summaryrefslogtreecommitdiff
path: root/efi/wrapper.c
blob: 1630bbb726f69810e5c0738894820c837950e7f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
/*
 * Copyright (C) 2011 Intel Corporation; author Matt Fleming
 *
 * Wrap the ELF shared library in a PE32 (32bit) or PE32+ (64bit) suit.
 *
 * Syslinux plays some games with the ELF sections that are not easily
 * converted to a PE32 executable. For instance, Syslinux requires
 * that a symbol hash table be present (GNU hash or SysV) so that
 * symbols in ELF modules can be resolved at runtime but the EFI
 * firmware loader doesn't like that and refuses to load the file.
 *
 * We pretend that we have an EFI executable with a single .text
 * section so that the EFI loader will load it and jump to the entry
 * point. Once the Syslinux ELF shared object has control we can do
 * whatever we want.
 */
#include <linux/elf.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "wrapper.h"

#if __SIZEOF_POINTER__ == 4
typedef Elf32_Ehdr Elf_Ehdr;
typedef Elf32_Addr Elf_Addr;
#elif __SIZEOF_POINTER__ == 8
typedef Elf64_Ehdr Elf_Ehdr;
typedef Elf64_Addr Elf_Addr;
#else
#error "unsupported architecture"
#endif

/*
 * 'so_size' is the file size of the ELF shared object.
 * 'data_size' is the size of initialised data in the shared object.
 *  'class' dictates how the header is written
 * 	For 32bit machines (class == ELFCLASS32), the optional
 * 	header includes PE32 header fields
 * 	For 64bit machines (class == ELFCLASS64), the optional
 * 	header includes PE32+header fields
 */
static void write_header(FILE *f, __uint32_t entry, size_t data_size,
			 __uint32_t so_size, __uint8_t class)
{
	struct optional_hdr o_hdr;
	struct optional_hdr_pe32p o_hdr_pe32p;
	struct section t_sec, r_sec;
	struct extra_hdr e_hdr;
	struct extra_hdr_pe32p e_hdr_pe32p;
	struct coff_hdr c_hdr;
	struct header hdr;
	__uint32_t total_sz = data_size;
	__uint32_t hdr_sz;
	__uint32_t reloc_start, reloc_end;

	/*
	 * The header size have to be a multiple of file_align, which currently
	 * is 512
	 */
	hdr_sz = 512;
	total_sz += hdr_sz;
	entry += hdr_sz;

	memset(&hdr, 0, sizeof(hdr));
	hdr.msdos_signature = MSDOS_SIGNATURE;

	/*
	 * The relocs table pointer needs to be >= 0x40 for PE files. It
	 * informs things like file(1) that we are not an MS-DOS
	 * executable.
	 */
	hdr.relocs_ptr = 0x40;

	hdr.pe_hdr = OFFSETOF(struct header, pe_signature);
	hdr.pe_signature = PE_SIGNATURE;
	fwrite(&hdr, sizeof(hdr), 1, f);

	memset(&c_hdr, 0, sizeof(c_hdr));
	c_hdr.nr_sections = 2;
	c_hdr.nr_syms = 1;
	if (class == ELFCLASS32) {
		c_hdr.arch = IMAGE_FILE_MACHINE_I386;
		c_hdr.characteristics = IMAGE_FILE_32BIT_MACHINE |
			IMAGE_FILE_DEBUG_STRIPPED | IMAGE_FILE_EXECUTABLE_IMAGE |
			IMAGE_FILE_LINE_NUMBERS_STRIPPED;
		c_hdr.optional_hdr_sz = sizeof(o_hdr) + sizeof(e_hdr);
		fwrite(&c_hdr, sizeof(c_hdr), 1, f);
		memset(&o_hdr, 0, sizeof(o_hdr));
		o_hdr.format = PE32_FORMAT;
		o_hdr.major_linker_version = 0x02;
		o_hdr.minor_linker_version = 0x14;
		o_hdr.code_sz = data_size;
		o_hdr.entry_point = entry;
		o_hdr.initialized_data_sz = data_size;
		fwrite(&o_hdr, sizeof(o_hdr), 1, f);
		memset(&e_hdr, 0, sizeof(e_hdr));
		e_hdr.section_align = 4096;
		e_hdr.file_align = 512;
		e_hdr.image_sz = hdr_sz + so_size;
		e_hdr.headers_sz = hdr_sz;
		e_hdr.subsystem = IMAGE_SUBSYSTEM_EFI_APPLICATION;
		e_hdr.rva_and_sizes_nr = sizeof(e_hdr.data_directory) / sizeof(__uint64_t);
		fwrite(&e_hdr, sizeof(e_hdr), 1, f);
	}
	else if (class == ELFCLASS64) {
		c_hdr.arch = IMAGE_FILE_MACHINE_X86_64;
		c_hdr.characteristics = IMAGE_FILE_DEBUG_STRIPPED | IMAGE_FILE_EXECUTABLE_IMAGE |
			IMAGE_FILE_LINE_NUMBERS_STRIPPED;
		c_hdr.optional_hdr_sz = sizeof(o_hdr_pe32p) + sizeof(e_hdr_pe32p);
		fwrite(&c_hdr, sizeof(c_hdr), 1, f);
		memset(&o_hdr_pe32p, 0, sizeof(o_hdr_pe32p));
		o_hdr_pe32p.format = PE32P_FORMAT;
		o_hdr_pe32p.major_linker_version = 0x02;
		o_hdr_pe32p.minor_linker_version = 0x14;
		o_hdr_pe32p.code_sz = data_size;
		o_hdr_pe32p.entry_point = entry;
		o_hdr.initialized_data_sz = data_size;
		fwrite(&o_hdr_pe32p, sizeof(o_hdr_pe32p), 1, f);
		memset(&e_hdr_pe32p, 0, sizeof(e_hdr_pe32p));
		e_hdr_pe32p.section_align = 4096;
		e_hdr_pe32p.file_align = 512;
		e_hdr_pe32p.image_sz = hdr_sz + so_size;
		e_hdr_pe32p.headers_sz = hdr_sz;
		e_hdr_pe32p.subsystem = IMAGE_SUBSYSTEM_EFI_APPLICATION;
		e_hdr_pe32p.rva_and_sizes_nr = sizeof(e_hdr_pe32p.data_directory) / sizeof(__uint64_t);
		fwrite(&e_hdr_pe32p, sizeof(e_hdr_pe32p), 1, f);
	}

