summaryrefslogtreecommitdiff
path: root/webrtc/modules/audio_processing/aec3/reverb_decay_estimator.cc
diff options
context:
space:
mode:
Diffstat (limited to 'webrtc/modules/audio_processing/aec3/reverb_decay_estimator.cc')
-rw-r--r--webrtc/modules/audio_processing/aec3/reverb_decay_estimator.cc409
1 files changed, 409 insertions, 0 deletions
diff --git a/webrtc/modules/audio_processing/aec3/reverb_decay_estimator.cc b/webrtc/modules/audio_processing/aec3/reverb_decay_estimator.cc
new file mode 100644
index 0000000..f160b83
--- /dev/null
+++ b/webrtc/modules/audio_processing/aec3/reverb_decay_estimator.cc
@@ -0,0 +1,409 @@
+/*
+ * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "modules/audio_processing/aec3/reverb_decay_estimator.h"
+
+#include <stddef.h>
+
+#include <algorithm>
+#include <cmath>
+#include <numeric>
+
+#include "api/array_view.h"
+#include "api/audio/echo_canceller3_config.h"
+#include "modules/audio_processing/logging/apm_data_dumper.h"
+#include "rtc_base/checks.h"
+
+namespace webrtc {
+
+namespace {
+
+constexpr int kEarlyReverbMinSizeBlocks = 3;
+constexpr int kBlocksPerSection = 6;
+// Linear regression approach assumes symmetric index around 0.
+constexpr float kEarlyReverbFirstPointAtLinearRegressors =
+ -0.5f * kBlocksPerSection * kFftLengthBy2 + 0.5f;
+
+// Averages the values in a block of size kFftLengthBy2;
+float BlockAverage(rtc::ArrayView<const float> v, size_t block_index) {
+ constexpr float kOneByFftLengthBy2 = 1.f / kFftLengthBy2;
+ const int i = block_index * kFftLengthBy2;
+ RTC_DCHECK_GE(v.size(), i + kFftLengthBy2);
+ const float sum =
+ std::accumulate(v.begin() + i, v.begin() + i + kFftLengthBy2, 0.f);
+ return sum * kOneByFftLengthBy2;
+}
+
+// Analyzes the gain in a block.
+void AnalyzeBlockGain(const std::array<float, kFftLengthBy2>& h2,
+ float floor_gain,
+ float* previous_gain,
+ bool* block_adapting,
+ bool* decaying_gain) {
+ float gain = std::max(BlockAverage(h2, 0), 1e-32f);
+ *block_adapting =
+ *previous_gain > 1.1f * gain || *previous_gain < 0.9f * gain;
+ *decaying_gain = gain > floor_gain;
+ *previous_gain = gain;
+}
+
+// Arithmetic sum of $2 \sum_{i=0.5}^{(N-1)/2}i^2$ calculated directly.
+constexpr float SymmetricArithmetricSum(int N) {
+ return N * (N * N - 1.0f) * (1.f / 12.f);
+}
+
+// Returns the peak energy of an impulse response.
+float BlockEnergyPeak(rtc::ArrayView<const float> h, int peak_block) {
+ RTC_DCHECK_LE((peak_block + 1) * kFftLengthBy2, h.size());
+ RTC_DCHECK_GE(peak_block, 0);
+ float peak_value =
+ *std::max_element(h.begin() + peak_block * kFftLengthBy2,
+ h.begin() + (peak_block + 1) * kFftLengthBy2,
+ [](float a, float b) { return a * a < b * b; });
+ return peak_value * peak_value;
+}
+
+// Returns the average energy of an impulse response block.
