summaryrefslogtreecommitdiff
path: root/webrtc/modules/audio_processing/aecm/aecm_core_mips.cc
diff options
context:
space:
mode:
Diffstat (limited to 'webrtc/modules/audio_processing/aecm/aecm_core_mips.cc')
-rw-r--r--webrtc/modules/audio_processing/aecm/aecm_core_mips.cc1656
1 files changed, 1656 insertions, 0 deletions
diff --git a/webrtc/modules/audio_processing/aecm/aecm_core_mips.cc b/webrtc/modules/audio_processing/aecm/aecm_core_mips.cc
new file mode 100644
index 0000000..f2f43e1
--- /dev/null
+++ b/webrtc/modules/audio_processing/aecm/aecm_core_mips.cc
@@ -0,0 +1,1656 @@
+/*
+ * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "modules/audio_processing/aecm/aecm_core.h"
+#include "modules/audio_processing/aecm/echo_control_mobile.h"
+#include "modules/audio_processing/utility/delay_estimator_wrapper.h"
+#include "rtc_base/checks.h"
+#include "rtc_base/numerics/safe_conversions.h"
+
+namespace webrtc {
+
+namespace {
+
+static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = {
+ 0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172, 3562, 3951,
+ 4337, 4720, 5101, 5478, 5853, 6224, 6591, 6954, 7313, 7668, 8019,
+ 8364, 8705, 9040, 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
+ 11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553, 13773, 13985, 14189,
+ 14384, 14571, 14749, 14918, 15079, 15231, 15373, 15506, 15631, 15746, 15851,
+ 15947, 16034, 16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384};
+
+static const int16_t kNoiseEstQDomain = 15;
+static const int16_t kNoiseEstIncCount = 5;
+
+static int16_t coefTable[] = {
+ 0, 4, 256, 260, 128, 132, 384, 388, 64, 68, 320, 324, 192, 196, 448,
+ 452, 32, 36, 288, 292, 160, 164, 416, 420, 96, 100, 352, 356, 224, 228,
+ 480, 484, 16, 20, 272, 276, 144, 148, 400, 404, 80, 84, 336, 340, 208,
+ 212, 464, 468, 48, 52, 304, 308, 176, 180, 432, 436, 112, 116, 368, 372,
+ 240, 244, 496, 500, 8, 12, 264, 268, 136, 140, 392, 396, 72, 76, 328,
+ 332, 200, 204, 456, 460, 40, 44, 296, 300, 168, 172, 424, 428, 104, 108,
+ 360, 364, 232, 236, 488, 492, 24, 28, 280, 284, 152, 156, 408, 412, 88,
+ 92, 344, 348, 216, 220, 472, 476, 56, 60, 312, 316, 184, 188, 440, 444,
+ 120, 124, 376, 380, 248, 252, 504, 508};
+
+static int16_t coefTable_ifft[] = {
+ 0, 512, 256, 508, 128, 252, 384, 380, 64, 124, 320, 444, 192, 188, 448,
+ 316, 32, 60, 288, 476, 160, 220, 416, 348, 96, 92, 352, 412, 224, 156,
+ 480, 284, 16, 28, 272, 492, 144, 236, 400, 364, 80, 108, 336, 428, 208,
+ 172, 464, 300, 48, 44, 304, 460, 176, 204, 432, 332, 112, 76, 368, 396,
+ 240, 140, 496, 268, 8, 12, 264, 500, 136, 244, 392, 372, 72, 116, 328,
