summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorShahriar Rouf <nafi@google.com>2020-12-03 00:50:04 +0000
committerVictor Costan <costan@google.com>2020-12-03 22:52:41 +0000
commita94be58e65dac5d676c219199b015cfc32d7ae6e (patch)
tree92de214ce024f747c83512d20eb3da9ae522db2a
parent01a566f825e6083318bda85c862c859e198bd98a (diff)
downloadsnappy-git-a94be58e65dac5d676c219199b015cfc32d7ae6e.tar.gz
Optimize zippy decompression by making IncrementalCopy faster.
When SSSE3 is available: - Use PSHUFB (_mm_shuffle_epi8) to handle pattern size 1 to 15 (previously it handled size 1 to 7). - This enables us to do 16 byte copies instead of 8 bytes copies because we know that the pattern size >= 16. - Use shuffle-reshuffle strategy to generate the next pattern after loading the initial pattern. This enables us to write 4 conditionals (similar to when pattern size >= 16) which would allow FDO to layout the code with respect to actual probabilities of each length. - The PSHUFB masks are now generated programmatically at compile-time. When SSSE3 is unavailable: - No change. In both cases: - assert(op < op_limit) in IncrementalCopy so that we can check 'op_limit <= buf_limit - 15' instead of 'op_limit <= buf_limit - 16'. All existing call sites of IncrementalCopy guarantee this. 'bin' case is notably >20% faster because it has many repeated character patterns (i.e. pattern_size = 1). PiperOrigin-RevId: 345340892
-rw-r--r--snappy.cc280
1 files changed, 224 insertions, 56 deletions
diff --git a/snappy.cc b/snappy.cc
index e5e69ab..6ceccce 100644
--- a/snappy.cc
+++ b/snappy.cc
@@ -74,6 +74,7 @@
#include <cstdio>
#include <cstring>
#include <string>
+#include <utility>
#include <vector>
namespace snappy {
@@ -178,6 +179,16 @@ void UnalignedCopy128(const void* src, void* dst) {
std::memcpy(dst, tmp, 16);
}
+template <bool use_16bytes_chunk>
+inline void ConditionalUnalignedCopy128(const char* src, char* dst) {
+ if (use_16bytes_chunk) {
+ UnalignedCopy128(src, dst);
+ } else {
+ UnalignedCopy64(src, dst);
+ UnalignedCopy64(src + 8, dst + 8);
+ }
+}
+
// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used
// for handling COPY operations where the input and output regions may overlap.
// For example, suppose:
@@ -205,36 +216,164 @@ inline char* IncrementalCopySlow(const char* src, char* op,
#if SNAPPY_HAVE_SSSE3
-// This is a table of shuffle control masks that can be used as the source
+// Computes the bytes for shuffle control mask (please read comments on
+// 'pattern_generation_masks' as well) for the given index_offset and
+// pattern_size. For example, when the 'offset' is 6, it will generate a
+// repeating pattern of size 6. So, the first 16 byte indexes will correspond to
+// the pattern-bytes {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3} and the
+// next 16 byte indexes will correspond to the pattern-bytes {4, 5, 0, 1, 2, 3,
+// 4, 5, 0, 1, 2, 3, 4, 5, 0, 1}. These byte index sequences are generated by
+// calling MakePatternMaskBytes(0, 6, index_sequence<16>()) and
+// MakePatternMaskBytes(16, 6, index_sequence<16>()) respectively.
+template <size_t... indexes>
+inline constexpr std::array<char, sizeof...(indexes)> MakePatternMaskBytes(
+ int index_offset, int pattern_size, index_sequence<indexes...>) {
+ return {static_cast<char>((index_offset + indexes) % pattern_size)...};
+}
+
+// Computes the shuffle control mask bytes array for given pattern-sizes and
+// returns an array.
+template <size_t... pattern_sizes_minus_one>
+inline constexpr std::array<std::array<char, sizeof(__m128i)>,
+ sizeof...(pattern_sizes_minus_one)>
+MakePatternMaskBytesTable(int index_offset,
+ index_sequence<pattern_sizes_minus_one...>) {
+ return {MakePatternMaskBytes(
+ index_offset, pattern_sizes_minus_one + 1,
+ make_index_sequence</*indexes=*/sizeof(__m128i)>())...};
+}
+
+// This is an array of shuffle control masks that can be used as the source
// operand for PSHUFB to permute the contents of the destination XMM register
// into a repeating byte pattern.
