summaryrefslogtreecommitdiff
path: root/webrtc/base/scoped_ptr.h
diff options
context:
space:
mode:
Diffstat (limited to 'webrtc/base/scoped_ptr.h')
-rw-r--r--webrtc/base/scoped_ptr.h636
1 files changed, 0 insertions, 636 deletions
diff --git a/webrtc/base/scoped_ptr.h b/webrtc/base/scoped_ptr.h
deleted file mode 100644
index 203a001..0000000
--- a/webrtc/base/scoped_ptr.h
+++ /dev/null
@@ -1,636 +0,0 @@
-/*
- * Copyright 2012 The WebRTC Project Authors. All rights reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-// Borrowed from Chromium's src/base/memory/scoped_ptr.h.
-
-// Scopers help you manage ownership of a pointer, helping you easily manage a
-// pointer within a scope, and automatically destroying the pointer at the end
-// of a scope. There are two main classes you will use, which correspond to the
-// operators new/delete and new[]/delete[].
-//
-// Example usage (scoped_ptr<T>):
-// {
-// scoped_ptr<Foo> foo(new Foo("wee"));
-// } // foo goes out of scope, releasing the pointer with it.
-//
-// {
-// scoped_ptr<Foo> foo; // No pointer managed.
-// foo.reset(new Foo("wee")); // Now a pointer is managed.
-// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
-// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
-// foo->Method(); // Foo::Method() called.
-// foo.get()->Method(); // Foo::Method() called.
-// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
-// // manages a pointer.
-// foo.reset(new Foo("wee4")); // foo manages a pointer again.
-// foo.reset(); // Foo("wee4") destroyed, foo no longer
-// // manages a pointer.
-// } // foo wasn't managing a pointer, so nothing was destroyed.
-//
-// Example usage (scoped_ptr<T[]>):
-// {
-// scoped_ptr<Foo[]> foo(new Foo[100]);
-// foo.get()->Method(); // Foo::Method on the 0th element.
-// foo[10].Method(); // Foo::Method on the 10th element.
-// }
-//
-// These scopers also implement part of the functionality of C++11 unique_ptr
-// in that they are "movable but not copyable." You can use the scopers in
-// the parameter and return types of functions to signify ownership transfer
-// in to and out of a function. When calling a function that has a scoper
-// as the argument type, it must be called with the result of an analogous
-// scoper's Pass() function or another function that generates a temporary;
-// passing by copy will NOT work. Here is an example using scoped_ptr:
-//
-// void TakesOwnership(scoped_ptr<Foo> arg) {
-// // Do something with arg
-// }
-// scoped_ptr<Foo> CreateFoo() {
-// // No need for calling Pass() because we are constructing a temporary
-// // for the return value.
-// return scoped_ptr<Foo>(new Foo("new"));
-// }
-// scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
-// return arg.Pass();
-// }
-//
-// {
-// scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay").
-// TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay").
-// scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
-// scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
-// PassThru(ptr2.Pass()); // ptr2 is correspondingly nullptr.
-// }
-//
-// Notice that if you do not call Pass() when returning from PassThru(), or
-// when invoking TakesOwnership(), the code will not compile because scopers
-// are not copyable; they only implement move semantics which require calling
-// the Pass() function to signify a destructive transfer of state. CreateFoo()
-// is different though because we are constructing a temporary on the return
-// line and thus can avoid needing to call Pass().
-//
-// Pass() properly handles upcast in initialization, i.e. you can use a
-// scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
-//
-// scoped_ptr<Foo> foo(new Foo());
-// scoped_ptr<FooParent> parent(foo.Pass());
-//
-// PassAs<>() should be used to upcast return value in return statement:
-//
-// scoped_ptr<Foo> CreateFoo() {
-// scoped_ptr<FooChild> result(new FooChild());
-// return result.PassAs<Foo>();
-// }
-//
-// Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
-// scoped_ptr<T[]>. This is because casting array pointers may not be safe.
-
-#ifndef WEBRTC_BASE_SCOPED_PTR_H__
-#define WEBRTC_BASE_SCOPED_PTR_H__
-
-// This is an implementation designed to match the anticipated future TR2
-// implementation of the scoped_ptr class.
-
-#include <assert.h>
-#include <stddef.h>
-#include <stdlib.h>
-
-#include <algorithm> // For std::swap().
-
-#include "webrtc/base/constructormagic.h"
-#include "webrtc/base/template_util.h"
-#include "webrtc/typedefs.h"
-
-namespace rtc {
-
-// Function object which deletes its parameter, which must be a pointer.
-// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
-// invokes 'delete'. The default deleter for scoped_ptr<T>.
-template <class T>
-struct DefaultDeleter {
- DefaultDeleter() {}
- template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
- // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
- // if U* is implicitly convertible to T* and U is not an array type.
- //
- // Correct implementation should use SFINAE to disable this
- // constructor. However, since there are no other 1-argument constructors,
- // using a static_assert based on is_convertible<> and requiring
- // complete types is simpler and will cause compile failures for equivalent
- // misuses.
- //
- // Note, the is_convertible<U*, T*> check also ensures that U is not an
- // array. T is guaranteed to be a non-array, so any U* where U is an array
- // cannot convert to T*.
- enum { T_must_be_complete = sizeof(T) };
- enum { U_must_be_complete = sizeof(U) };
- static_assert(rtc::is_convertible<U*, T*>::value,
- "U* must implicitly convert to T*");
- }
- inline void operator()(T* ptr) const {
- enum { type_must_be_complete = sizeof(T) };
- delete ptr;
- }
-};
-
-// Specialization of DefaultDeleter for array types.
-template <class T>
-struct DefaultDeleter<T[]> {
- inline void operator()(T* ptr) const {
- enum { type_must_be_complete = sizeof(T) };
- delete[] ptr;
- }
-
- private:
- // Disable this operator for any U != T because it is undefined to execute
- // an array delete when the static type of the array mismatches the dynamic
- // type.
- //
- // References:
- // C++98 [expr.delete]p3
- // http://cplusplus.github.com/LWG/lwg-defects.html#938
- template <typename U> void operator()(U* array) const;
-};
-
-template <class T, int n>
-struct DefaultDeleter<T[n]> {
- // Never allow someone to declare something like scoped_ptr<int[10]>.
- static_assert(sizeof(T) == -1, "do not use array with size as type");
-};
-
-// Function object which invokes 'free' on its parameter, which must be
-// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
-//
-// scoped_ptr<int, rtc::FreeDeleter> foo_ptr(
-// static_cast<int*>(malloc(sizeof(int))));
-struct FreeDeleter {
- inline void operator()(void* ptr) const {
- free(ptr);
- }
-};
-
-namespace internal {
-
-template <typename T>
-struct ShouldAbortOnSelfReset {
- template <typename U>
- static rtc::internal::NoType Test(const typename U::AllowSelfReset*);
-
- template <typename U>
- static rtc::internal::YesType Test(...);
-
- static const bool value =
- sizeof(Test<T>(0)) == sizeof(rtc::internal::YesType);
-};
-
-// Minimal implementation of the core logic of scoped_ptr, suitable for
-// reuse in both scoped_ptr and its specializations.
-template <class T, class D>
-class scoped_ptr_impl {
- public:
- explicit scoped_ptr_impl(T* p) : data_(p) {}
-
- // Initializer for deleters that have data parameters.
- scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
-
- // Templated constructor that destructively takes the value from another
- // scoped_ptr_impl.
- template <typename U, typename V>
- scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
- : data_(other->release(), other->get_deleter()) {
- // We do not support move-only deleters. We could modify our move
- // emulation to have rtc::subtle::move() and rtc::subtle::forward()
- // functions that are imperfect emulations of their C++11 equivalents,
- // but until there's a requirement, just assume deleters are copyable.
- }
-
- template <typename U, typename V>
- void TakeState(scoped_ptr_impl<U, V>* other) {
- // See comment in templated constructor above regarding lack of support
- // for move-only deleters.
- reset(other->release());
- get_deleter() = other->get_deleter();
- }
-
- ~scoped_ptr_impl() {
- if (data_.ptr != nullptr) {
- // Not using get_deleter() saves one function call in non-optimized
- // builds.
- static_cast<D&>(data_)(data_.ptr);
- }
- }
-
- void reset(T* p) {
- // This is a self-reset, which is no longer allowed for default deleters:
- // https://crbug.com/162971
- assert(!ShouldAbortOnSelfReset<D>::value || p == nullptr || p != data_.ptr);
-
- // Note that running data_.ptr = p can lead to undefined behavior if
- // get_deleter()(get()) deletes this. In order to prevent this, reset()
- // should update the stored pointer before deleting its old value.
- //
- // However, changing reset() to use that behavior may cause current code to
- // break in unexpected ways. If the destruction of the owned object
- // dereferences the scoped_ptr when it is destroyed by a call to reset(),
- // then it will incorrectly dispatch calls to |p| rather than the original
- // value of |data_.ptr|.
