summaryrefslogtreecommitdiff
path: root/board/xilinx/common/xipif_v1_23_b.h
diff options
context:
space:
mode:
Diffstat (limited to 'board/xilinx/common/xipif_v1_23_b.h')
-rw-r--r--board/xilinx/common/xipif_v1_23_b.h763
1 files changed, 763 insertions, 0 deletions
diff --git a/board/xilinx/common/xipif_v1_23_b.h b/board/xilinx/common/xipif_v1_23_b.h
new file mode 100644
index 0000000000..b1520e921e
--- /dev/null
+++ b/board/xilinx/common/xipif_v1_23_b.h
@@ -0,0 +1,763 @@
+/******************************************************************************
+*
+* Author: Xilinx, Inc.
+*
+*
+* This program is free software; you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by the
+* Free Software Foundation; either version 2 of the License, or (at your
+* option) any later version.
+*
+*
+* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A
+* COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS
+* ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR STANDARD,
+* XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION IS FREE
+* FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE FOR OBTAINING
+* ANY THIRD PARTY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.
+* XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO
+* THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY
+* WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM
+* CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND
+* FITNESS FOR A PARTICULAR PURPOSE.
+*
+*
+* Xilinx hardware products are not intended for use in life support
+* appliances, devices, or systems. Use in such applications is
+* expressly prohibited.
+*
+*
+* (c) Copyright 2002-2004 Xilinx Inc.
+* All rights reserved.
+*
+*
+* You should have received a copy of the GNU General Public License along
+* with this program; if not, write to the Free Software Foundation, Inc.,
+* 675 Mass Ave, Cambridge, MA 02139, USA.
+*
+******************************************************************************/
+/******************************************************************************
+*
+* FILENAME:
+*
+* xipif.h
+*
+* DESCRIPTION:
+*
+* The XIpIf component encapsulates the IPIF, which is the standard interface
+* that IP must adhere to when connecting to a bus. The purpose of this
+* component is to encapsulate the IPIF processing such that maintainability
+* is increased. This component does not provide a lot of abstraction from
+* from the details of the IPIF as it is considered a building block for
+* device drivers. A device driver designer must be familiar with the
+* details of the IPIF hardware to use this component.
+*
+* The IPIF hardware provides a building block for all hardware devices such
+* that each device does not need to reimplement these building blocks. The
+* IPIF contains other building blocks, such as FIFOs and DMA channels, which
+* are also common to many devices. These blocks are implemented as separate
+* hardware blocks and instantiated within the IPIF. The primary hardware of
+* the IPIF which is implemented by this software component is the interrupt
+* architecture. Since there are many blocks of a device which may generate
+* interrupts, all the interrupt processing is contained in the common part
+* of the device, the IPIF. This interrupt processing is for the device level
+* only and does not include any processing for the interrupt controller.
+*
+* A device is a mechanism such as an Ethernet MAC. The device is made
+* up of several parts which include an IPIF and the IP. The IPIF contains most
+* of the device infrastructure which is common to all devices, such as
+* interrupt processing, DMA channels, and FIFOs. The infrastructure may also
+* be referred to as IPIF internal blocks since they are part of the IPIF and
+* are separate blocks that can be selected based upon the needs of the device.
+* The IP of the device is the logic that is unique to the device and interfaces
+* to the IPIF of the device.
+*
+* In general, there are two levels of registers within the IPIF. The first
+* level, referred to as the device level, contains registers which are for the
+* entire device. The second level, referred to as the IP level, contains
+* registers which are specific to the IP of the device. The two levels of
+* registers are designed to be hierarchical such that the device level is
+* is a more general register set above the more specific registers of the IP.
+* The IP level of registers provides functionality which is typically common
+* across all devices and allows IP designers to focus on the unique aspects
+* of the IP.
+*
+* Critical Sections
+*
+* It is the responsibility of the device driver designer to use critical
+* sections as necessary when calling functions of the IPIF. This component
+* does not use critical sections and it does access registers using
+* read-modify-write operations. Calls to IPIF functions from a main thread
+* and from an interrupt context could produce unpredictable behavior such that
+* the caller must provide the appropriate critical sections.
