx.qpath_res(path, pat.hir_id).opt_def_id()),
            PatKind::Tuple(pats, wild_idx) => {
                let field_count = match cx.typeck_results().pat_ty(pat).kind() {
                    ty::Tuple(subs) => subs.len(),
                    _ => return Self::Wild,
                };
                let (front, back) = match wild_idx.as_opt_usize() {
                    Some(i) => pats.split_at(i),
                    None => (pats, [].as_slice()),
                };
                let pats = arena.alloc_from_iter(
                    front
                        .iter()
                        .map(|pat| Self::from_pat(cx, arena, pat))
                        .chain(iter::repeat_with(|| Self::Wild).take(field_count - pats.len()))
                        .chain(back.iter().map(|pat| Self::from_pat(cx, arena, pat))),
                );
                Self::Tuple(None, pats)
            },
            PatKind::Lit(e) => match &e.kind {
                // TODO: Handle negative integers. They're currently treated as a wild match.
                ExprKind::Lit(lit) => match lit.node {
                    LitKind::Str(sym, _) => Self::LitStr(sym),
                    LitKind::ByteStr(ref bytes, _) => Self::LitBytes(bytes),
                    LitKind::Byte(val) => Self::LitInt(val.into()),
                    LitKind::CStr(ref bytes, _) => Self::LitBytes(bytes),
                    LitKind::Char(val) => Self::LitInt(val.into()),
                    LitKind::Int(val, _) => Self::LitInt(val),
                    LitKind::Bool(val) => Self::LitBool(val),
                    LitKind::Float(..) | LitKind::Err => Self::Wild,
                },
                _ => Self::Wild,
            },
            PatKind::Range(start, end, bounds) => {
                // TODO: Handle negative integers. They're currently treated as a wild match.
                let start = match start {
                    None => 0,
                    Some(e) => match &e.kind {
                        ExprKind::Lit(lit) => match lit.node {
                            LitKind::Int(val, _) => val,
                            LitKind::Char(val) => val.into(),
                            LitKind::Byte(val) => val.into(),
                            _ => return Self::Wild,
                        },
                        _ => return Self::Wild,
                    },
                };
                let (end, bounds) = match end {
                    None => (u128::MAX, RangeEnd::Included),
                    Some(e) => match &e.kind {
                        ExprKind::Lit(lit) => match lit.node {
                            LitKind::Int(val, _) => (val, bounds),
                            LitKind::Char(val) => (val.into(), bounds),
                            LitKind::Byte(val) => (val.into(), bounds),
                            _ => return Self::Wild,
                        },
                        _ => return Self::Wild,
                    },
                };
                Self::Range(PatRange { start, end, bounds })
            },
            PatKind::Slice(front, wild_pat, back) => Self::Slice(
                arena.alloc_from_iter(front.iter().map(|pat| Self::from_pat(cx, arena, pat))),
                wild_pat.map(|_| &*arena.alloc_from_iter(back.iter().map(|pat| Self::from_pat(cx, arena, pat)))),
            ),
        }
    }

    /// Checks if two patterns overlap in the values they can match assuming they are for the same
    /// type.
    fn has_overlapping_values(&self, other: &Self) -> bool {
        match (*self, *other) {
            (Self::Wild, _) | (_, Self::Wild) => true,
            (Self::Or(pats), ref other) | (ref other, Self::Or(pats)) => {
                pats.iter().any(|pat| pat.has_overlapping_values(other))
            },
            (Self::Struct(lpath, lfields), Self::Struct(rpath, rfields)) => {
                if lpath != rpath {
                    return false;
                }
                iter_matching_struct_fields(lfields, rfields).all(|(lpat, rpat)| lpat.has_overlapping_values(rpat))
            },
            (Self::Tuple(lpath, lpats), Self::Tuple(rpath, rpats)) => {
                if lpath != rpath {
                    return false;
                }
                lpats
                    .iter()
                    .zip(rpats.iter())
                    .all(|(lpat, rpat)| lpat.has_overlapping_values(rpat))
            },
            (Self::Path(x), Self::Path(y)) => x == y,
            (Self::LitStr(x), Self::LitStr(y)) => x == y,
            (Self::LitBytes(x), Self::LitBytes(y)) => x == y,
            (Self::LitInt(x), Self::LitInt(y)) => x == y,
            (Self::LitBool(x), Self::LitBool(y)) => x == y,
            (Self::Range(ref x), Self::Range(ref y)) => x.overlaps(y),
            (Self::Range(ref range), Self::LitInt(x)) | (Self::LitInt(x), Self::Range(ref range)) => range.contains(x),
            (Self::Slice(lpats, None), Self::Slice(rpats, None)) => {
                lpats.len() == rpats.len() && lpats.iter().zip(rpats.iter()).all(|(x, y)| x.has_overlapping_values(y))
            },
            (Self::Slice(pats, None), Self::Slice(front, Some(back)))
            | (Self::Slice(front, Some(back)), Self::Slice(pats, None)) => {
                // Here `pats` is an exact size match. If the combined lengths of `front` and `back` are greater
                // then the minimum length required will be greater than the length of `pats`.
                if pats.len() < front.len() + back.len() {
                    return false;
                }
                pats[..front.len()]
                    .iter()
                    .zip(front.iter())
                    .chain(pats[pats.len() - back.len()..].iter().zip(back.iter()))
                    .all(|(x, y)| x.has_overlapping_values(y))
            },
            (Self::Slice(lfront, Some(lback)), Self::Slice(rfront, Some(rback))) => lfront
                .iter()
                .zip(rfront.iter())
                .chain(lback.iter().rev().zip(rback.iter().rev()))
                .all(|(x, y)| x.has_overlapping_values(y)),

            // Enums can mix unit variants with tuple/struct variants. These can never overlap.
            (Self::Path(_), Self::Tuple(..) | Self::Struct(..))
            | (Self::Tuple(..) | Self::Struct(..), Self::Path(_)) => false,

            // Tuples can be matched like a struct.
            (Self::Tuple(x, _), Self::Struct(y, _)) | (Self::Struct(x, _), Self::Tuple(y, _)) => {
                // TODO: check fields here.
                x == y
            },

            // TODO: Lit* with Path, Range with Path, LitBytes with Slice
            _ => true,
        }
    }
}

fn pat_contains_local(pat: &Pat<'_>, id: HirId) -> bool {
    let mut result = false;
    pat.walk_short(|p| {
        result |= matches!(p.kind, PatKind::Binding(_, binding_id, ..) if binding_id == id);
        !result
    });
    result
}

/// Returns true if all the bindings in the `Pat` are in `ids` and vice versa
fn bindings_eq(pat: &Pat<'_>, mut ids: HirIdSet) -> bool {
    let mut result = true;
    pat.each_binding_or_first(&mut |_, id, _, _| result &= ids.remove(&id));
    result && ids.is_empty()
}