summaryrefslogtreecommitdiff
path: root/sigc++/signal.h
blob: 4a17e06f62584bc0f915f2242c312270e8aa08d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
/*
 * Copyright 2002 - 2016, The libsigc++ Development Team
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2.1 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 *
 */

#ifndef SIGC_SIGNAL_H
#define SIGC_SIGNAL_H

#include <list>
#include <sigc++/connection.h>
#include <sigc++/signal_base.h>
#include <sigc++/type_traits.h>
#include <sigc++/trackable.h>
#include <sigc++/functors/slot.h>
#include <sigc++/functors/mem_fun.h>
#include <tuple>
#include <utility>

namespace sigc
{

namespace internal
{

/** Special iterator over sigc::internal::signal_impl's slot list that holds extra data.
 * This iterators is for use in accumulators. operator*() executes
 * the slot. The return value is buffered, so that in an expression
 * like @code a = (*i) * (*i); @endcode the slot is executed only once.
 */
template<typename T_emitter, typename T_result>
struct slot_iterator_buf
{
  using size_type = std::size_t;
  using difference_type = std::ptrdiff_t;
  using iterator_category = std::bidirectional_iterator_tag;

  // These are needed just to make this a proper C++ iterator,
  // that can be used with standard C++ algorithms.
  using value_type = T_result;
  using reference = T_result&;
  using pointer = T_result*;

  using emitter_type = T_emitter;
  using slot_type = typename T_emitter::slot_type;

  using iterator_type = signal_impl::const_iterator_type;

  slot_iterator_buf() : c_(nullptr), invoked_(false) {}

  slot_iterator_buf(const iterator_type& i, const emitter_type* c) : i_(i), c_(c), invoked_(false)
  {
  }

  decltype(auto) operator*() const
  {
    if (!i_->empty() && !i_->blocked() && !invoked_)
    {
      r_ = (*c_)(static_cast<const slot_type&>(*i_));
      invoked_ = true;
    }
    return r_;
  }

  slot_iterator_buf& operator++()
  {
    ++i_;
    invoked_ = false;
    return *this;
  }

  slot_iterator_buf operator++(int)
  {
    slot_iterator_buf tmp(*this);
    ++i_;
    invoked_ = false;
    return tmp;
  }

  slot_iterator_buf& operator--()
  {
    --i_;
    invoked_ = false;
    return *this;
  }

  slot_iterator_buf operator--(int)
  {
    slot_iterator_buf tmp(*this);
    --i_;
    invoked_ = false;
    return tmp;
  }

  bool operator==(const slot_iterator_buf& src) const
  {
    return (!c_ || (i_ == src.i_));
  } /* If '!c_' the iterators are empty.
     * Unfortunately, empty stl iterators are not equal.
     * We are forcing equality so that 'first==last'
     * in the accumulator's emit function yields true. */

  bool operator!=(const slot_iterator_buf& src) const { return (c_ && (i_ != src.i_)); }

private:
  iterator_type i_;
  const emitter_type* c_;
  mutable T_result r_;
  mutable bool invoked_;
};

/** Template specialization of slot_iterator_buf for void return signals.
 */
template<typename T_emitter>
struct slot_iterator_buf<T_emitter, void>
{
  using size_type = std::size_t;
  using difference_type = std::ptrdiff_t;
  using iterator_category = std::bidirectional_iterator_tag;

  using emitter_type = T_emitter;
  using slot_type = typename T_emitter::slot_type;

  using iterator_type = signal_impl::const_iterator_type;

  slot_iterator_buf() : c_(nullptr), invoked_(false) {}

  slot_iterator_buf(const iterator_type& i, const emitter_type* c) : i_(i), c_(c), invoked_(false)
  {
  }

  void operator*() const
  {
    if (!i_->empty() && !i_->blocked() && !invoked_)
    {
      (*c_)(static_cast<const slot_type&>(*i_));
      invoked_ = true;
    }
  }

  slot_iterator_buf& operator++()
  {
    ++i_;
    invoked_ = false;
    return *this;
  }

  slot_iterator_buf operator++(int)
  {
    slot_iterator_buf tmp(*this);
    ++i_;
    invoked_ = false;
    return tmp;
  }

  slot_iterator_buf& operator--()
  {
    --i_;
    invoked_ = false;
    return *this;
  }

  slot_iterator_buf operator--(int)
  {
    slot_iterator_buf tmp(*this);
    --i_;
    invoked_ = false;
    return tmp;
  }

  bool operator==(const slot_iterator_buf& src) const { return i_ == src.i_; }

  bool operator!=(const slot_iterator_buf& src) const { return i_ != src.i_; }

private:
  iterator_type i_;
  const emitter_type* c_;
  mutable bool invoked_;
};