+*
+* Mutual Exclusion
+*
+* The functions of the IPIF are not thread safe such that the caller of all
+* functions is responsible for ensuring mutual exclusion for an IPIF. Mutual
+* exclusion across multiple IPIF components is not necessary.
+*
+* NOTES:
+*
+* None.
+*
+* MODIFICATION HISTORY:
+*
+* Ver Who Date Changes
+* ----- ---- -------- -----------------------------------------------
+* 1.23b jhl 02/27/01 Repartioned to minimize size
+*
+******************************************************************************/
+
+#ifndef XIPIF_H /* prevent circular inclusions */
+#define XIPIF_H /* by using protection macros */
+
+/***************************** Include Files *********************************/
+#include "xbasic_types.h"
+#include "xstatus.h"
+#include "xversion.h"
+
+/************************** Constant Definitions *****************************/
+
+/* the following constants define the register offsets for the registers of the
+ * IPIF, there are some holes in the memory map for reserved addresses to allow
+ * other registers to be added and still match the memory map of the interrupt
+ * controller registers
+ */
+#define XIIF_V123B_DISR_OFFSET 0UL /* device interrupt status register */
+#define XIIF_V123B_DIPR_OFFSET 4UL /* device interrupt pending register */
+#define XIIF_V123B_DIER_OFFSET 8UL /* device interrupt enable register */
+#define XIIF_V123B_DIIR_OFFSET 24UL /* device interrupt ID register */
+#define XIIF_V123B_DGIER_OFFSET 28UL /* device global interrupt enable reg */
+#define XIIF_V123B_IISR_OFFSET 32UL /* IP interrupt status register */
+#define XIIF_V123B_IIER_OFFSET 40UL /* IP interrupt enable register */
+#define XIIF_V123B_RESETR_OFFSET 64UL /* reset register */
+
+#define XIIF_V123B_RESET_MASK 0xAUL
+
+/* the following constant is used for the device global interrupt enable
+ * register, to enable all interrupts for the device, this is the only bit
+ * in the register
+ */
+#define XIIF_V123B_GINTR_ENABLE_MASK 0x80000000UL
+
+/* the following constants contain the masks to identify each internal IPIF
+ * condition in the device registers of the IPIF, interrupts are assigned
+ * in the register from LSB to the MSB
+ */
+#define XIIF_V123B_ERROR_MASK 1UL /* LSB of the register */
+
+/* The following constants contain interrupt IDs which identify each internal
+ * IPIF condition, this value must correlate with the mask constant for the
+ * error
+ */
+#define XIIF_V123B_ERROR_INTERRUPT_ID 0 /* interrupt bit #, (LSB = 0) */
+#define XIIF_V123B_NO_INTERRUPT_ID 128 /* no interrupts are pending */
+
+/**************************** Type Definitions *******************************/
+
+/***************** Macros (Inline Functions) Definitions *********************/
+
+/******************************************************************************
+*
+* MACRO:
+*
+* XIIF_V123B_RESET
+*
+* DESCRIPTION:
+*
+* Reset the IPIF component and hardware. This is a destructive operation that
+* could cause the loss of data since resetting the IPIF of a device also
+* resets the device using the IPIF and any blocks, such as FIFOs or DMA
+* channels, within the IPIF. All registers of the IPIF will contain their
+* reset value when this function returns.
+*
+* ARGUMENTS:
+*
+* RegBaseAddress contains the base address of the IPIF registers.
+*
+* RETURN VALUE:
+*
+* None.
+*
+* NOTES:
+*
+* None.
+*
+******************************************************************************/
+
+/* the following constant is used in the reset register to cause the IPIF to
+ * reset
+ */
+#define XIIF_V123B_RESET(RegBaseAddress) \
+ XIo_Out32(RegBaseAddress + XIIF_V123B_RESETR_OFFSET, XIIF_V123B_RESET_MASK)
+
+/******************************************************************************
+*
+* MACRO:
+*
+* XIIF_V123B_WRITE_DISR
+*
+* DESCRIPTION:
+*
+* This function sets the device interrupt status register to the value.