+float BlockEnergyAverage(rtc::ArrayView<const float> h, int block_index) {
+ RTC_DCHECK_LE((block_index + 1) * kFftLengthBy2, h.size());
+ RTC_DCHECK_GE(block_index, 0);
+ constexpr float kOneByFftLengthBy2 = 1.f / kFftLengthBy2;
+ const auto sum_of_squares = [](float a, float b) { return a + b * b; };
+ return std::accumulate(h.begin() + block_index * kFftLengthBy2,
+ h.begin() + (block_index + 1) * kFftLengthBy2, 0.f,
+ sum_of_squares) *
+ kOneByFftLengthBy2;
+}
+
+} // namespace
+
+ReverbDecayEstimator::ReverbDecayEstimator(const EchoCanceller3Config& config)
+ : filter_length_blocks_(config.filter.refined.length_blocks),
+ filter_length_coefficients_(GetTimeDomainLength(filter_length_blocks_)),
+ use_adaptive_echo_decay_(config.ep_strength.default_len < 0.f),
+ early_reverb_estimator_(config.filter.refined.length_blocks -
+ kEarlyReverbMinSizeBlocks),
+ late_reverb_start_(kEarlyReverbMinSizeBlocks),
+ late_reverb_end_(kEarlyReverbMinSizeBlocks),
+ previous_gains_(config.filter.refined.length_blocks, 0.f),
+ decay_(std::fabs(config.ep_strength.default_len)) {
+ RTC_DCHECK_GT(config.filter.refined.length_blocks,
+ static_cast<size_t>(kEarlyReverbMinSizeBlocks));
+}
+
+ReverbDecayEstimator::~ReverbDecayEstimator() = default;
+
+void ReverbDecayEstimator::Update(rtc::ArrayView<const float> filter,
+ const absl::optional<float>& filter_quality,
+ int filter_delay_blocks,
+ bool usable_linear_filter,
+ bool stationary_signal) {
+ const int filter_size = static_cast<int>(filter.size());
+
+ if (stationary_signal) {
+ return;
+ }
+
+ bool estimation_feasible =
+ filter_delay_blocks <=
+ filter_length_blocks_ - kEarlyReverbMinSizeBlocks - 1;
+ estimation_feasible =
+ estimation_feasible && filter_size == filter_length_coefficients_;
+ estimation_feasible = estimation_feasible && filter_delay_blocks > 0;
+ estimation_feasible = estimation_feasible && usable_linear_filter;
+
+ if (!estimation_feasible) {
+ ResetDecayEstimation();
+ return;
+ }
+
+ if (!use_adaptive_echo_decay_) {
+ return;
+ }
+
+ const float new_smoothing = filter_quality ? *filter_quality * 0.2f : 0.f;
+ smoothing_constant_ = std::max(new_smoothing, smoothing_constant_);
+ if (smoothing_constant_ == 0.f) {
+ return;
+ }
+
+ if (block_to_analyze_ < filter_length_blocks_) {
+ // Analyze the filter and accumulate data for reverb estimation.
+ AnalyzeFilter(filter);
+ ++block_to_analyze_;
+ } else {
+ // When the filter is fully analyzed, estimate the reverb decay and reset
+ // the block_to_analyze_ counter.
+ EstimateDecay(filter, filter_delay_blocks);
+ }
+}
+
+void ReverbDecayEstimator::ResetDecayEstimation() {
+ early_reverb_estimator_.Reset();
+ late_reverb_decay_estimator_.Reset(0);
+ block_to_analyze_ = 0;
+ estimation_region_candidate_size_ = 0;
+ estimation_region_identified_ = false;
+ smoothing_constant_ = 0.f;
+ late_reverb_start_ = 0;
+ late_reverb_end_ = 0;
+}
+
+void ReverbDecayEstimator::EstimateDecay(rtc::ArrayView<const float> filter,
+ int peak_block) {
+ auto& h = filter;
+ RTC_DCHECK_EQ(0, h.size() % kFftLengthBy2);
+
+ // Reset the block analysis counter.
+ block_to_analyze_ =
+ std::min(peak_block + kEarlyReverbMinSizeBlocks, filter_length_blocks_);
+
+ // To estimate the reverb decay, the energy of the first filter section must
+ // be substantially larger than the last. Also, the first filter section
+ // energy must not deviate too much from the max peak.
