1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
/*
* sorts.c: all sorts of sorts
*
* ====================================================================
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
* ====================================================================
*/
#include <apr_pools.h>
#include <apr_hash.h>
#include <apr_tables.h>
#include <stdlib.h> /* for qsort() */
#include <assert.h>
#include "svn_hash.h"
#include "svn_path.h"
#include "svn_sorts.h"
#include "svn_error.h"
/*** svn_sort__hash() ***/
/* (Should this be a permanent part of APR?)
OK, folks, here's what's going on. APR hash tables hash on
key/klen objects, and store associated generic values. They work
great, but they have no ordering.
The point of this exercise is to somehow arrange a hash's keys into
an "ordered list" of some kind -- in this case, a nicely sorted
one.
We're using APR arrays, therefore, because that's what they are:
ordered lists. However, what "keys" should we put in the array?
Clearly, (const char *) objects aren't general enough. Or rather,
they're not as general as APR's hash implementation, which stores
(void *)/length as keys. We don't want to lose this information.
Therefore, it makes sense to store pointers to {void *, size_t}
structures in our array. No such apr object exists... BUT... if we
can use a new type svn_sort__item_t which contains {char *, size_t, void
*}. If store these objects in our array, we get the hash value
*for free*. When looping over the final array, we don't need to
call apr_hash_get(). Major bonus!
*/
int
svn_sort_compare_items_as_paths(const svn_sort__item_t *a,
const svn_sort__item_t *b)
{
const char *astr, *bstr;
astr = a->key;
bstr = b->key;
assert(astr[a->klen] == '\0');
assert(bstr[b->klen] == '\0');
return svn_path_compare_paths(astr, bstr);
}
int
svn_sort_compare_items_lexically(const svn_sort__item_t *a,
const svn_sort__item_t *b)
{
int val;
apr_size_t len;
/* Compare bytes of a's key and b's key up to the common length. */
len = (a->klen < b->klen) ? a->klen : b->klen;
val = memcmp(a->key, b->key, len);
if (val != 0)
return val;
/* They match up until one of them ends; whichever is longer is greater. */
return (a->klen < b->klen) ? -1 : (a->klen > b->klen) ? 1 : 0;
}
int
svn_sort_compare_revisions(const void *a, const void *b)
{
svn_revnum_t a_rev = *(const svn_revnum_t *)a;
svn_revnum_t b_rev = *(const svn_revnum_t *)b;
if (a_rev == b_rev)
return 0;
return a_rev < b_rev ? 1 : -1;
}
int
svn_sort_compare_paths(const void *a, const void *b)
{
const char *item1 = *((const char * const *) a);
const char *item2 = *((const char * const *) b);
return svn_path_compare_paths(item1, item2);
}
int
svn_sort_compare_ranges(const void *a, const void *b)
{
const svn_merge_range_t *item1 = *((const svn_merge_range_t * const *) a);
const svn_merge_range_t *item2 = *((const svn_merge_range_t * const *) b);
if (item1->start == item2->start
&& item1->end == item2->end)
return 0;
if (item1->start == item2->start)
return item1->end < item2->end ? -1 : 1;
return item1->start < item2->start ? -1 : 1;
}
apr_array_header_t *
svn_sort__hash(apr_hash_t *ht,
int (*comparison_func)(const svn_sort__item_t *,
const svn_sort__item_t *),
apr_pool_t *pool)
{
apr_hash_index_t *hi;
apr_array_header_t *ary;
svn_boolean_t sorted;
svn_sort__item_t *prev_item;
/* allocate an array with enough elements to hold all the keys. */
ary = apr_array_make(pool, apr_hash_count(ht), sizeof(svn_sort__item_t));
/* loop over hash table and push all keys into the array */
sorted = TRUE;
prev_item = NULL;
for (hi = apr_hash_first(pool, ht); hi; hi = apr_hash_next(hi))
{
svn_sort__item_t *item = apr_array_push(ary);
apr_hash_this(hi, &item->key, &item->klen, &item->value);
if (prev_item == NULL)
{
prev_item = item;
continue;
}
if (sorted)
{
sorted = (comparison_func(prev_item, item) < 0);
prev_item = item;
}
}
/* quicksort the array if it isn't already sorted. */
if (!sorted)
qsort(ary->elts, ary->nelts, ary->elt_size,
(int (*)(const void *, const void *))comparison_func);
return ary;
}
/* Return the lowest index at which the element *KEY should be inserted into
the array at BASE which has NELTS elements of size ELT_SIZE bytes each,
according to the ordering defined by COMPARE_FUNC.