+* This register indicates the status of interrupt sources for a device
+* which contains the IPIF. The status is independent of whether interrupts
+* are enabled and could be used for polling a device at a higher level rather
+* than a more detailed level.
+*
+* Each bit of the register correlates to a specific interrupt source within the
+* device which contains the IPIF. With the exception of some internal IPIF
+* conditions, the contents of this register are not latched but indicate
+* the live status of the interrupt sources within the device. Writing any of
+* the non-latched bits of the register will have no effect on the register.
+*
+* For the latched bits of this register only, setting a bit which is zero
+* within this register causes an interrupt to generated. The device global
+* interrupt enable register and the device interrupt enable register must be set
+* appropriately to allow an interrupt to be passed out of the device. The
+* interrupt is cleared by writing to this register with the bits to be
+* cleared set to a one and all others to zero. This register implements a
+* toggle on write functionality meaning any bits which are set in the value
+* written cause the bits in the register to change to the opposite state.
+*
+* This function writes the specified value to the register such that
+* some bits may be set and others cleared. It is the caller's responsibility
+* to get the value of the register prior to setting the value to prevent a
+* destructive behavior.
+*
+* ARGUMENTS:
+*
+* RegBaseAddress contains the base address of the IPIF registers.
+*
+* Status contains the value to be written to the interrupt status register of
+* the device. The only bits which can be written are the latched bits which
+* contain the internal IPIF conditions. The following values may be used to
+* set the status register or clear an interrupt condition.
+*
+* XIIF_V123B_ERROR_MASK Indicates a device error in the IPIF
+*
+* RETURN VALUE:
+*
+* None.
+*
+* NOTES:
+*
+* None.
+*
+******************************************************************************/
+#define XIIF_V123B_WRITE_DISR(RegBaseAddress, Status) \
+ XIo_Out32((RegBaseAddress) + XIIF_V123B_DISR_OFFSET, (Status))
+
+/******************************************************************************
+*
+* MACRO:
+*
+* XIIF_V123B_READ_DISR
+*
+* DESCRIPTION:
+*
+* This function gets the device interrupt status register contents.
+* This register indicates the status of interrupt sources for a device
+* which contains the IPIF. The status is independent of whether interrupts
+* are enabled and could be used for polling a device at a higher level.
+*
+* Each bit of the register correlates to a specific interrupt source within the
+* device which contains the IPIF. With the exception of some internal IPIF
+* conditions, the contents of this register are not latched but indicate
+* the live status of the interrupt sources within the device.
+*
+* For only the latched bits of this register, the interrupt may be cleared by
+* writing to these bits in the status register.
+*
+* ARGUMENTS:
+*
+* RegBaseAddress contains the base address of the IPIF registers.
+*
+* RETURN VALUE:
+*
+* A status which contains the value read from the interrupt status register of
+* the device. The bit definitions are specific to the device with
+* the exception of the latched internal IPIF condition bits. The following
+* values may be used to detect internal IPIF conditions in the status.
+*
+* XIIF_V123B_ERROR_MASK Indicates a device error in the IPIF
+*
+* NOTES:
+*
+* None.
+*
+******************************************************************************/
+#define XIIF_V123B_READ_DISR(RegBaseAddress) \
+ XIo_In32((RegBaseAddress) + XIIF_V123B_DISR_OFFSET)
+
+/******************************************************************************
+*
+* MACRO:
+*
+* XIIF_V123B_WRITE_DIER
+*
+* DESCRIPTION:
+*
+* This function sets the device interrupt enable register contents.
+* This register controls which interrupt sources of the device are allowed to
+* generate an interrupt. The device global interrupt enable register must also
+* be set appropriately for an interrupt to be passed out of the device.
+*
+* Each bit of the register correlates to a specific interrupt source within the
+* device which contains the IPIF. Setting a bit in this register enables that
+* interrupt source to generate an interrupt. Clearing a bit in this register
+* disables interrupt generation for that interrupt source.
