summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRalf Gommers <ralf.gommers@gmail.com>2019-04-27 18:06:38 +0200
committerRalf Gommers <ralf.gommers@gmail.com>2019-04-27 18:10:04 +0200
commitcf0d554d90a4169a038778461122e8b07310d9e1 (patch)
tree6096dd841d23a6f0b76b8b5a31998da2c8500480
parent6e1b9ff8580bb4aa1f49768301ba343d6b50ed36 (diff)
downloadscipy-sphinx-theme-cf0d554d90a4169a038778461122e8b07310d9e1.tar.gz
MAINT: fix most errors and warnings for `make html`
All that's left is some autodoc related warnings for scipy.odr (from test_autodoc3.py)
-rw-r--r--examples/newton_krylov_preconditioning.py94
-rw-r--r--test_optimize.rst5
2 files changed, 97 insertions, 2 deletions
diff --git a/examples/newton_krylov_preconditioning.py b/examples/newton_krylov_preconditioning.py
new file mode 100644
index 0000000..4736157
--- /dev/null
+++ b/examples/newton_krylov_preconditioning.py
@@ -0,0 +1,94 @@
+import numpy as np
+from scipy.optimize import root
+from scipy.sparse import spdiags, kron
+from scipy.sparse.linalg import spilu, LinearOperator
+from numpy import cosh, zeros_like, mgrid, zeros, eye
+
+# parameters
+nx, ny = 75, 75
+hx, hy = 1./(nx-1), 1./(ny-1)
+
+P_left, P_right = 0, 0
+P_top, P_bottom = 1, 0
+
+def get_preconditioner():
+ """Compute the preconditioner M"""
+ diags_x = zeros((3, nx))
+ diags_x[0,:] = 1/hx/hx
+ diags_x[1,:] = -2/hx/hx
+ diags_x[2,:] = 1/hx/hx
+ Lx = spdiags(diags_x, [-1,0,1], nx, nx)
+
+ diags_y = zeros((3, ny))
+ diags_y[0,:] = 1/hy/hy
+ diags_y[1,:] = -2/hy/hy
+ diags_y[2,:] = 1/hy/hy
+ Ly = spdiags(diags_y, [-1,0,1], ny, ny)
+
+ J1 = kron(Lx, eye(ny)) + kron(eye(nx), Ly)
+
+ # Now we have the matrix `J_1`. We need to find its inverse `M` --
+ # however, since an approximate inverse is enough, we can use
+ # the *incomplete LU* decomposition
+
+ J1_ilu = spilu(J1)
+
+ # This returns an object with a method .solve() that evaluates
+ # the corresponding matrix-vector product. We need to wrap it into
+ # a LinearOperator before it can be passed to the Krylov methods:
+
+ M = LinearOperator(shape=(nx*ny, nx*ny), matvec=J1_ilu.solve)
+ return M
+
+def solve(preconditioning=True):
+ """Compute the solution"""
+ count = [0]
+
+ def residual(P):
+ count[0] += 1
+
+ d2x = zeros_like(P)
+ d2y = zeros_like(P)
+
+ d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2])/hx/hx
+ d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
+ d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx
+
+ d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
+ d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy
+ d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy
+
+ return d2x + d2y + 5*cosh(P).mean()**2
+
+ # preconditioner
+ if preconditioning:
+ M = get_preconditioner()
+ else:
+ M = None
+
+ # solve
+ guess = zeros((nx, ny), float)
+
+ sol = root(residual, guess, method='krylov',
+ options={'disp': True,
+ 'jac_options': {'inner_M': M}})
+ print('Residual', abs(residual(sol.x)).max())
+ print('Evaluations', count[0])
+
+ return sol.x
+
+def main():
+ sol = solve(preconditioning=True)
+
+ # visualize
+ import matplotlib.pyplot as plt
+ x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
+ plt.clf()
+ plt.pcolor(x, y, sol)
+ plt.clim(0, 1)
+ plt.colorbar()
+ plt.show()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/test_optimize.rst b/test_optimize.rst
index a09e0d7..0a55c28 100644
--- a/test_optimize.rst
+++ b/test_optimize.rst
@@ -29,7 +29,7 @@ The module contains:
5. Multivariate equation system solvers (:func:`root`) using a variety of
algorithms (e.g. hybrid Powell, Levenberg-Marquardt or large-scale
- methods such as Newton-Krylov).
+ methods such as Newton-Krylov [KK]_).
Below, several examples demonstrate their basic usage.
@@ -771,7 +771,8 @@ lot more depth to this topic than is shown here.
.. rubric:: References
-Some further reading and related software:
+Some further reading and related software for solving large-scale problems
+( [PP]_, [AMG]_):
.. [KK] D.A. Knoll and D.E. Keyes, "Jacobian-free Newton-Krylov methods",
J. Comp. Phys. 193, 357 (2003).