/** Temporary slot list used during signal emission.
 *  Through evolution this class is slightly misnamed.  It is now
 *  an index into the slot_list passed into it.  It simply keeps track
 *  of where the end of this list was at construction, and pretends that's
 *  the end of your list.  This way you may connect during emission without
 *  inadvertently entering an infinite loop, as well as make other
 *  modifications to the slot_list at your own risk.
 */
struct temp_slot_list
{
  using slot_list = signal_impl::slot_list;
  using iterator = signal_impl::iterator_type;
  using const_iterator = signal_impl::const_iterator_type;

  explicit temp_slot_list(slot_list& slots) : slots_(slots)
  {
    placeholder = slots_.insert(slots_.end(), slot_base());
  }

  ~temp_slot_list() { slots_.erase(placeholder); }

  iterator begin() { return slots_.begin(); }
  iterator end() { return placeholder; }
  const_iterator begin() const { return slots_.begin(); }
  const_iterator end() const { return placeholder; }

private:
  slot_list& slots_;
  slot_list::iterator placeholder;
};

/** Abstracts signal emission.
 * This template implements the emit() function of signal_with_accumulator.
 * Template specializations are available to optimize signal
 * emission when no accumulator is used, for example when the template
 * argument @e T_accumulator is @p void.
 */
template<typename T_return, typename T_accumulator, typename... T_arg>
struct signal_emit
{
  using self_type = signal_emit<T_return, T_accumulator, T_arg...>;
  using slot_type = slot<T_return(T_arg...)>;

  /** Instantiates the class.
   * The parameters are stored in member variables. operator()() passes
   * the values on to some slot.
   */
  explicit signal_emit(type_trait_take_t<T_arg>... a) : a_(a...) {}

  /** Invokes a slot using the buffered parameter values.
   * @param slot Some slot to invoke.
   * @return The slot's return value.
   */
  T_return operator()(const slot_type& slot) const { return std::apply(slot, a_); }

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are buffered in a temporary instance of signal_emit.
   * @param a Arguments to be passed on to the slots.
   * @return The accumulated return values of the slot invocations as processed by the accumulator.
   */
  static decltype(auto) emit(const std::shared_ptr<internal::signal_impl>& impl,
    type_trait_take_t<T_arg>... a)
  {
    using slot_iterator_buf_type = internal::slot_iterator_buf<self_type, T_return>;

    T_accumulator accumulator;

    if (!impl)
      return accumulator(slot_iterator_buf_type(), slot_iterator_buf_type());

    signal_impl_holder exec(impl);
    const temp_slot_list slots(impl->slots_);

    self_type self(a...);
    return accumulator(
      slot_iterator_buf_type(slots.begin(), &self), slot_iterator_buf_type(slots.end(), &self));
  }

private:
  std::tuple<type_trait_take_t<T_arg>...> a_;
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used.
 */
template<typename T_return, typename... T_arg>
struct signal_emit<T_return, void, T_arg...>
{
private:
  using slot_type = slot<T_return(T_arg...)>;
  using call_type = typename slot_type::call_type;

public:
  /** Executes a list of slots.
   * The arguments are passed directly on to the slots.
   * The return value of the last slot invoked is returned.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @param a Arguments to be passed on to the slots.
   * @return The return value of the last slot invoked.
   */
  static decltype(auto) emit(const std::shared_ptr<internal::signal_impl>& impl,
    type_trait_take_t<T_arg>... a)
  {
    if (!impl || impl->slots_.empty())
      return T_return();

    signal_impl_holder exec(impl);
    T_return r_ = T_return();

    // Use this scope to make sure that "slots" is destroyed before "exec" is destroyed.
    // This avoids a leak on MSVC++ - see http://bugzilla.gnome.org/show_bug.cgi?id=306249
    {
      const temp_slot_list slots(impl->slots_);
      auto it = slots.begin();
      for (; it != slots.end(); ++it)
      {
        if (!it->empty() && !it->blocked())
          break;
      }

      if (it == slots.end())
      {
        // note that 'T_return r_();' doesn't work => define 'r_' after this line
        // and initialize as follows:
        return T_return();
      }

      r_ = (sigc::internal::function_pointer_cast<call_type>(it->rep_->call_))(it->rep_, a...);
      for (++it; it != slots.end(); ++it)
      {
        if (it->empty() || it->blocked())
          continue;
        r_ = (sigc::internal::function_pointer_cast<call_type>(it->rep_->call_))(it->rep_, a...);
      }
    }