-alignas(16) const char pshufb_fill_patterns[7][16] = {
- {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1},
- {0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0},
- {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3},
- {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0},
- {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3},
- {0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1},
-};
+alignas(16) inline constexpr std::array<std::array<char, sizeof(__m128i)>,
+ 16> pattern_generation_masks =
+ MakePatternMaskBytesTable(
+ /*index_offset=*/0,
+ /*pattern_sizes_minus_one=*/make_index_sequence<16>());
+
+// Similar to 'pattern_generation_masks', this table is used to "rotate" the
+// pattern so that we can copy the *next 16 bytes* consistent with the pattern.
+// Basically, pattern_reshuffle_masks is a continuation of
+// pattern_generation_masks. It follows that, pattern_reshuffle_masks is same as
+// pattern_generation_masks for offsets 1, 2, 4, 8 and 16.
+alignas(16) inline constexpr std::array<std::array<char, sizeof(__m128i)>,
+ 16> pattern_reshuffle_masks =
+ MakePatternMaskBytesTable(
+ /*index_offset=*/16,
+ /*pattern_sizes_minus_one=*/make_index_sequence<16>());
+
+SNAPPY_ATTRIBUTE_ALWAYS_INLINE
+static inline __m128i LoadPattern(const char* src, const size_t pattern_size) {
+ __m128i generation_mask = _mm_load_si128(reinterpret_cast<const __m128i*>(
+ pattern_generation_masks[pattern_size - 1].data()));
+ // Uninitialized bytes are masked out by the shuffle mask.
+ // TODO: remove annotation and macro defs once MSan is fixed.
+ SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(src + pattern_size, 16 - pattern_size);
+ return _mm_shuffle_epi8(
+ _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)), generation_mask);
+}
+
+SNAPPY_ATTRIBUTE_ALWAYS_INLINE
+static inline std::pair<__m128i /* pattern */, __m128i /* reshuffle_mask */>
+LoadPatternAndReshuffleMask(const char* src, const size_t pattern_size) {
+ __m128i pattern = LoadPattern(src, pattern_size);
+
+ // This mask will generate the next 16 bytes in-place. Doing so enables us to
+ // write data by at most 4 _mm_storeu_si128.
+ //
+ // For example, suppose pattern is: abcdefabcdefabcd
+ // Shuffling with this mask will generate: efabcdefabcdefab
+ // Shuffling again will generate: cdefabcdefabcdef
+ __m128i reshuffle_mask = _mm_load_si128(reinterpret_cast<const __m128i*>(
+ pattern_reshuffle_masks[pattern_size - 1].data()));
+ return {pattern, reshuffle_mask};
+}
-// j * (16 / j) for all j from 0 to 7. 0 is not actually used.
-const uint8_t pattern_size_table[8] = {0, 16, 16, 15, 16, 15, 12, 14};
+#endif // SNAPPY_HAVE_SSSE3
+// Fallback for when we need to copy while extending the pattern, for example
+// copying 10 bytes from 3 positions back abc -> abcabcabcabca.
+//
+// REQUIRES: [dst - offset, dst + 64) is a valid address range.
+SNAPPY_ATTRIBUTE_ALWAYS_INLINE
+static inline bool Copy64BytesWithPatternExtension(char* dst, size_t offset) {
+#if SNAPPY_HAVE_SSSE3
+ if (SNAPPY_PREDICT_TRUE(offset <= 16)) {
+ switch (offset) {
+ case 0:
+ return false;
+ case 1: {
+ std::memset(dst, dst[-1], 64);
+ return true;
+ }
+ case 2:
+ case 4:
+ case 8:
+ case 16: {
+ __m128i pattern = LoadPattern(dst - offset, offset);
+ for (int i = 0; i < 4; i++) {
+ _mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16 * i), pattern);
+ }
+ return true;
+ }
+ default: {
+ auto pattern_and_reshuffle_mask =
+ LoadPatternAndReshuffleMask(dst - offset, offset);
+ __m128i pattern = pattern_and_reshuffle_mask.first;
+ __m128i reshuffle_mask = pattern_and_reshuffle_mask.second;
+ for (int i = 0; i < 4; i++) {
+ _mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16 * i), pattern);
+ pattern = _mm_shuffle_epi8(pattern, reshuffle_mask);
+ }
+ return true;
+ }
+ }
+ }
+#else
+ if (SNAPPY_PREDICT_TRUE(offset < 16)) {
+ if (SNAPPY_PREDICT_FALSE(offset == 0)) return false;
+ // Extend the pattern to the first 16 bytes.
+ for (int i = 0; i < 16; i++) dst[i] = dst[i - offset];
+ // Find a multiple of pattern >= 16.
+ static std::array<uint8_t, 16> pattern_sizes = []() {
+ std::array<uint8_t, 16> res;
+ for (int i = 1; i < 16; i++) res[i] = (16 / i + 1) * i;
+ return res;
+ }();
+ offset = pattern_sizes[offset];
+ for (int i = 1; i < 4; i++) {
+ std::memcpy(dst + i * 16, dst + i * 16 - offset, 16);
+ }
+ return true;
+ }
#endif // SNAPPY_HAVE_SSSE3
+ // Very rare.
