summaryrefslogtreecommitdiff
path: root/subversion/libsvn_subr/sorts.c
blob: 06a4964e1a4436de4f5a8ef26bafe5228babcef1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
/*
 * sorts.c:   all sorts of sorts
 *
 * ====================================================================
 *    Licensed to the Apache Software Foundation (ASF) under one
 *    or more contributor license agreements.  See the NOTICE file
 *    distributed with this work for additional information
 *    regarding copyright ownership.  The ASF licenses this file
 *    to you under the Apache License, Version 2.0 (the
 *    "License"); you may not use this file except in compliance
 *    with the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *    Unless required by applicable law or agreed to in writing,
 *    software distributed under the License is distributed on an
 *    "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 *    KIND, either express or implied.  See the License for the
 *    specific language governing permissions and limitations
 *    under the License.
 * ====================================================================
 */



#include <apr_pools.h>
#include <apr_hash.h>
#include <apr_tables.h>
#include <stdlib.h>       /* for qsort()   */
#include <assert.h>
#include "svn_hash.h"
#include "svn_path.h"
#include "svn_sorts.h"
#include "svn_error.h"
#include "private/svn_sorts_private.h"



/*** svn_sort__hash() ***/

/* (Should this be a permanent part of APR?)

   OK, folks, here's what's going on.  APR hash tables hash on
   key/klen objects, and store associated generic values.  They work
   great, but they have no ordering.

   The point of this exercise is to somehow arrange a hash's keys into
   an "ordered list" of some kind -- in this case, a nicely sorted
   one.

   We're using APR arrays, therefore, because that's what they are:
   ordered lists.  However, what "keys" should we put in the array?
   Clearly, (const char *) objects aren't general enough.  Or rather,
   they're not as general as APR's hash implementation, which stores
   (void *)/length as keys.  We don't want to lose this information.

   Therefore, it makes sense to store pointers to {void *, size_t}
   structures in our array.  No such apr object exists... BUT... if we
   can use a new type svn_sort__item_t which contains {char *, size_t, void
   *}.  If store these objects in our array, we get the hash value
   *for free*.  When looping over the final array, we don't need to
   call apr_hash_get().  Major bonus!
 */


int
svn_sort_compare_items_as_paths(const svn_sort__item_t *a,
                                const svn_sort__item_t *b)
{
  const char *astr, *bstr;

  astr = a->key;
  bstr = b->key;
  assert(astr[a->klen] == '\0');
  assert(bstr[b->klen] == '\0');
  return svn_path_compare_paths(astr, bstr);
}


int
svn_sort_compare_items_lexically(const svn_sort__item_t *a,
                                 const svn_sort__item_t *b)
{
  int val;
  apr_size_t len;

  /* Compare bytes of a's key and b's key up to the common length. */
  len = (a->klen < b->klen) ? a->klen : b->klen;
  val = memcmp(a->key, b->key, len);
  if (val != 0)
    return val;

  /* They match up until one of them ends; whichever is longer is greater. */
  return (a->klen < b->klen) ? -1 : (a->klen > b->klen) ? 1 : 0;
}


int
svn_sort_compare_revisions(const void *a, const void *b)
{
  svn_revnum_t a_rev = *(const svn_revnum_t *)a;
  svn_revnum_t b_rev = *(const svn_revnum_t *)b;

  if (a_rev == b_rev)
    return 0;

  return a_rev < b_rev ? 1 : -1;
}


int
svn_sort_compare_paths(const void *a, const void *b)
{
  const char *item1 = *((const char * const *) a);
  const char *item2 = *((const char * const *) b);

  return svn_path_compare_paths(item1, item2);
}


int
svn_sort_compare_ranges(const void *a, const void *b)
{
  const svn_merge_range_t *item1 = *((const svn_merge_range_t * const *) a);
  const svn_merge_range_t *item2 = *((const svn_merge_range_t * const *) b);

  if (item1->start == item2->start
      && item1->end == item2->end)
    return 0;