- //
- // During the transition period, set the stored pointer to nullptr while
- // deleting the object. Eventually, this safety check will be removed to
- // prevent the scenario initially described from occurring and
- // http://crbug.com/176091 can be closed.
- T* old = data_.ptr;
- data_.ptr = nullptr;
- if (old != nullptr)
- static_cast<D&>(data_)(old);
- data_.ptr = p;
- }
-
- T* get() const { return data_.ptr; }
-
- D& get_deleter() { return data_; }
- const D& get_deleter() const { return data_; }
-
- void swap(scoped_ptr_impl& p2) {
- // Standard swap idiom: 'using std::swap' ensures that std::swap is
- // present in the overload set, but we call swap unqualified so that
- // any more-specific overloads can be used, if available.
- using std::swap;
- swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
- swap(data_.ptr, p2.data_.ptr);
- }
-
- T* release() {
- T* old_ptr = data_.ptr;
- data_.ptr = nullptr;
- return old_ptr;
- }
-
- T** accept() {
- reset(nullptr);
- return &(data_.ptr);
- }
-
- T** use() {
- return &(data_.ptr);
- }
-
- private:
- // Needed to allow type-converting constructor.
- template <typename U, typename V> friend class scoped_ptr_impl;
-
- // Use the empty base class optimization to allow us to have a D
- // member, while avoiding any space overhead for it when D is an
- // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
- // discussion of this technique.
- struct Data : public D {
- explicit Data(T* ptr_in) : ptr(ptr_in) {}
- Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
- T* ptr;
- };
-
- Data data_;
-
- RTC_DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
-};
-
-} // namespace internal
-
-// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
-// automatically deletes the pointer it holds (if any).
-// That is, scoped_ptr<T> owns the T object that it points to.
-// Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T
-// object. Also like T*, scoped_ptr<T> is thread-compatible, and once you
-// dereference it, you get the thread safety guarantees of T.
-//
-// The size of scoped_ptr is small. On most compilers, when using the
-// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
-// increase the size proportional to whatever state they need to have. See
-// comments inside scoped_ptr_impl<> for details.
-//
-// Current implementation targets having a strict subset of C++11's
-// unique_ptr<> features. Known deficiencies include not supporting move-only
-// deleters, function pointers as deleters, and deleters with reference
-// types.
-template <class T, class D = rtc::DefaultDeleter<T> >
-class scoped_ptr {
-
- // TODO(ajm): If we ever import RefCountedBase, this check needs to be
- // enabled.
- //static_assert(rtc::internal::IsNotRefCounted<T>::value,
- // "T is refcounted type and needs scoped refptr");
-
- public:
- // The element and deleter types.
- typedef T element_type;
- typedef D deleter_type;
-
- // Constructor. Defaults to initializing with nullptr.
- scoped_ptr() : impl_(nullptr) {}
-
- // Constructor. Takes ownership of p.
- explicit scoped_ptr(element_type* p) : impl_(p) {}
-
- // Constructor. Allows initialization of a stateful deleter.
- scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}
-
- // Constructor. Allows construction from a nullptr.
- scoped_ptr(decltype(nullptr)) : impl_(nullptr) {}
-
- // Constructor. Allows construction from a scoped_ptr rvalue for a
- // convertible type and deleter.
- //
- // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
- // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
- // has different post-conditions if D is a reference type. Since this
- // implementation does not support deleters with reference type,
- // we do not need a separate move constructor allowing us to avoid one
- // use of SFINAE. You only need to care about this if you modify the
- // implementation of scoped_ptr.
- template <typename U, typename V>
- scoped_ptr(scoped_ptr<U, V>&& other)
- : impl_(&other.impl_) {
- static_assert(!rtc::is_array<U>::value, "U cannot be an array");
- }
-
- // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
- // type and deleter.
- //
- // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
- // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
- // form has different requirements on for move-only Deleters. Since this
- // implementation does not support move-only Deleters, we do not need a
- // separate move assignment operator allowing us to avoid one use of SFINAE.
- // You only need to care about this if you modify the implementation of
- // scoped_ptr.
- template <typename U, typename V>
- scoped_ptr& operator=(scoped_ptr<U, V>&& rhs) {
- static_assert(!rtc::is_array<U>::value, "U cannot be an array");
- impl_.TakeState(&rhs.impl_);
- return *this;
- }
-
- // operator=. Allows assignment from a nullptr. Deletes the currently owned
- // object, if any.