0 <= NELTS <= INT_MAX, 1 <= ELT_SIZE <= INT_MAX.
The array must already be sorted in the ordering defined by COMPARE_FUNC.
COMPARE_FUNC is defined as for the C stdlib function bsearch().
Note: This function is modeled on bsearch() and on lower_bound() in the
C++ STL.
*/
static int
bsearch_lower_bound(const void *key,
const void *base,
int nelts,
int elt_size,
int (*compare_func)(const void *, const void *))
{
int lower = 0;
int upper = nelts - 1;
/* Binary search for the lowest position at which to insert KEY. */
while (lower <= upper)
{
int try = lower + (upper - lower) / 2; /* careful to avoid overflow */
int cmp = compare_func((const char *)base + try * elt_size, key);
if (cmp < 0)
lower = try + 1;
else
upper = try - 1;
}
assert(lower == upper + 1);
return lower;
}
int
svn_sort__bsearch_lower_bound(const void *key,
const apr_array_header_t *array,
int (*compare_func)(const void *, const void *))
{
return bsearch_lower_bound(key,
array->elts, array->nelts, array->elt_size,
compare_func);
}
void
svn_sort__array_insert(const void *new_element,
apr_array_header_t *array,
int insert_index)
{
int elements_to_move;
char *new_position;
assert(0 <= insert_index && insert_index <= array->nelts);
elements_to_move = array->nelts - insert_index; /* before bumping nelts */
/* Grow the array, allocating a new space at the end. Note: this can
reallocate the array's "elts" at a different address. */
apr_array_push(array);
/* Move the elements after INSERT_INDEX along. (When elements_to_move == 0,
this is a no-op.) */
new_position = (char *)array->elts + insert_index * array->elt_size;
memmove(new_position + array->elt_size, new_position,
array->elt_size * elements_to_move);
/* Copy in the new element */
memcpy(new_position, new_element, array->elt_size);
}
void
svn_sort__array_delete(apr_array_header_t *arr,
int delete_index,
int elements_to_delete)
{
/* Do we have a valid index and are there enough elements? */
if (delete_index >= 0
&& delete_index < arr->nelts
&& elements_to_delete > 0
&& (elements_to_delete + delete_index) <= arr->nelts)
{
/* If we are not deleting a block of elements that extends to the end
of the array, then we need to move the remaining elements to keep
the array contiguous. */
if ((elements_to_delete + delete_index) < arr->nelts)
memmove(
arr->elts + arr->elt_size * delete_index,
arr->elts + (arr->elt_size * (delete_index + elements_to_delete)),
arr->elt_size * (arr->nelts - elements_to_delete - delete_index));
/* Delete the last ELEMENTS_TO_DELETE elements. */
arr->nelts -= elements_to_delete;
}
}
void
svn_sort__array_reverse(apr_array_header_t *array,
apr_pool_t *scratch_pool)
{
int i;
if (array->elt_size == sizeof(void *))
{
for (i = 0; i < array->nelts / 2; i++)
{
int swap_index = array->nelts - i - 1;
void *tmp = APR_ARRAY_IDX(array, i, void *);
APR_ARRAY_IDX(array, i, void *) =
APR_ARRAY_IDX(array, swap_index, void *);
APR_ARRAY_IDX(array, swap_index, void *) = tmp;
}
}
else
{
apr_size_t sz = array->elt_size;
char *tmp = apr_palloc(scratch_pool, sz);
for (i = 0; i < array->nelts / 2; i++)
{
int swap_index = array->nelts - i - 1;
char *x = array->elts + (sz * i);
char *y = array->elts + (sz * swap_index);
memcpy(tmp, x, sz);
memcpy(x, y, sz);
memcpy(y, tmp, sz);
}
}
}
|