  if (item1->start == item2->start)
    return item1->end < item2->end ? -1 : 1;

  return item1->start < item2->start ? -1 : 1;
}

void
svn_sort__array(apr_array_header_t *array,
                int (*comparison_func)(const void *,
                                       const void *))
{
  qsort(array->elts, array->nelts, array->elt_size, comparison_func);
}

apr_array_header_t *
svn_sort__hash(apr_hash_t *ht,
               int (*comparison_func)(const svn_sort__item_t *,
                                      const svn_sort__item_t *),
               apr_pool_t *pool)
{
  apr_hash_index_t *hi;
  apr_array_header_t *ary;
  svn_boolean_t sorted;
  svn_sort__item_t *prev_item;

  /* allocate an array with enough elements to hold all the keys. */
  ary = apr_array_make(pool, apr_hash_count(ht), sizeof(svn_sort__item_t));

  /* loop over hash table and push all keys into the array */
  sorted = TRUE;
  prev_item = NULL;
  for (hi = apr_hash_first(pool, ht); hi; hi = apr_hash_next(hi))
    {
      svn_sort__item_t *item = apr_array_push(ary);

      apr_hash_this(hi, &item->key, &item->klen, &item->value);

      if (prev_item == NULL)
        {
          prev_item = item;
          continue;
        }

      if (sorted)
        {
          sorted = (comparison_func(prev_item, item) < 0);
          prev_item = item;
        }
    }

  /* quicksort the array if it isn't already sorted.  */
  if (!sorted)
    svn_sort__array(ary,
          (int (*)(const void *, const void *))comparison_func);

  return ary;
}

/* Return the lowest index at which the element *KEY should be inserted into
   the array at BASE which has NELTS elements of size ELT_SIZE bytes each,
   according to the ordering defined by COMPARE_FUNC.
   0 <= NELTS <= INT_MAX, 1 <= ELT_SIZE <= INT_MAX.
   The array must already be sorted in the ordering defined by COMPARE_FUNC.
   COMPARE_FUNC is defined as for the C stdlib function bsearch().
   Note: This function is modeled on bsearch() and on lower_bound() in the
   C++ STL.
 */
static int
bsearch_lower_bound(const void *key,
                    const void *base,
                    int nelts,
                    int elt_size,
                    int (*compare_func)(const void *, const void *))
{
  int lower = 0;
  int upper = nelts - 1;

  /* Binary search for the lowest position at which to insert KEY. */
  while (lower <= upper)
    {
      int try = lower + (upper - lower) / 2;  /* careful to avoid overflow */
      int cmp = compare_func((const char *)base + try * elt_size, key);

      if (cmp < 0)
        lower = try + 1;
      else
        upper = try - 1;
    }
  assert(lower == upper + 1);

  return lower;
}

int
svn_sort__bsearch_lower_bound(const apr_array_header_t *array,
                              const void *key,
                              int (*compare_func)(const void *, const void *))
{
  return bsearch_lower_bound(key,
                             array->elts, array->nelts, array->elt_size,
                             compare_func);
}

void *
svn_sort__array_lookup(const apr_array_header_t *array,
                       const void *key,
                       int *hint,
                       int (*compare_func)(const void *, const void *))
{
  void *result;
  int idx;

  /* If provided, try the index following *HINT (i.e. probably the last
   * hit location) first.  This speeds up linear scans. */
  if (hint)
    {
      /* We intend to insert right behind *HINT.
       * Exit this function early, if we actually can. */
      idx = *hint + 1;
      if (idx >= array->nelts)
        {
          /* We intend to insert after the last entry.
           * That is only allowed if that last entry is smaller than KEY.
           * In that case, there will be no current entry, i.e. we must
           * return NULL. */
          apr_size_t offset;

          *hint = array->nelts;
          if (array->nelts == 0)
            return NULL;

          offset = (array->nelts - 1) * array->elt_size;
          if (compare_func(array->elts + offset, key) < 0)
            return NULL;
        }
      else if (idx > 0)
        {
          /* Intend to insert at a position inside the array, i.e. not
           * at one of the boundaries.  The predecessor must be smaller
           * and the current entry at IDX must be larger than KEY. */
          void *previous;