    return r_;
  }
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used and the
 * return type is @p void.
 */
template<typename... T_arg>
struct signal_emit<void, void, T_arg...>
{
private:
  using slot_type = slot<void(T_arg...)>;
  using call_type = typename slot_type::call_type;

public:
  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are passed directly on to the slots.
   * @param a Arguments to be passed on to the slots.
   */
  static decltype(auto) emit(const std::shared_ptr<internal::signal_impl>& impl,
    type_trait_take_t<T_arg>... a)
  {
    if (!impl || impl->slots_.empty())
      return;
    signal_impl_holder exec(impl);
    const temp_slot_list slots(impl->slots_);

    for (const auto& slot : slots)
    {
      if (slot.empty() || slot.blocked())
        continue;

      (sigc::internal::function_pointer_cast<call_type>(slot.rep_->call_))(
        slot.rep_, std::forward<type_trait_take_t<T_arg>>(a)...);
    }
  }
};

} /* namespace internal */

// TODO: When we can break ABI, let signal_base instead of signal_with_accumulator
// derive from trackable, as in sigc++2. One of them must derive from trackable.
// Otherwise the slot returned from signal_with_accumulator::make_slot() is not
// automatically disconnected when the signal is deleted.
// https://github.com/libsigcplusplus/libsigcplusplus/issues/80

/** Signal declaration.
 * %signal_with_accumulator can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitly.
 *
 * If you want to connect one signal to another, use make_slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed, which is probably not what you want!
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the
 * accumulator).
 * - @e T_arg Argument types used in the definition of emit().
 * - @e T_accumulator The accumulator type used for emission. The default
 * @p void means that no accumulator should be used, for example if signal
 * emission returns the return value of the last slot invoked.
 *
 * @ingroup signal
 */
template<typename T_return, typename T_accumulator, typename... T_arg>
class signal_with_accumulator
: public signal_base
, public trackable
{
public:
  using slot_type = slot<T_return(T_arg...)>;

  /** Add a slot to the list of slots.
   * Any functor or slot may be passed into connect().
   * It will be converted into a slot implicitly.
   * The returned connection may be stored for disconnection
   * of the slot at some later point. It stays valid until
   * the slot is disconnected from the signal.
   * std::function<> and C++11 lambda expressions are functors.
   * These are examples of functors that can be connected to a signal.
   *
   * %std::bind() creates a functor, but this functor typically has an
   * %operator()() which is a variadic template.
   * Our functor_trait can't deduce the result type
   * of such a functor. If you first assign the return value of %std::bind()
   * to a std::function, you can connect the std::function to a signal.
   *
   * @param slot_ The slot to add to the list of slots.
   * @return A connection.
   */
  connection connect(const slot_type& slot_)
  {
    auto iter = signal_base::connect(slot_);
    auto& slot_base = *iter;
    return connection(slot_base);
  }

  /** Add a slot to the list of slots.
   * @see connect(const slot_type& slot_).
   *
   * @newin{2,8}
   */
  connection connect(slot_type&& slot_)
  {
    auto iter = signal_base::connect(std::move(slot_));
    auto& slot_base = *iter;
    return connection(slot_base);
  }

  /** Triggers the emission of the signal.
   * During signal emission all slots that have been connected
   * to the signal are invoked unless they are manually set into
   * a blocking state. The parameters are passed on to the slots.
   * If @e T_accumulated is not @p void, an accumulator of this type
   * is used to process the return values of the slot invocations.
   * Otherwise, the return value of the last slot invoked is returned.
   * @param a Arguments to be passed on to the slots.
   * @return The accumulated return values of the slot invocations.
   */
  decltype(auto) emit(type_trait_take_t<T_arg>... a) const
  {
    using emitter_type = internal::signal_emit<T_return, T_accumulator, T_arg...>;
    return emitter_type::emit(impl_, std::forward<type_trait_take_t<T_arg>>(a)...);
  }

  /** Triggers the emission of the signal (see emit()). */
  decltype(auto) operator()(type_trait_take_t<T_arg>... a) const
  {
    return emit(std::forward<type_trait_take_t<T_arg>>(a)...);
  }