+ const float first_reverb_gain = BlockEnergyAverage(h, block_to_analyze_);
+ const size_t h_size_blocks = h.size() >> kFftLengthBy2Log2;
+ tail_gain_ = BlockEnergyAverage(h, h_size_blocks - 1);
+ float peak_energy = BlockEnergyPeak(h, peak_block);
+ const bool sufficient_reverb_decay = first_reverb_gain > 4.f * tail_gain_;
+ const bool valid_filter =
+ first_reverb_gain > 2.f * tail_gain_ && peak_energy < 100.f;
+
+ // Estimate the size of the regions with early and late reflections.
+ const int size_early_reverb = early_reverb_estimator_.Estimate();
+ const int size_late_reverb =
+ std::max(estimation_region_candidate_size_ - size_early_reverb, 0);
+
+ // Only update the reverb decay estimate if the size of the identified late
+ // reverb is sufficiently large.
+ if (size_late_reverb >= 5) {
+ if (valid_filter && late_reverb_decay_estimator_.EstimateAvailable()) {
+ float decay = std::pow(
+ 2.0f, late_reverb_decay_estimator_.Estimate() * kFftLengthBy2);
+ constexpr float kMaxDecay = 0.95f; // ~1 sec min RT60.
+ constexpr float kMinDecay = 0.02f; // ~15 ms max RT60.
+ decay = std::max(.97f * decay_, decay);
+ decay = std::min(decay, kMaxDecay);
+ decay = std::max(decay, kMinDecay);
+ decay_ += smoothing_constant_ * (decay - decay_);
+ }
+
+ // Update length of decay. Must have enough data (number of sections) in
+ // order to estimate decay rate.
+ late_reverb_decay_estimator_.Reset(size_late_reverb * kFftLengthBy2);
+ late_reverb_start_ =
+ peak_block + kEarlyReverbMinSizeBlocks + size_early_reverb;
+ late_reverb_end_ =
+ block_to_analyze_ + estimation_region_candidate_size_ - 1;
+ } else {
+ late_reverb_decay_estimator_.Reset(0);
+ late_reverb_start_ = 0;
+ late_reverb_end_ = 0;
+ }
+
+ // Reset variables for the identification of the region for reverb decay
+ // estimation.
+ estimation_region_identified_ = !(valid_filter && sufficient_reverb_decay);
+ estimation_region_candidate_size_ = 0;
+
+ // Stop estimation of the decay until another good filter is received.
+ smoothing_constant_ = 0.f;
+
+ // Reset early reflections detector.
+ early_reverb_estimator_.Reset();
+}
+
+void ReverbDecayEstimator::AnalyzeFilter(rtc::ArrayView<const float> filter) {
+ auto h = rtc::ArrayView<const float>(
+ filter.begin() + block_to_analyze_ * kFftLengthBy2, kFftLengthBy2);
+
+ // Compute squared filter coeffiecients for the block to analyze_;
+ std::array<float, kFftLengthBy2> h2;
+ std::transform(h.begin(), h.end(), h2.begin(), [](float a) { return a * a; });
+
+ // Map out the region for estimating the reverb decay.
+ bool adapting;
+ bool above_noise_floor;
+ AnalyzeBlockGain(h2, tail_gain_, &previous_gains_[block_to_analyze_],
+ &adapting, &above_noise_floor);
+
+ // Count consecutive number of "good" filter sections, where "good" means:
+ // 1) energy is above noise floor.
+ // 2) energy of current section has not changed too much from last check.
+ estimation_region_identified_ =
+ estimation_region_identified_ || adapting || !above_noise_floor;
+ if (!estimation_region_identified_) {
+ ++estimation_region_candidate_size_;
+ }
+
+ // Accumulate data for reverb decay estimation and for the estimation of early
+ // reflections.