+ 436, 200, 180, 456, 308, 40, 52, 296, 468, 168, 212, 424, 340, 104, 84,
+ 360, 404, 232, 148, 488, 276, 24, 20, 280, 484, 152, 228, 408, 356, 88,
+ 100, 344, 420, 216, 164, 472, 292, 56, 36, 312, 452, 184, 196, 440, 324,
+ 120, 68, 376, 388, 248, 132, 504, 260};
+
+} // namespace
+
+static void ComfortNoise(AecmCore* aecm,
+ const uint16_t* dfa,
+ ComplexInt16* out,
+ const int16_t* lambda);
+
+static void WindowAndFFT(AecmCore* aecm,
+ int16_t* fft,
+ const int16_t* time_signal,
+ ComplexInt16* freq_signal,
+ int time_signal_scaling) {
+ int i, j;
+ int32_t tmp1, tmp2, tmp3, tmp4;
+ int16_t* pfrfi;
+ ComplexInt16* pfreq_signal;
+ int16_t f_coef, s_coef;
+ int32_t load_ptr, store_ptr1, store_ptr2, shift, shift1;
+ int32_t hann, hann1, coefs;
+
+ memset(fft, 0, sizeof(int16_t) * PART_LEN4);
+
+ // FFT of signal
+ __asm __volatile(
+ ".set push \n\t"
+ ".set noreorder \n\t"
+ "addiu %[shift], %[time_signal_scaling], -14 \n\t"
+ "addiu %[i], $zero, 64 \n\t"
+ "addiu %[load_ptr], %[time_signal], 0 \n\t"
+ "addiu %[hann], %[hanning], 0 \n\t"
+ "addiu %[hann1], %[hanning], 128 \n\t"
+ "addiu %[coefs], %[coefTable], 0 \n\t"
+ "bltz %[shift], 2f \n\t"
+ " negu %[shift1], %[shift] \n\t"
+ "1: "
+ "\n\t"
+ "lh %[tmp1], 0(%[load_ptr]) \n\t"
+ "lh %[tmp2], 0(%[hann]) \n\t"
+ "lh %[tmp3], 128(%[load_ptr]) \n\t"
+ "lh %[tmp4], 0(%[hann1]) \n\t"
+ "addiu %[i], %[i], -1 \n\t"
+ "mul %[tmp1], %[tmp1], %[tmp2] \n\t"
+ "mul %[tmp3], %[tmp3], %[tmp4] \n\t"
+ "lh %[f_coef], 0(%[coefs]) \n\t"
+ "lh %[s_coef], 2(%[coefs]) \n\t"
+ "addiu %[load_ptr], %[load_ptr], 2 \n\t"
+ "addiu %[hann], %[hann], 2 \n\t"
+ "addiu %[hann1], %[hann1], -2 \n\t"
+ "addu %[store_ptr1], %[fft], %[f_coef] \n\t"
+ "addu %[store_ptr2], %[fft], %[s_coef] \n\t"
+ "sllv %[tmp1], %[tmp1], %[shift] \n\t"
+ "sllv %[tmp3], %[tmp3], %[shift] \n\t"
+ "sh %[tmp1], 0(%[store_ptr1]) \n\t"
+ "sh %[tmp3], 0(%[store_ptr2]) \n\t"
+ "bgtz %[i], 1b \n\t"
+ " addiu %[coefs], %[coefs], 4 \n\t"
+ "b 3f \n\t"
+ " nop \n\t"
+ "2: "
+ "\n\t"
+ "lh %[tmp1], 0(%[load_ptr]) \n\t"
+ "lh %[tmp2], 0(%[hann]) \n\t"
+ "lh %[tmp3], 128(%[load_ptr]) \n\t"
+ "lh %[tmp4], 0(%[hann1]) \n\t"
+ "addiu %[i], %[i], -1 \n\t"
+ "mul %[tmp1], %[tmp1], %[tmp2] \n\t"
+ "mul %[tmp3], %[tmp3], %[tmp4] \n\t"
+ "lh %[f_coef], 0(%[coefs]) \n\t"
+ "lh %[s_coef], 2(%[coefs]) \n\t"
+ "addiu %[load_ptr], %[load_ptr], 2 \n\t"
+ "addiu %[hann], %[hann], 2 \n\t"
+ "addiu %[hann1], %[hann1], -2 \n\t"
+ "addu %[store_ptr1], %[fft], %[f_coef] \n\t"
+ "addu %[store_ptr2], %[fft], %[s_coef] \n\t"
+ "srav %[tmp1], %[tmp1], %[shift1] \n\t"