+*
+* This function writes only the specified value to the register such that
+* some interrupts source may be enabled and others disabled. It is the
+* caller's responsibility to get the value of the interrupt enable register
+* prior to setting the value to prevent an destructive behavior.
+*
+* An interrupt source may not be enabled to generate an interrupt, but can
+* still be polled in the interrupt status register.
+*
+* ARGUMENTS:
+*
+* RegBaseAddress contains the base address of the IPIF registers.
+*
+* Enable contains the value to be written to the interrupt enable register
+* of the device. The bit definitions are specific to the device with
+* the exception of the internal IPIF conditions. The following
+* values may be used to enable the internal IPIF conditions interrupts.
+*
+* XIIF_V123B_ERROR_MASK Indicates a device error in the IPIF
+*
+* RETURN VALUE:
+*
+* None.
+*
+* NOTES:
+*
+* Signature: u32 XIIF_V123B_WRITE_DIER(u32 RegBaseAddress,
+* u32 Enable)
+*
+******************************************************************************/
+#define XIIF_V123B_WRITE_DIER(RegBaseAddress, Enable) \
+ XIo_Out32((RegBaseAddress) + XIIF_V123B_DIER_OFFSET, (Enable))
+
+/******************************************************************************
+*
+* MACRO:
+*
+* XIIF_V123B_READ_DIER
+*
+* DESCRIPTION:
+*
+* This function gets the device interrupt enable register contents.
+* This register controls which interrupt sources of the device
+* are allowed to generate an interrupt. The device global interrupt enable
+* register and the device interrupt enable register must also be set
+* appropriately for an interrupt to be passed out of the device.
+*
+* Each bit of the register correlates to a specific interrupt source within the
+* device which contains the IPIF. Setting a bit in this register enables that
+* interrupt source to generate an interrupt if the global enable is set
+* appropriately. Clearing a bit in this register disables interrupt generation
+* for that interrupt source regardless of the global interrupt enable.
+*
+* ARGUMENTS:
+*
+* RegBaseAddress contains the base address of the IPIF registers.
+*
+* RETURN VALUE:
+*
+* The value read from the interrupt enable register of the device. The bit
+* definitions are specific to the device with the exception of the internal
+* IPIF conditions. The following values may be used to determine from the
+* value if the internal IPIF conditions interrupts are enabled.
+*
+* XIIF_V123B_ERROR_MASK Indicates a device error in the IPIF
+*
+* NOTES:
+*
+* None.
+*
+******************************************************************************/
+#define XIIF_V123B_READ_DIER(RegBaseAddress) \
+ XIo_In32((RegBaseAddress) + XIIF_V123B_DIER_OFFSET)
+
+/******************************************************************************
+*
+* MACRO:
+*
+* XIIF_V123B_READ_DIPR
+*
+* DESCRIPTION:
+*
+* This function gets the device interrupt pending register contents.
+* This register indicates the pending interrupt sources, those that are waiting
+* to be serviced by the software, for a device which contains the IPIF.
+* An interrupt must be enabled in the interrupt enable register of the IPIF to
+* be pending.
+*
+* Each bit of the register correlates to a specific interrupt source within the
+* the device which contains the IPIF. With the exception of some internal IPIF
+* conditions, the contents of this register are not latched since the condition
+* is latched in the IP interrupt status register, by an internal block of the
+* IPIF such as a FIFO or DMA channel, or by the IP of the device. This register
+* is read only and is not latched, but it is necessary to acknowledge (clear)
+* the interrupt condition by performing the appropriate processing for the IP
+* or block within the IPIF.
+*
+* This register can be thought of as the contents of the interrupt status
+* register ANDed with the contents of the interrupt enable register.
+*
+* ARGUMENTS:
+*
+* RegBaseAddress contains the base address of the IPIF registers.
+*
+* RETURN VALUE:
+*
+* The value read from the interrupt pending register of the device. The bit
+* definitions are specific to the device with the exception of the latched
+* internal IPIF condition bits. The following values may be used to detect
+* internal IPIF conditions in the value.