+ if (block_to_analyze_ <= late_reverb_end_) {
+ if (block_to_analyze_ >= late_reverb_start_) {
+ for (float h2_k : h2) {
+ float h2_log2 = FastApproxLog2f(h2_k + 1e-10);
+ late_reverb_decay_estimator_.Accumulate(h2_log2);
+ early_reverb_estimator_.Accumulate(h2_log2, smoothing_constant_);
+ }
+ } else {
+ for (float h2_k : h2) {
+ float h2_log2 = FastApproxLog2f(h2_k + 1e-10);
+ early_reverb_estimator_.Accumulate(h2_log2, smoothing_constant_);
+ }
+ }
+ }
+}
+
+void ReverbDecayEstimator::Dump(ApmDataDumper* data_dumper) const {
+ data_dumper->DumpRaw("aec3_reverb_decay", decay_);
+ data_dumper->DumpRaw("aec3_reverb_tail_energy", tail_gain_);
+ data_dumper->DumpRaw("aec3_reverb_alpha", smoothing_constant_);
+ data_dumper->DumpRaw("aec3_num_reverb_decay_blocks",
+ late_reverb_end_ - late_reverb_start_);
+ data_dumper->DumpRaw("aec3_late_reverb_start", late_reverb_start_);
+ data_dumper->DumpRaw("aec3_late_reverb_end", late_reverb_end_);
+ early_reverb_estimator_.Dump(data_dumper);
+}
+
+void ReverbDecayEstimator::LateReverbLinearRegressor::Reset(
+ int num_data_points) {
+ RTC_DCHECK_LE(0, num_data_points);
+ RTC_DCHECK_EQ(0, num_data_points % 2);
+ const int N = num_data_points;
+ nz_ = 0.f;
+ // Arithmetic sum of $2 \sum_{i=0.5}^{(N-1)/2}i^2$ calculated directly.
+ nn_ = SymmetricArithmetricSum(N);
+ // The linear regression approach assumes symmetric index around 0.
+ count_ = N > 0 ? -N * 0.5f + 0.5f : 0.f;
+ N_ = N;
+ n_ = 0;
+}
+
+void ReverbDecayEstimator::LateReverbLinearRegressor::Accumulate(float z) {
+ nz_ += count_ * z;
+ ++count_;
+ ++n_;
+}
+
+float ReverbDecayEstimator::LateReverbLinearRegressor::Estimate() {
+ RTC_DCHECK(EstimateAvailable());
+ if (nn_ == 0.f) {
+ RTC_NOTREACHED();
+ return 0.f;
+ }
+ return nz_ / nn_;
+}
+
+ReverbDecayEstimator::EarlyReverbLengthEstimator::EarlyReverbLengthEstimator(
+ int max_blocks)
+ : numerators_smooth_(max_blocks - kBlocksPerSection, 0.f),
+ numerators_(numerators_smooth_.size(), 0.f),
+ coefficients_counter_(0) {
+ RTC_DCHECK_LE(0, max_blocks);
+}
+
+ReverbDecayEstimator::EarlyReverbLengthEstimator::
+ ~EarlyReverbLengthEstimator() = default;
+
+void ReverbDecayEstimator::EarlyReverbLengthEstimator::Reset() {
+ coefficients_counter_ = 0;
+ std::fill(numerators_.begin(), numerators_.end(), 0.f);
+ block_counter_ = 0;
+}
+
+void ReverbDecayEstimator::EarlyReverbLengthEstimator::Accumulate(
+ float value,
+ float smoothing) {
+ // Each section is composed by kBlocksPerSection blocks and each section
+ // overlaps with the next one in (kBlocksPerSection - 1) blocks. For example,
+ // the first section covers the blocks [0:5], the second covers the blocks
+ // [1:6] and so on. As a result, for each value, kBlocksPerSection sections
+ // need to be updated.