+ "srav %[tmp3], %[tmp3], %[shift1] \n\t"
+ "sh %[tmp1], 0(%[store_ptr1]) \n\t"
+ "sh %[tmp3], 0(%[store_ptr2]) \n\t"
+ "bgtz %[i], 2b \n\t"
+ " addiu %[coefs], %[coefs], 4 \n\t"
+ "3: "
+ "\n\t"
+ ".set pop \n\t"
+ : [load_ptr] "=&r"(load_ptr), [shift] "=&r"(shift), [hann] "=&r"(hann),
+ [hann1] "=&r"(hann1), [shift1] "=&r"(shift1), [coefs] "=&r"(coefs),
+ [tmp1] "=&r"(tmp1), [tmp2] "=&r"(tmp2), [tmp3] "=&r"(tmp3),
+ [tmp4] "=&r"(tmp4), [i] "=&r"(i), [f_coef] "=&r"(f_coef),
+ [s_coef] "=&r"(s_coef), [store_ptr1] "=&r"(store_ptr1),
+ [store_ptr2] "=&r"(store_ptr2)
+ : [time_signal] "r"(time_signal), [coefTable] "r"(coefTable),
+ [time_signal_scaling] "r"(time_signal_scaling),
+ [hanning] "r"(WebRtcAecm_kSqrtHanning), [fft] "r"(fft)
+ : "memory", "hi", "lo");
+
+ WebRtcSpl_ComplexFFT(fft, PART_LEN_SHIFT, 1);
+ pfrfi = fft;
+ pfreq_signal = freq_signal;
+
+ __asm __volatile(
+ ".set push "
+ "\n\t"
+ ".set noreorder "
+ "\n\t"
+ "addiu %[j], $zero, 128 "
+ "\n\t"
+ "1: "
+ "\n\t"
+ "lh %[tmp1], 0(%[pfrfi]) "
+ "\n\t"
+ "lh %[tmp2], 2(%[pfrfi]) "
+ "\n\t"
+ "lh %[tmp3], 4(%[pfrfi]) "
+ "\n\t"
+ "lh %[tmp4], 6(%[pfrfi]) "
+ "\n\t"
+ "subu %[tmp2], $zero, %[tmp2] "
+ "\n\t"
+ "sh %[tmp1], 0(%[pfreq_signal]) "
+ "\n\t"
+ "sh %[tmp2], 2(%[pfreq_signal]) "
+ "\n\t"
+ "subu %[tmp4], $zero, %[tmp4] "
+ "\n\t"
+ "sh %[tmp3], 4(%[pfreq_signal]) "
+ "\n\t"
+ "sh %[tmp4], 6(%[pfreq_signal]) "
+ "\n\t"
+ "lh %[tmp1], 8(%[pfrfi]) "
+ "\n\t"
+ "lh %[tmp2], 10(%[pfrfi]) "
+ "\n\t"
+ "lh %[tmp3], 12(%[pfrfi]) "
+ "\n\t"
+ "lh %[tmp4], 14(%[pfrfi]) "
+ "\n\t"
+ "addiu %[j], %[j], -8 "
+ "\n\t"
+ "subu %[tmp2], $zero, %[tmp2] "
+ "\n\t"
+ "sh %[tmp1], 8(%[pfreq_signal]) "
+ "\n\t"
+ "sh %[tmp2], 10(%[pfreq_signal]) "
+ "\n\t"
+ "subu %[tmp4], $zero, %[tmp4] "
+ "\n\t"
+ "sh %[tmp3], 12(%[pfreq_signal]) "
+ "\n\t"
+ "sh %[tmp4], 14(%[pfreq_signal]) "
+ "\n\t"
+ "addiu %[pfreq_signal], %[pfreq_signal], 16 "
+ "\n\t"
+ "bgtz %[j], 1b "
+ "\n\t"
+ " addiu %[pfrfi], %[pfrfi], 16 "
+ "\n\t"
+ ".set pop "
+ "\n\t"
+ : [tmp1] "=&r"(tmp1), [tmp2] "=&r"(tmp2), [tmp3] "=&r"(tmp3),
+ [j] "=&r"(j), [pfrfi] "+r"(pfrfi), [pfreq_signal] "+r"(pfreq_signal),
+ [tmp4] "=&r"(tmp4)
+ :
+ : "memory");
+}
+
+static void InverseFFTAndWindow(AecmCore* aecm,
+ int16_t* fft,
+ ComplexInt16* efw,
+ int16_t* output,
+ const int16_t* nearendClean) {
+ int i, outCFFT;
+ int32_t tmp1, tmp2, tmp3, tmp4, tmp_re, tmp_im;
+ int16_t* pcoefTable_ifft = coefTable_ifft;
+ int16_t* pfft = fft;
+ int16_t* ppfft = fft;
+ ComplexInt16* pefw = efw;
+ int32_t out_aecm;
+ int16_t* paecm_buf = aecm->outBuf;