+*
+* XIIF_V123B_ERROR_MASK Indicates a device error in the IPIF
+*
+* NOTES:
+*
+* None.
+*
+******************************************************************************/
+#define XIIF_V123B_READ_DIPR(RegBaseAddress) \
+ XIo_In32((RegBaseAddress) + XIIF_V123B_DIPR_OFFSET)
+
+/******************************************************************************
+*
+* MACRO:
+*
+* XIIF_V123B_READ_DIIR
+*
+* DESCRIPTION:
+*
+* This function gets the device interrupt ID for the highest priority interrupt
+* which is pending from the interrupt ID register. This function provides
+* priority resolution such that faster interrupt processing is possible.
+* Without priority resolution, it is necessary for the software to read the
+* interrupt pending register and then check each interrupt source to determine
+* if an interrupt is pending. Priority resolution becomes more important as the
+* number of interrupt sources becomes larger.
+*
+* Interrupt priorities are based upon the bit position of the interrupt in the
+* interrupt pending register with bit 0 being the highest priority. The
+* interrupt ID is the priority of the interrupt, 0 - 31, with 0 being the
+* highest priority. The interrupt ID register is live rather than latched such
+* that multiple calls to this function may not yield the same results. A
+* special value, outside of the interrupt priority range of 0 - 31, is
+* contained in the register which indicates that no interrupt is pending. This
+* may be useful for allowing software to continue processing interrupts in a
+* loop until there are no longer any interrupts pending.
+*
+* The interrupt ID is designed to allow a function pointer table to be used
+* in the software such that the interrupt ID is used as an index into that
+* table. The function pointer table could contain an instance pointer, such
+* as to DMA channel, and a function pointer to the function which handles
+* that interrupt. This design requires the interrupt processing of the device
+* driver to be partitioned into smaller more granular pieces based upon
+* hardware used by the device, such as DMA channels and FIFOs.
+*
+* It is not mandatory that this function be used by the device driver software.
+* It may choose to read the pending register and resolve the pending interrupt
+* priorities on it's own.
+*
+* ARGUMENTS:
+*
+* RegBaseAddress contains the base address of the IPIF registers.
+*
+* RETURN VALUE:
+*
+* An interrupt ID, 0 - 31, which identifies the highest priority interrupt
+* which is pending. A value of XIIF_NO_INTERRUPT_ID indicates that there is
+* no interrupt pending. The following values may be used to identify the
+* interrupt ID for the internal IPIF interrupts.
+*
+* XIIF_V123B_ERROR_INTERRUPT_ID Indicates a device error in the IPIF
+*
+* NOTES:
+*
+* None.
+*
+******************************************************************************/
+#define XIIF_V123B_READ_DIIR(RegBaseAddress) \
+ XIo_In32((RegBaseAddress) + XIIF_V123B_DIIR_OFFSET)
+
+/******************************************************************************
+*
+* MACRO:
+*
+* XIIF_V123B_GLOBAL_INTR_DISABLE
+*
+* DESCRIPTION:
+*
+* This function disables all interrupts for the device by writing to the global
+* interrupt enable register. This register provides the ability to disable
+* interrupts without any modifications to the interrupt enable register such
+* that it is minimal effort to restore the interrupts to the previous enabled
+* state. The corresponding function, XIpIf_GlobalIntrEnable, is provided to
+* restore the interrupts to the previous enabled state. This function is
+* designed to be used in critical sections of device drivers such that it is
+* not necessary to disable other device interrupts.
+*
+* ARGUMENTS:
+*
+* RegBaseAddress contains the base address of the IPIF registers.
+*
+* RETURN VALUE:
+*
+* None.
+*
+* NOTES:
+*
+* None.