	memset(&t_sec, 0, sizeof(t_sec));
	strcpy((char *)t_sec.name, ".text");
	t_sec.virtual_sz = data_size;
	t_sec.virtual_address = hdr_sz;
	t_sec.raw_data_sz = t_sec.virtual_sz;
	t_sec.raw_data = t_sec.virtual_address;
	t_sec.characteristics = IMAGE_SCN_CNT_CODE |
		IMAGE_SCN_ALIGN_16BYTES | IMAGE_SCN_MEM_EXECUTE |
		IMAGE_SCN_MEM_READ;
	fwrite(&t_sec, sizeof(t_sec), 1, f);

	/*
	 * Write our empty reloc section.
	 */
	memset(&r_sec, 0, sizeof(r_sec));
	strcpy((char *)r_sec.name, ".reloc");
	r_sec.virtual_sz = 0;
	/* /!\ Attention! Some UEFI implementations require a valid virtual
	 * address despite the virtual_sz = 0. */
	r_sec.virtual_address = t_sec.virtual_address;
	r_sec.raw_data_sz = r_sec.virtual_sz;
	r_sec.raw_data = r_sec.virtual_address;
	r_sec.characteristics = IMAGE_SCN_CNT_INITIALIZED_DATA |
		IMAGE_SCN_ALIGN_1BYTES | IMAGE_SCN_MEM_DISCARDABLE |
		IMAGE_SCN_MEM_READ;
	fwrite(&r_sec, sizeof(r_sec), 1, f);

	/*
	 * Add some padding to align the ELF as needed
	 */
	if (ftell(f) > t_sec.virtual_address) {
		/* Don't rewind! hdr_sz need to be increased. */
		fprintf(stderr, "PE32+ headers are too large.\n");
		exit(EXIT_FAILURE);
	}

	fseek(f, t_sec.virtual_address, SEEK_SET);
}

static void usage(char *progname)
{
	fprintf(stderr,	"usage: %s <ELF shared object> <output file>\n",
		progname);
}

int main(int argc, char **argv)
{
	struct stat st;
	Elf32_Ehdr e32_hdr;
	Elf64_Ehdr e64_hdr;
	__uint32_t entry;
	__uint8_t class;
	__uint64_t shoff;
	__uint16_t shnum, shentsize, shstrndx;
	unsigned char *id;
	FILE *f_in, *f_out;
	void *buf;
	size_t datasz, rv;

	if (argc < 3) {
		usage(argv[0]);
		exit(0);
	}

	f_in = fopen(argv[1], "r");
	if (!f_in) {
		perror("fopen");
		exit(EXIT_FAILURE);
	}

	if (stat(argv[1], &st) != 0) {
		perror("stat");
		exit(EXIT_FAILURE);
	}

	f_out = fopen(argv[2], "w");
	if (!f_out) {
		perror("fopen");
		exit(EXIT_FAILURE);
	}