  /** Creates a functor that calls emit() on this signal.
   *
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal_with_accumulator::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  decltype(auto) make_slot() const
  {
    // TODO: Instead use std::invoke_result<> on the static emitter_type::emit()
    using result_type =
      typename internal::member_method_result<decltype(&signal_with_accumulator::emit)>::type;
    return bound_mem_functor<result_type (signal_with_accumulator::*)(type_trait_take_t<T_arg>...)
                               const,
      type_trait_take_t<T_arg>...>(*this, &signal_with_accumulator::emit);
  }

  signal_with_accumulator() = default;

  signal_with_accumulator(const signal_with_accumulator& src) : signal_base(src), trackable(src) {}

  signal_with_accumulator(signal_with_accumulator&& src)
  : signal_base(std::move(src)), trackable(std::move(src))
  {
  }

  signal_with_accumulator& operator=(const signal_with_accumulator& src)
  {
    signal_base::operator=(src);
    // Don't call trackable::operator=(src).
    // It calls notify_callbacks(). This signal is not destroyed.
    return *this;
  }

  signal_with_accumulator& operator=(signal_with_accumulator&& src)
  {
    signal_base::operator=(std::move(src));
    if (src.impl_ != impl_)
      src.notify_callbacks();
    // Don't call trackable::operator=(std::move(src)).
    // It calls notify_callbacks(). This signal is not destroyed.
    return *this;
  }
};

/** signal can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitly.
 *
 * If you want to connect one signal to another, use make_slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed, which is probably not what you want!
 *
 * The template arguments determine the function signature of
 * the emit() function:
 * - @e T_return The desired return type of the emit() function. * - @e T_arg Argument types used in
 * the definition of emit().
 *
 * For instance, to declare a signal whose connected slot returns void and takes
 * two parameters of bool and int:
 * @code
 * sigc::signal<void(bool, int)> some_signal;
 * @endcode
 *
 * To specify an accumulator type the nested class signal::accumulated can be used.
 *
 * @par Example:
 * @code
 * void foo(int) {}
 * sigc::signal<void(long)> sig;
 * sig.connect(sigc::ptr_fun(&foo));
 * sig.emit(19);
 * @endcode
 *
 * @ingroup signal
 */
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template<typename T_return, typename... T_arg>
class signal;
#endif // DOXYGEN_SHOULD_SKIP_THIS

template<typename T_return, typename... T_arg>
class signal<T_return(T_arg...)> : public signal_with_accumulator<T_return, void, T_arg...>
{
public:
  using accumulator_type = void;

  /** Like @ref sigc::signal<T_return(T_arg...)> "sigc::signal" but the additional
   * template parameter @e T_accumulator defines the accumulator type that should be used.
   *
   * An accumulator is a functor that uses a pair of special iterators
   * to step through a list of slots and calculate a return value
   * from the results of the slot invocations. The iterators' operator*()
   * executes the slot. The return value is buffered, so that in an expression
   * like @code a = (*i) * (*i); @endcode the slot is executed only once.
   *
   * @par Example 1:
   * This accumulator calculates the arithmetic mean value:
   * @code
   * struct arithmetic_mean_accumulator
   * {
   *   template<typename T_iterator>
   *   double operator()(T_iterator first, T_iterator last) const
   *   {
   *     double value_ = 0;
   *     int n_ = 0;
   *     for (; first != last; ++first, ++n_)
   *       value_ += *first;
   *     return value_ / n_;
   *   }
   * };
   * @endcode
   *
   * @par Example 2:
   * This accumulator stops signal emission when a slot returns zero:
   * @code
   * struct interruptable_accumulator
   * {
   *   template<typename T_iterator>
   *   bool operator()(T_iterator first, T_iterator last) const
   *   {
   *     for (; first != last; ++first, ++n_)
   *       if (!*first) return false;
   *     return true;
   *   }
   * };
   * @endcode
   *
   * @ingroup signal
   */
  template<typename T_accumulator>
  class accumulated : public signal_with_accumulator<T_return, T_accumulator, T_arg...>
  {
  public:
    accumulated() = default;
    accumulated(const accumulated& src)
    : signal_with_accumulator<T_return, T_accumulator, T_arg...>(src)
    {
    }
  };

  signal() = default;

  signal(const signal& src) : signal_with_accumulator<T_return, accumulator_type, T_arg...>(src) {}

  signal(signal&& src)
  : signal_with_accumulator<T_return, accumulator_type, T_arg...>(std::move(src))
  {
  }

  signal& operator=(const signal& src)
  {
    signal_with_accumulator<T_return, accumulator_type, T_arg...>::operator=(src);
    return *this;
  }

  signal& operator=(signal&& src)
  {
    signal_with_accumulator<T_return, accumulator_type, T_arg...>::operator=(std::move(src));
    return *this;
  }
};

} /* namespace sigc */

#endif /* SIGC_SIGNAL_H */