+ for (int i = 0; i < 4; i++) {
+ std::memcpy(dst + i * 16, dst + i * 16 - offset, 16);
+ }
+ return true;
+}
+
// Copy [src, src+(op_limit-op)) to [op, op_limit) but faster than
// IncrementalCopySlow. buf_limit is the address past the end of the writable
// region of the buffer.
inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
char* const buf_limit) {
+#if SNAPPY_HAVE_SSSE3
+ constexpr int big_pattern_size_lower_bound = 16;
+#else
+ constexpr int big_pattern_size_lower_bound = 8;
+#endif
+
// Terminology:
//
// slop = buf_limit - op
// pat = op - src
// len = limit - op
assert(src < op);
- assert(op <= op_limit);
+ assert(op < op_limit);
assert(op_limit <= buf_limit);
// NOTE: The copy tags use 3 or 6 bits to store the copy length, so len <= 64.
assert(op_limit - op <= 64);
@@ -265,11 +404,13 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
// input. In general if we always predict len <= 16 it would be an ok
// prediction.
//
- // In order to be fast we want a pattern >= 8 bytes and an unrolled loop
- // copying 2x 8 bytes at a time.
+ // In order to be fast we want a pattern >= 16 bytes (or 8 bytes in non-SSE)
+ // and an unrolled loop copying 1x 16 bytes (or 2x 8 bytes in non-SSE) at a
+ // time.
- // Handle the uncommon case where pattern is less than 8 bytes.
- if (SNAPPY_PREDICT_FALSE(pattern_size < 8)) {
+ // Handle the uncommon case where pattern is less than 16 (or 8 in non-SSE)
+ // bytes.
+ if (pattern_size < big_pattern_size_lower_bound) {
#if SNAPPY_HAVE_SSSE3
// Load the first eight bytes into an 128-bit XMM register, then use PSHUFB
// to permute the register's contents in-place into a repeating sequence of
@@ -283,22 +424,53 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
// The non-SSE fallback implementation suffers from store-forwarding stalls
// because its loads and stores partly overlap. By expanding the pattern
// in-place, we avoid the penalty.
- if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 16)) {
- const __m128i shuffle_mask = _mm_load_si128(
- reinterpret_cast<const __m128i*>(pshufb_fill_patterns) +
- pattern_size - 1);
- const __m128i pattern = _mm_shuffle_epi8(
- _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src)), shuffle_mask);
- // Uninitialized bytes are masked out by the shuffle mask.
- // TODO: remove annotation and macro defs once MSan is fixed.
- SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(&pattern, sizeof(pattern));
- pattern_size = pattern_size_table[pattern_size];
- char* op_end = std::min(op_limit, buf_limit - 15);
- while (op < op_end) {
- _mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern);
- op += pattern_size;
+
+ // Typically, the op_limit is the gating factor so try to simplify the loop
+ // based on that.
+ if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 15)) {
+ auto pattern_and_reshuffle_mask =
+ LoadPatternAndReshuffleMask(src, pattern_size);
+ __m128i pattern = pattern_and_reshuffle_mask.first;
+ __m128i reshuffle_mask = pattern_and_reshuffle_mask.second;
+
+ // There is at least one, and at most four 16-byte blocks. Writing four
+ // conditionals instead of a loop allows FDO to layout the code with
+ // respect to the actual probabilities of each length.
+ // TODO: Replace with loop with trip count hint.
+ _mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern);
+
+ if (op + 16 < op_limit) {
+ pattern = _mm_shuffle_epi8(pattern, reshuffle_mask);
+ _mm_storeu_si128(reinterpret_cast<__m128i*>(op + 16), pattern);
}
- if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
+ if (op + 32 < op_limit) {
+ pattern = _mm_shuffle_epi8(pattern, reshuffle_mask);
+ _mm_storeu_si128(reinterpret_cast<__m128i*>(op + 32), pattern);
+ }
+ if (op + 48 < op_limit) {
+ pattern = _mm_shuffle_epi8(pattern, reshuffle_mask);
+ _mm_storeu_si128(reinterpret_cast<__m128i*>(op + 48), pattern);
+ }
+ return op_limit;
+ }
+ char* const op_end = buf_limit - 15;
+ if (SNAPPY_PREDICT_TRUE(op < op_end)) {
+ auto pattern_and_reshuffle_mask =
+ LoadPatternAndReshuffleMask(src, pattern_size);
+ __m128i pattern = pattern_and_reshuffle_mask.first;
+ __m128i reshuffle_mask = pattern_and_reshuffle_mask.second;
+
+ // This code path is relatively cold however so we save code size
+ // by avoiding unrolling and vectorizing.