+ int first_section_index = std::max(block_counter_ - kBlocksPerSection + 1, 0);
+ int last_section_index =
+ std::min(block_counter_, static_cast<int>(numerators_.size() - 1));
+ float x_value = static_cast<float>(coefficients_counter_) +
+ kEarlyReverbFirstPointAtLinearRegressors;
+ const float value_to_inc = kFftLengthBy2 * value;
+ float value_to_add =
+ x_value * value + (block_counter_ - last_section_index) * value_to_inc;
+ for (int section = last_section_index; section >= first_section_index;
+ --section, value_to_add += value_to_inc) {
+ numerators_[section] += value_to_add;
+ }
+
+ // Check if this update was the last coefficient of the current block. In that
+ // case, check if we are at the end of one of the sections and update the
+ // numerator of the linear regressor that is computed in such section.
+ if (++coefficients_counter_ == kFftLengthBy2) {
+ if (block_counter_ >= (kBlocksPerSection - 1)) {
+ size_t section = block_counter_ - (kBlocksPerSection - 1);
+ RTC_DCHECK_GT(numerators_.size(), section);
+ RTC_DCHECK_GT(numerators_smooth_.size(), section);
+ numerators_smooth_[section] +=
+ smoothing * (numerators_[section] - numerators_smooth_[section]);
+ n_sections_ = section + 1;
+ }
+ ++block_counter_;
+ coefficients_counter_ = 0;
+ }
+}
+
+// Estimates the size in blocks of the early reverb. The estimation is done by
+// comparing the tilt that is estimated in each section. As an optimization
+// detail and due to the fact that all the linear regressors that are computed
+// shared the same denominator, the comparison of the tilts is done by a
+// comparison of the numerator of the linear regressors.
+int ReverbDecayEstimator::EarlyReverbLengthEstimator::Estimate() {
+ constexpr float N = kBlocksPerSection * kFftLengthBy2;
+ constexpr float nn = SymmetricArithmetricSum(N);
+ // numerator_11 refers to the quantity that the linear regressor needs in the
+ // numerator for getting a decay equal to 1.1 (which is not a decay).
+ // log2(1.1) * nn / kFftLengthBy2.
+ constexpr float numerator_11 = 0.13750352374993502f * nn / kFftLengthBy2;
+ // log2(0.8) * nn / kFftLengthBy2.
+ constexpr float numerator_08 = -0.32192809488736229f * nn / kFftLengthBy2;
+ constexpr int kNumSectionsToAnalyze = 9;
+
+ if (n_sections_ < kNumSectionsToAnalyze) {
+ return 0;
+ }
+
+ // Estimation of the blocks that correspond to early reverberations. The
+ // estimation is done by analyzing the impulse response. The portions of the
+ // impulse response whose energy is not decreasing over its coefficients are
+ // considered to be part of the early reverberations. Furthermore, the blocks
+ // where the energy is decreasing faster than what it does at the end of the
+ // impulse response are also considered to be part of the early
+ // reverberations. The estimation is limited to the first
+ // kNumSectionsToAnalyze sections.
+
+ RTC_DCHECK_LE(n_sections_, numerators_smooth_.size());
+ const float min_numerator_tail =
+ *std::min_element(numerators_smooth_.begin() + kNumSectionsToAnalyze,
+ numerators_smooth_.begin() + n_sections_);
+ int early_reverb_size_minus_1 = 0;
+ for (int k = 0; k < kNumSectionsToAnalyze; ++k) {
+ if ((numerators_smooth_[k] > numerator_11) ||
+ (numerators_smooth_[k] < numerator_08 &&
+ numerators_smooth_[k] < 0.9f * min_numerator_tail)) {
+ early_reverb_size_minus_1 = k;
+ }
+ }
+
+ return early_reverb_size_minus_1 == 0 ? 0 : early_reverb_size_minus_1 + 1;
+}
+
+void ReverbDecayEstimator::EarlyReverbLengthEstimator::Dump(
+ ApmDataDumper* data_dumper) const {
+ data_dumper->DumpRaw("aec3_er_acum_numerator", numerators_smooth_);
+}
+
+} // namespace webrtc