	/*
	 * Parse the ELF header and find the entry point.
	 */
 	fread((void *)&e32_hdr, sizeof(e32_hdr), 1, f_in);
	if (e32_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
		id = e32_hdr.e_ident;
		class = ELFCLASS32;
		entry = e32_hdr.e_entry;
		shoff = e32_hdr.e_shoff;
		shnum = e32_hdr.e_shnum;
		shstrndx = e32_hdr.e_shstrndx;
		shentsize = e32_hdr.e_shentsize;
	}
	else if (e32_hdr.e_ident[EI_CLASS] == ELFCLASS64) {
		/* read the header again for x86_64 
		 * note that the elf header entry point is 64bit whereas
		 * the entry point in PE/COFF format is 32bit!*/
		class = ELFCLASS64;
		rewind(f_in);
		fread((void *)&e64_hdr, sizeof(e64_hdr), 1, f_in);
		id = e64_hdr.e_ident;
		entry = e64_hdr.e_entry;
		shoff = e64_hdr.e_shoff;
		shnum = e64_hdr.e_shnum;
		shstrndx = e64_hdr.e_shstrndx;
		shentsize = e64_hdr.e_shentsize;
	} else {
		fprintf(stderr, "Unsupported architecture\n");
		exit(EXIT_FAILURE);
	}

	if (id[EI_MAG0] != ELFMAG0 ||
	    id[EI_MAG1] != ELFMAG1 ||
	    id[EI_MAG2] != ELFMAG2 ||
	    id[EI_MAG3] != ELFMAG3) {
		fprintf(stderr, "Input file not ELF shared object\n");
		exit(EXIT_FAILURE);
	}

	if (!shoff || !shnum || (shstrndx == SHN_UNDEF)) {
		fprintf(stderr, "Cannot find section table\n");
		exit(EXIT_FAILURE);
	}

	/*
	 * Find the beginning of the .bss section. Everything preceding
	 * it is copied verbatim to the output file.
	 */
	if (e32_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
		const char *shstrtab, *name;
		Elf32_Shdr shdr;
		int i;
		void *strtab;

		fseek(f_in, shoff, SEEK_SET);

		/* First find the strtab section */
		fseek(f_in, shstrndx * shentsize, SEEK_CUR);
		fread(&shdr, sizeof(shdr), 1, f_in);

		strtab = malloc(shdr.sh_size);
		if (!strtab) {
			fprintf(stderr, "Failed to malloc strtab\n");
			exit(EXIT_FAILURE);
		}

		fseek(f_in, shdr.sh_offset, SEEK_SET);
		fread(strtab, shdr.sh_size, 1, f_in);

		/* Now search for the .bss section */
		fseek(f_in, shoff, SEEK_SET);
		for (i = 0; i < shnum; i++) {
			rv = fread(&shdr, sizeof(shdr), 1, f_in);
			if (!rv) {
				fprintf(stderr, "Failed to read section table\n");
				exit(EXIT_FAILURE);
			}

			name = strtab + shdr.sh_name;
			if (!strcmp(name, ".bss"))
				break;
		}

		if (i == shnum) {
			fprintf(stderr, "Failed to find .bss section\n");
			exit(EXIT_FAILURE);
		}

		datasz = shdr.sh_offset;
	}
	else if (e32_hdr.e_ident[EI_CLASS] == ELFCLASS64) {
		const char *shstrtab, *name;
		Elf64_Shdr shdr;
		int i;
		void *strtab;

		fseek(f_in, shoff, SEEK_SET);

		/* First find the strtab section */
		fseek(f_in, shstrndx * shentsize, SEEK_CUR);
		fread(&shdr, sizeof(shdr), 1, f_in);

		strtab = malloc(shdr.sh_size);
		if (!strtab) {
			fprintf(stderr, "Failed to malloc strtab\n");
			exit(EXIT_FAILURE);
		}

		fseek(f_in, shdr.sh_offset, SEEK_SET);
		fread(strtab, shdr.sh_size, 1, f_in);

		/* Now search for the .bss section */
		fseek(f_in, shoff, SEEK_SET);
		for (i = 0; i < shnum; i++) {
			rv = fread(&shdr, sizeof(shdr), 1, f_in);
			if (!rv) {
				fprintf(stderr, "Failed to read section table\n");
				exit(EXIT_FAILURE);
			}

			name = strtab + shdr.sh_name;
			if (!strcmp(name, ".bss"))
				break;
		}

		if (i == shnum) {
			fprintf(stderr, "Failed to find .bss section\n");
			exit(EXIT_FAILURE);
		}

		datasz = shdr.sh_offset;
	}

	buf = malloc(datasz);
	if (!buf) {
		perror("malloc");
		exit(EXIT_FAILURE);
	}

	write_header(f_out, entry, datasz, st.st_size, class);

	/* Write out the entire ELF shared object */
	rewind(f_in);
	rv = fread(buf, datasz, 1, f_in);
	if (!rv && ferror(f_in)) {
		fprintf(stderr, "Failed to read all bytes from input\n");
		exit(EXIT_FAILURE);
	}

	fwrite(buf, datasz, rv, f_out);
	return 0;
}