- scoped_ptr& operator=(decltype(nullptr)) {
- reset();
- return *this;
- }
-
- // Deleted copy constructor and copy assignment, to make the type move-only.
- scoped_ptr(const scoped_ptr& other) = delete;
- scoped_ptr& operator=(const scoped_ptr& other) = delete;
-
- // Get an rvalue reference. (sp.Pass() does the same thing as std::move(sp).)
- scoped_ptr&& Pass() { return static_cast<scoped_ptr&&>(*this); }
-
- // Reset. Deletes the currently owned object, if any.
- // Then takes ownership of a new object, if given.
- void reset(element_type* p = nullptr) { impl_.reset(p); }
-
- // Accessors to get the owned object.
- // operator* and operator-> will assert() if there is no current object.
- element_type& operator*() const {
- assert(impl_.get() != nullptr);
- return *impl_.get();
- }
- element_type* operator->() const {
- assert(impl_.get() != nullptr);
- return impl_.get();
- }
- element_type* get() const { return impl_.get(); }
-
- // Access to the deleter.
- deleter_type& get_deleter() { return impl_.get_deleter(); }
- const deleter_type& get_deleter() const { return impl_.get_deleter(); }
-
- // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
- // implicitly convertible to a real bool (which is dangerous).
- //
- // Note that this trick is only safe when the == and != operators
- // are declared explicitly, as otherwise "scoped_ptr1 ==
- // scoped_ptr2" will compile but do the wrong thing (i.e., convert
- // to Testable and then do the comparison).
- private:
- typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type>
- scoped_ptr::*Testable;
-
- public:
- operator Testable() const {
- return impl_.get() ? &scoped_ptr::impl_ : nullptr;
- }
-
- // Comparison operators.
- // These return whether two scoped_ptr refer to the same object, not just to
- // two different but equal objects.
- bool operator==(const element_type* p) const { return impl_.get() == p; }
- bool operator!=(const element_type* p) const { return impl_.get() != p; }
-
- // Swap two scoped pointers.
- void swap(scoped_ptr& p2) {
- impl_.swap(p2.impl_);
- }
-
- // Release a pointer.
- // The return value is the current pointer held by this object. If this object
- // holds a nullptr, the return value is nullptr. After this operation, this
- // object will hold a nullptr, and will not own the object any more.
- element_type* release() WARN_UNUSED_RESULT {
- return impl_.release();
- }
-
- // Delete the currently held pointer and return a pointer
- // to allow overwriting of the current pointer address.
- element_type** accept() WARN_UNUSED_RESULT {
- return impl_.accept();
- }
-
- // Return a pointer to the current pointer address.
- element_type** use() WARN_UNUSED_RESULT {
- return impl_.use();
- }
-
- private:
- // Needed to reach into |impl_| in the constructor.
- template <typename U, typename V> friend class scoped_ptr;
- rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
-
- // Forbidden for API compatibility with std::unique_ptr.
- explicit scoped_ptr(int disallow_construction_from_null);
-
- // Forbid comparison of scoped_ptr types. If U != T, it totally
- // doesn't make sense, and if U == T, it still doesn't make sense
- // because you should never have the same object owned by two different
- // scoped_ptrs.
- template <class U> bool operator==(scoped_ptr<U> const& p2) const;
- template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
-};
-
-template <class T, class D>
-class scoped_ptr<T[], D> {
- public:
- // The element and deleter types.
- typedef T element_type;
- typedef D deleter_type;
-
- // Constructor. Defaults to initializing with nullptr.
- scoped_ptr() : impl_(nullptr) {}
-
- // Constructor. Stores the given array. Note that the argument's type
- // must exactly match T*. In particular:
- // - it cannot be a pointer to a type derived from T, because it is
- // inherently unsafe in the general case to access an array through a
- // pointer whose dynamic type does not match its static type (eg., if
- // T and the derived types had different sizes access would be
- // incorrectly calculated). Deletion is also always undefined
- // (C++98 [expr.delete]p3). If you're doing this, fix your code.
- // - it cannot be const-qualified differently from T per unique_ptr spec
- // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
- // to work around this may use implicit_cast<const T*>().
- // However, because of the first bullet in this comment, users MUST
- // NOT use implicit_cast<Base*>() to upcast the static type of the array.
- explicit scoped_ptr(element_type* array) : impl_(array) {}
-
- // Constructor. Allows construction from a nullptr.
- scoped_ptr(decltype(nullptr)) : impl_(nullptr) {}
-
- // Constructor. Allows construction from a scoped_ptr rvalue.
- scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
-
- // operator=. Allows assignment from a scoped_ptr rvalue.
- scoped_ptr& operator=(scoped_ptr&& rhs) {
- impl_.TakeState(&rhs.impl_);
- return *this;
- }
-
- // operator=. Allows assignment from a nullptr. Deletes the currently owned
- // array, if any.
- scoped_ptr& operator=(decltype(nullptr)) {
- reset();
- return *this;
- }
-
- // Deleted copy constructor and copy assignment, to make the type move-only.
- scoped_ptr(const scoped_ptr& other) = delete;
- scoped_ptr& operator=(const scoped_ptr& other) = delete;
-
- // Get an rvalue reference. (sp.Pass() does the same thing as std::move(sp).)
- scoped_ptr&& Pass() { return static_cast<scoped_ptr&&>(*this); }
-
- // Reset. Deletes the currently owned array, if any.
- // Then takes ownership of a new object, if given.
- void reset(element_type* array = nullptr) { impl_.reset(array); }
-
- // Accessors to get the owned array.
- element_type& operator[](size_t i) const {
- assert(impl_.get() != nullptr);
- return impl_.get()[i];
- }
- element_type* get() const { return impl_.get(); }
-
- // Access to the deleter.
- deleter_type& get_deleter() { return impl_.get_deleter(); }
- const deleter_type& get_deleter() const { return impl_.get_deleter(); }
-
- // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
- // implicitly convertible to a real bool (which is dangerous).
- private:
- typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type>
- scoped_ptr::*Testable;
-
- public:
- operator Testable() const {
- return impl_.get() ? &scoped_ptr::impl_ : nullptr;
- }
-
- // Comparison operators.
- // These return whether two scoped_ptr refer to the same object, not just to
- // two different but equal objects.
- bool operator==(element_type* array) const { return impl_.get() == array; }
- bool operator!=(element_type* array) const { return impl_.get() != array; }
-
- // Swap two scoped pointers.
- void swap(scoped_ptr& p2) {
- impl_.swap(p2.impl_);
- }
-
- // Release a pointer.
- // The return value is the current pointer held by this object. If this object
- // holds a nullptr, the return value is nullptr. After this operation, this
- // object will hold a nullptr, and will not own the object any more.
- element_type* release() WARN_UNUSED_RESULT {
- return impl_.release();
- }
-
- // Delete the currently held pointer and return a pointer
- // to allow overwriting of the current pointer address.
- element_type** accept() WARN_UNUSED_RESULT {
- return impl_.accept();
- }
-
- // Return a pointer to the current pointer address.
- element_type** use() WARN_UNUSED_RESULT {
- return impl_.use();
- }
-
- private:
- // Force element_type to be a complete type.
- enum { type_must_be_complete = sizeof(element_type) };
-
- // Actually hold the data.
- rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
-
- // Disable initialization from any type other than element_type*, by
- // providing a constructor that matches such an initialization, but is
- // private and has no definition. This is disabled because it is not safe to
- // call delete[] on an array whose static type does not match its dynamic
- // type.
- template <typename U> explicit scoped_ptr(U* array);
- explicit scoped_ptr(int disallow_construction_from_null);
-
- // Disable reset() from any type other than element_type*, for the same
- // reasons as the constructor above.
- template <typename U> void reset(U* array);
- void reset(int disallow_reset_from_null);
-
- // Forbid comparison of scoped_ptr types. If U != T, it totally
- // doesn't make sense, and if U == T, it still doesn't make sense
- // because you should never have the same object owned by two different
- // scoped_ptrs.
- template <class U> bool operator==(scoped_ptr<U> const& p2) const;
- template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
-};
-
-template <class T, class D>
-void swap(rtc::scoped_ptr<T, D>& p1, rtc::scoped_ptr<T, D>& p2) {
- p1.swap(p2);
-}
-
-} // namespace rtc
-
-template <class T, class D>
-bool operator==(T* p1, const rtc::scoped_ptr<T, D>& p2) {
- return p1 == p2.get();
-}
-
-template <class T, class D>
-bool operator!=(T* p1, const rtc::scoped_ptr<T, D>& p2) {
- return p1 != p2.get();
-}
-
-// A function to convert T* into scoped_ptr<T>
-// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
-// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
-template <typename T>
-rtc::scoped_ptr<T> rtc_make_scoped_ptr(T* ptr) {
- return rtc::scoped_ptr<T>(ptr);
-}
-
-#endif // #ifndef WEBRTC_BASE_SCOPED_PTR_H__