          *hint = idx;
          previous = array->elts + (idx-1) * array->elt_size;
          result = array->elts + idx * array->elt_size;
          if (compare_func(previous, key) && !compare_func(result, key))
            return result;
        }
      else if (idx <= 0)
        {
          /* Intend to insert at the beginning of an non-empty array.
           * That requires the first entry to be larger than KEY. */
          *hint = 0;
          if (!compare_func(array->elts, key))
            return array->elts;
        }

      /* The HINT did not help. */
    }

  idx = bsearch_lower_bound(key, array->elts, array->nelts, array->elt_size,
                            compare_func);
  if (hint)
    *hint = idx;
  if (idx >= array->nelts)
    return NULL;

  result = array->elts + idx * array->elt_size;
  return compare_func(result, key) ? NULL : result;
}

void
svn_sort__array_insert(apr_array_header_t *array,
                       const void *new_element,
                       int insert_index)
{
  int elements_to_move;
  char *new_position;

  assert(0 <= insert_index && insert_index <= array->nelts);
  elements_to_move = array->nelts - insert_index;  /* before bumping nelts */

  /* Grow the array, allocating a new space at the end. Note: this can
     reallocate the array's "elts" at a different address. */
  apr_array_push(array);

  /* Move the elements after INSERT_INDEX along. (When elements_to_move == 0,
     this is a no-op.) */
  new_position = (char *)array->elts + insert_index * array->elt_size;
  memmove(new_position + array->elt_size, new_position,
          array->elt_size * elements_to_move);

  /* Copy in the new element */
  memcpy(new_position, new_element, array->elt_size);
}

void
svn_sort__array_delete(apr_array_header_t *arr,
                       int delete_index,
                       int elements_to_delete)
{
  /* Do we have a valid index and are there enough elements? */
  if (delete_index >= 0
      && delete_index < arr->nelts
      && elements_to_delete > 0
      && (elements_to_delete + delete_index) <= arr->nelts)
    {
      /* If we are not deleting a block of elements that extends to the end
         of the array, then we need to move the remaining elements to keep
         the array contiguous. */
      if ((elements_to_delete + delete_index) < arr->nelts)
        memmove(
          arr->elts + arr->elt_size * delete_index,
          arr->elts + (arr->elt_size * (delete_index + elements_to_delete)),
          arr->elt_size * (arr->nelts - elements_to_delete - delete_index));

      /* Delete the last ELEMENTS_TO_DELETE elements. */
      arr->nelts -= elements_to_delete;
    }
}

void
svn_sort__array_reverse(apr_array_header_t *array,
                        apr_pool_t *scratch_pool)
{
  int i;

  if (array->elt_size == sizeof(void *))
    {
      for (i = 0; i < array->nelts / 2; i++)
        {
          int swap_index = array->nelts - i - 1;
          void *tmp = APR_ARRAY_IDX(array, i, void *);

          APR_ARRAY_IDX(array, i, void *) =
            APR_ARRAY_IDX(array, swap_index, void *);
          APR_ARRAY_IDX(array, swap_index, void *) = tmp;
        }
    }
  else
    {
      apr_size_t sz = array->elt_size;
      char *tmp = apr_palloc(scratch_pool, sz);

      for (i = 0; i < array->nelts / 2; i++)
        {
          int swap_index = array->nelts - i - 1;
          char *x = array->elts + (sz * i);
          char *y = array->elts + (sz * swap_index);

          memcpy(tmp, x, sz);
          memcpy(x, y, sz);
          memcpy(y, tmp, sz);
        }
    }
}

/* Our priority queue data structure:
 * Simply remember the constructor parameters.
 */
struct svn_priority_queue__t
{
  /* the queue elements, ordered as a heap according to COMPARE_FUNC */
  apr_array_header_t *elements;

  /* predicate used to order the heap */
  int (*compare_func)(const void *, const void *);
};