+*
+******************************************************************************/
+#define XIIF_V123B_GINTR_DISABLE(RegBaseAddress) \
+ XIo_Out32((RegBaseAddress) + XIIF_V123B_DGIER_OFFSET, 0)
+
+/******************************************************************************
+*
+* MACRO:
+*
+* XIIF_V123B_GINTR_ENABLE
+*
+* DESCRIPTION:
+*
+* This function writes to the global interrupt enable register to enable
+* interrupts from the device. This register provides the ability to enable
+* interrupts without any modifications to the interrupt enable register such
+* that it is minimal effort to restore the interrupts to the previous enabled
+* state. This function does not enable individual interrupts as the interrupt
+* enable register must be set appropriately. This function is designed to be
+* used in critical sections of device drivers such that it is not necessary to
+* disable other device interrupts.
+*
+* ARGUMENTS:
+*
+* RegBaseAddress contains the base address of the IPIF registers.
+*
+* RETURN VALUE:
+*
+* None.
+*
+* NOTES:
+*
+* None.
+*
+******************************************************************************/
+#define XIIF_V123B_GINTR_ENABLE(RegBaseAddress) \
+ XIo_Out32((RegBaseAddress) + XIIF_V123B_DGIER_OFFSET, \
+ XIIF_V123B_GINTR_ENABLE_MASK)
+
+/******************************************************************************
+*
+* MACRO:
+*
+* XIIF_V123B_IS_GINTR_ENABLED
+*
+* DESCRIPTION:
+*
+* This function determines if interrupts are enabled at the global level by
+* reading the gloabl interrupt register. This register provides the ability to
+* disable interrupts without any modifications to the interrupt enable register
+* such that it is minimal effort to restore the interrupts to the previous
+* enabled state.
+*
+* ARGUMENTS:
+*
+* RegBaseAddress contains the base address of the IPIF registers.
+*
+* RETURN VALUE:
+*
+* TRUE if interrupts are enabled for the IPIF, FALSE otherwise.
+*
+* NOTES:
+*
+* None.
+*
+******************************************************************************/
+#define XIIF_V123B_IS_GINTR_ENABLED(RegBaseAddress) \
+ (XIo_In32((RegBaseAddress) + XIIF_V123B_DGIER_OFFSET) == \
+ XIIF_V123B_GINTR_ENABLE_MASK)
+
+/******************************************************************************
+*
+* MACRO:
+*
+* XIIF_V123B_WRITE_IISR
+*
+* DESCRIPTION:
+*
+* This function sets the IP interrupt status register to the specified value.
+* This register indicates the status of interrupt sources for the IP of the
+* device. The IP is defined as the part of the device that connects to the
+* IPIF. The status is independent of whether interrupts are enabled such that
+* the status register may also be polled when interrupts are not enabled.
+*
+* Each bit of the register correlates to a specific interrupt source within the
+* IP. All bits of this register are latched. Setting a bit which is zero
+* within this register causes an interrupt to be generated. The device global
+* interrupt enable register and the device interrupt enable register must be set
+* appropriately to allow an interrupt to be passed out of the device. The
+* interrupt is cleared by writing to this register with the bits to be
+* cleared set to a one and all others to zero. This register implements a
+* toggle on write functionality meaning any bits which are set in the value
+* written cause the bits in the register to change to the opposite state.
+*
+* This function writes only the specified value to the register such that
+* some status bits may be set and others cleared. It is the caller's
+* responsibility to get the value of the register prior to setting the value
+* to prevent an destructive behavior.
+*
+* ARGUMENTS:
+*
+* RegBaseAddress contains the base address of the IPIF registers.
+*
+* Status contains the value to be written to the IP interrupt status
+* register. The bit definitions are specific to the device IP.
+*
+* RETURN VALUE:
+*
+* None.
+*
+* NOTES:
+*
+* None.
+*
+******************************************************************************/
+#define XIIF_V123B_WRITE_IISR(RegBaseAddress, Status) \
+ XIo_Out32((RegBaseAddress) + XIIF_V123B_IISR_OFFSET, (Status))
+
+/******************************************************************************
+*
+* MACRO:
+*
+* XIIF_V123B_READ_IISR
+*
+* DESCRIPTION:
+*
+* This function gets the contents of the IP interrupt status register.