+ //
+ // TODO: Remove pragma when when cold regions don't get
+ // vectorized or unrolled.
+#pragma nounroll
+ do {
+ _mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern);
+ pattern = _mm_shuffle_epi8(pattern, reshuffle_mask);
+ op += 16;
+ } while (SNAPPY_PREDICT_TRUE(op < op_end));
}
return IncrementalCopySlow(src, op, op_limit);
#else // !SNAPPY_HAVE_SSSE3
@@ -320,34 +492,30 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
}
#endif // SNAPPY_HAVE_SSSE3
}
- assert(pattern_size >= 8);
+ assert(pattern_size >= big_pattern_size_lower_bound);
+ constexpr bool use_16bytes_chunk = big_pattern_size_lower_bound == 16;
- // Copy 2x 8 bytes at a time. Because op - src can be < 16, a single
- // UnalignedCopy128 might overwrite data in op. UnalignedCopy64 is safe
- // because expanding the pattern to at least 8 bytes guarantees that
- // op - src >= 8.
+ // Copy 1x 16 bytes (or 2x 8 bytes in non-SSE) at a time. Because op - src can
+ // be < 16 in non-SSE, a single UnalignedCopy128 might overwrite data in op.
+ // UnalignedCopy64 is safe because expanding the pattern to at least 8 bytes
+ // guarantees that op - src >= 8.
//
// Typically, the op_limit is the gating factor so try to simplify the loop
// based on that.
- if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 16)) {
+ if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 15)) {
// There is at least one, and at most four 16-byte blocks. Writing four
// conditionals instead of a loop allows FDO to layout the code with respect
// to the actual probabilities of each length.
// TODO: Replace with loop with trip count hint.
- UnalignedCopy64(src, op);
- UnalignedCopy64(src + 8, op + 8);
-
+ ConditionalUnalignedCopy128<use_16bytes_chunk>(src, op);
if (op + 16 < op_limit) {
- UnalignedCopy64(src + 16, op + 16);
- UnalignedCopy64(src + 24, op + 24);
+ ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 16, op + 16);
}
if (op + 32 < op_limit) {
- UnalignedCopy64(src + 32, op + 32);
- UnalignedCopy64(src + 40, op + 40);
+ ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 32, op + 32);
}
if (op + 48 < op_limit) {
- UnalignedCopy64(src + 48, op + 48);
- UnalignedCopy64(src + 56, op + 56);
+ ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 48, op + 48);
}
return op_limit;
}
@@ -358,12 +526,9 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
//
// TODO: Remove pragma when when cold regions don't get vectorized
// or unrolled.
-#ifdef __clang__
-#pragma clang loop unroll(disable)
-#endif
+#pragma nounroll
for (char* op_end = buf_limit - 16; op < op_end; op += 16, src += 16) {
- UnalignedCopy64(src, op);
- UnalignedCopy64(src + 8, op + 8);
+ ConditionalUnalignedCopy128<use_16bytes_chunk>(src, op);
}
if (op >= op_limit) return op_limit;
@@ -894,10 +1059,10 @@ std::pair<const uint8_t*, char*> DecompressBranchless(
if (SNAPPY_PREDICT_FALSE(std::size_t(offset) < len)) {
assert(tag_type != 0);
// offset 0 is an error.
- if (SNAPPY_PREDICT_FALSE(offset == 0)) break;
- op = IncrementalCopy(op_base + delta, op_base + op, op_base + op + len,
- op_base + op_limit) -
- op_base;
+ if (!Copy64BytesWithPatternExtension(op_base + op, offset)) {
+ break;
+ }
+ op += len;
continue;
}
@@ -1089,6 +1254,7 @@ class SnappyDecompressor {
preload = LittleEndian::Load32(ip);
const uint32_t trailer = ExtractLowBytes(preload, c & 3);
const uint32_t length = entry & 0xff;
+ assert(length > 0);
// copy_offset/256 is encoded in bits 8..10. By just fetching
// those bits, we get copy_offset (since the bit-field starts at
@@ -1459,6 +1625,7 @@ class SnappyIOVecWriter {
if (to_copy > len) {
to_copy = len;
}
+ assert(to_copy > 0);
IncrementalCopy(GetIOVecPointer(from_iov, from_iov_offset),
curr_iov_output_, curr_iov_output_ + to_copy,
@@ -1552,6 +1719,7 @@ class SnappyArrayWriter {
SNAPPY_ATTRIBUTE_ALWAYS_INLINE
inline bool AppendFromSelf(size_t offset, size_t len, char** op_p) {
+ assert(len > 0);
char* const op = *op_p;
assert(op >= base_);
char* const op_end = op + len;