/* Return TRUE, if heap element number LHS in QUEUE is smaller than element
 * number RHS according to QUEUE->COMPARE_FUNC
 */
static int
heap_is_less(svn_priority_queue__t *queue,
             apr_size_t lhs,
             apr_size_t rhs)
{
  char *lhs_value = queue->elements->elts + lhs * queue->elements->elt_size;
  char *rhs_value = queue->elements->elts + rhs * queue->elements->elt_size;

  /* nelts is never negative */
  assert(lhs < (apr_size_t)queue->elements->nelts);
  assert(rhs < (apr_size_t)queue->elements->nelts);
  return queue->compare_func(lhs_value, rhs_value) < 0;
}

/* Exchange elements number LHS and RHS in QUEUE.
 */
static void
heap_swap(svn_priority_queue__t *queue,
          apr_size_t lhs,
          apr_size_t rhs)
{
  int i;
  char *lhs_value = queue->elements->elts + lhs * queue->elements->elt_size;
  char *rhs_value = queue->elements->elts + rhs * queue->elements->elt_size;

  for (i = 0; i < queue->elements->elt_size; ++i)
    {
      char temp = lhs_value[i];
      lhs_value[i] = rhs_value[i];
      rhs_value[i] = temp;
    }
}

/* Move element number IDX to lower indexes until the heap criterion is
 * fulfilled again.
 */
static void
heap_bubble_down(svn_priority_queue__t *queue,
                 int idx)
{
  while (idx > 0 && heap_is_less(queue, idx, (idx - 1) / 2))
    {
      heap_swap(queue, idx, (idx - 1) / 2);
      idx = (idx - 1) / 2;
    }
}

/* Move element number IDX to higher indexes until the heap criterion is
 * fulfilled again.
 */
static void
heap_bubble_up(svn_priority_queue__t *queue,
               int idx)
{
  while (2 * idx + 2 < queue->elements->nelts)
    {
      int child = heap_is_less(queue, 2 * idx + 1, 2 * idx + 2)
                ? 2 * idx + 1
                : 2 * idx + 2;

      if (heap_is_less(queue, idx, child))
        return;

      heap_swap(queue, idx, child);
      idx = child;
    }

  if (   2 * idx + 1 < queue->elements->nelts
      && heap_is_less(queue, 2 * idx + 1, idx))
    heap_swap(queue, 2 * idx + 1, idx);
}

svn_priority_queue__t *
svn_priority_queue__create(apr_array_header_t *elements,
                           int (*compare_func)(const void *, const void *))
{
  int i;

  svn_priority_queue__t *queue = apr_pcalloc(elements->pool, sizeof(*queue));
  queue->elements = elements;
  queue->compare_func = compare_func;

  for (i = elements->nelts / 2; i >= 0; --i)
    heap_bubble_up(queue, i);

  return queue;
}

apr_size_t
svn_priority_queue__size(svn_priority_queue__t *queue)
{
  return queue->elements->nelts;
}

void *
svn_priority_queue__peek(svn_priority_queue__t *queue)
{
  return queue->elements->nelts ? queue->elements->elts : NULL;
}

void
svn_priority_queue__update(svn_priority_queue__t *queue)
{
  heap_bubble_up(queue, 0);
}

void
svn_priority_queue__pop(svn_priority_queue__t *queue)
{
  if (queue->elements->nelts)
    {
      memmove(queue->elements->elts,
              queue->elements->elts
              + (queue->elements->nelts - 1) * queue->elements->elt_size,
              queue->elements->elt_size);
      --queue->elements->nelts;
      heap_bubble_up(queue, 0);
    }
}

void
svn_priority_queue__push(svn_priority_queue__t *queue,
                         const void *element)
{
  /* we cannot duplicate elements due to potential array re-allocs */
  assert(element && element != queue->elements->elts);

  memcpy(apr_array_push(queue->elements), element, queue->elements->elt_size);
  heap_bubble_down(queue, queue->elements->nelts - 1);
}