+* This register indicates the status of interrupt sources for the IP of the
+* device. The IP is defined as the part of the device that connects to the
+* IPIF. The status is independent of whether interrupts are enabled such
+* that the status register may also be polled when interrupts are not enabled.
+*
+* Each bit of the register correlates to a specific interrupt source within the
+* device. All bits of this register are latched. Writing a 1 to a bit within
+* this register causes an interrupt to be generated if enabled in the interrupt
+* enable register and the global interrupt enable is set. Since the status is
+* latched, each status bit must be acknowledged in order for the bit in the
+* status register to be updated. Each bit can be acknowledged by writing a
+* 0 to the bit in the status register.
+
+* ARGUMENTS:
+*
+* RegBaseAddress contains the base address of the IPIF registers.
+*
+* RETURN VALUE:
+*
+* A status which contains the value read from the IP interrupt status register.
+* The bit definitions are specific to the device IP.
+*
+* NOTES:
+*
+* None.
+*
+******************************************************************************/
+#define XIIF_V123B_READ_IISR(RegBaseAddress) \
+ XIo_In32((RegBaseAddress) + XIIF_V123B_IISR_OFFSET)
+
+/******************************************************************************
+*
+* MACRO:
+*
+* XIIF_V123B_WRITE_IIER
+*
+* DESCRIPTION:
+*
+* This function sets the IP interrupt enable register contents. This register
+* controls which interrupt sources of the IP are allowed to generate an
+* interrupt. The global interrupt enable register and the device interrupt
+* enable register must also be set appropriately for an interrupt to be
+* passed out of the device containing the IPIF and the IP.
+*
+* Each bit of the register correlates to a specific interrupt source within the
+* IP. Setting a bit in this register enables the interrupt source to generate
+* an interrupt. Clearing a bit in this register disables interrupt generation
+* for that interrupt source.
+*
+* This function writes only the specified value to the register such that
+* some interrupt sources may be enabled and others disabled. It is the
+* caller's responsibility to get the value of the interrupt enable register
+* prior to setting the value to prevent an destructive behavior.
+*
+* ARGUMENTS:
+*
+* RegBaseAddress contains the base address of the IPIF registers.
+*
+* Enable contains the value to be written to the IP interrupt enable register.
+* The bit definitions are specific to the device IP.
+*
+* RETURN VALUE:
+*
+* None.
+*
+* NOTES:
+*
+* None.
+*
+******************************************************************************/
+#define XIIF_V123B_WRITE_IIER(RegBaseAddress, Enable) \
+ XIo_Out32((RegBaseAddress) + XIIF_V123B_IIER_OFFSET, (Enable))
+
+/******************************************************************************
+*
+* MACRO:
+*
+* XIIF_V123B_READ_IIER
+*
+* DESCRIPTION:
+*
+*
+* This function gets the IP interrupt enable register contents. This register
+* controls which interrupt sources of the IP are allowed to generate an
+* interrupt. The global interrupt enable register and the device interrupt
+* enable register must also be set appropriately for an interrupt to be
+* passed out of the device containing the IPIF and the IP.
+*
+* Each bit of the register correlates to a specific interrupt source within the
+* IP. Setting a bit in this register enables the interrupt source to generate
+* an interrupt. Clearing a bit in this register disables interrupt generation
+* for that interrupt source.
+*
+* ARGUMENTS:
+*
+* RegBaseAddress contains the base address of the IPIF registers.
+*
+* RETURN VALUE:
+*
+* The contents read from the IP interrupt enable register. The bit definitions
+* are specific to the device IP.
+*
+* NOTES:
+*
+* Signature: u32 XIIF_V123B_READ_IIER(u32 RegBaseAddress)
+*
+******************************************************************************/
+#define XIIF_V123B_READ_IIER(RegBaseAddress) \
+ XIo_In32((RegBaseAddress) + XIIF_V123B_IIER_OFFSET)
+
+/************************** Function Prototypes ******************************/
+
+/*
+ * Initialization Functions
+ */
+XStatus XIpIfV123b_SelfTest(u32 RegBaseAddress, u8 IpRegistersWidth);
+
+#endif /* end of protection macro */