+ const int16_t* p_kSqrtHanning = WebRtcAecm_kSqrtHanning;
+ const int16_t* pp_kSqrtHanning = &WebRtcAecm_kSqrtHanning[PART_LEN];
+ int16_t* output1 = output;
+
+ __asm __volatile(
+ ".set push "
+ "\n\t"
+ ".set noreorder "
+ "\n\t"
+ "addiu %[i], $zero, 64 "
+ "\n\t"
+ "1: "
+ "\n\t"
+ "lh %[tmp1], 0(%[pcoefTable_ifft]) "
+ "\n\t"
+ "lh %[tmp2], 2(%[pcoefTable_ifft]) "
+ "\n\t"
+ "lh %[tmp_re], 0(%[pefw]) "
+ "\n\t"
+ "lh %[tmp_im], 2(%[pefw]) "
+ "\n\t"
+ "addu %[pfft], %[fft], %[tmp2] "
+ "\n\t"
+ "sh %[tmp_re], 0(%[pfft]) "
+ "\n\t"
+ "sh %[tmp_im], 2(%[pfft]) "
+ "\n\t"
+ "addu %[pfft], %[fft], %[tmp1] "
+ "\n\t"
+ "sh %[tmp_re], 0(%[pfft]) "
+ "\n\t"
+ "subu %[tmp_im], $zero, %[tmp_im] "
+ "\n\t"
+ "sh %[tmp_im], 2(%[pfft]) "
+ "\n\t"
+ "lh %[tmp1], 4(%[pcoefTable_ifft]) "
+ "\n\t"
+ "lh %[tmp2], 6(%[pcoefTable_ifft]) "
+ "\n\t"
+ "lh %[tmp_re], 4(%[pefw]) "
+ "\n\t"
+ "lh %[tmp_im], 6(%[pefw]) "
+ "\n\t"
+ "addu %[pfft], %[fft], %[tmp2] "
+ "\n\t"
+ "sh %[tmp_re], 0(%[pfft]) "
+ "\n\t"
+ "sh %[tmp_im], 2(%[pfft]) "
+ "\n\t"
+ "addu %[pfft], %[fft], %[tmp1] "
+ "\n\t"
+ "sh %[tmp_re], 0(%[pfft]) "
+ "\n\t"
+ "subu %[tmp_im], $zero, %[tmp_im] "
+ "\n\t"
+ "sh %[tmp_im], 2(%[pfft]) "
+ "\n\t"
+ "lh %[tmp1], 8(%[pcoefTable_ifft]) "
+ "\n\t"
+ "lh %[tmp2], 10(%[pcoefTable_ifft]) "
+ "\n\t"
+ "lh %[tmp_re], 8(%[pefw]) "
+ "\n\t"
+ "lh %[tmp_im], 10(%[pefw]) "
+ "\n\t"
+ "addu %[pfft], %[fft], %[tmp2] "
+ "\n\t"
+ "sh %[tmp_re], 0(%[pfft]) "
+ "\n\t"
+ "sh %[tmp_im], 2(%[pfft]) "
+ "\n\t"
+ "addu %[pfft], %[fft], %[tmp1] "
+ "\n\t"
+ "sh %[tmp_re], 0(%[pfft]) "
+ "\n\t"
+ "subu %[tmp_im], $zero, %[tmp_im] "
+ "\n\t"
+ "sh %[tmp_im], 2(%[pfft]) "
+ "\n\t"
+ "lh %[tmp1], 12(%[pcoefTable_ifft]) "
+ "\n\t"
+ "lh %[tmp2], 14(%[pcoefTable_ifft]) "
+ "\n\t"
+ "lh %[tmp_re], 12(%[pefw]) "
+ "\n\t"
+ "lh %[tmp_im], 14(%[pefw]) "
+ "\n\t"
+ "addu %[pfft], %[fft], %[tmp2] "
+ "\n\t"
+ "sh %[tmp_re], 0(%[pfft]) "
+ "\n\t"
+ "sh %[tmp_im], 2(%[pfft]) "
+ "\n\t"
+ "addu %[pfft], %[fft], %[tmp1] "
+ "\n\t"
+ "sh %[tmp_re], 0(%[pfft]) "
+ "\n\t"
+ "subu %[tmp_im], $zero, %[tmp_im] "
+ "\n\t"
+ "sh %[tmp_im], 2(%[pfft]) "
+ "\n\t"
+ "addiu %[pcoefTable_ifft], %[pcoefTable_ifft], 16 "
+ "\n\t"
+ "addiu %[i], %[i], -4 "
+ "\n\t"
+ "bgtz %[i], 1b "
+ "\n\t"
+ " addiu %[pefw], %[pefw], 16 "
+ "\n\t"
+ ".set pop "
+ "\n\t"
+ : [tmp1] "=&r"(tmp1), [tmp2] "=&r"(tmp2), [pfft] "+r"(pfft), [i] "=&r"(i),
+ [tmp_re] "=&r"(tmp_re), [tmp_im] "=&r"(tmp_im), [pefw] "+r"(pefw),
+ [pcoefTable_ifft] "+r"(pcoefTable_ifft), [fft] "+r"(fft)
+ :
+ : "memory");
+
+ fft[2] = efw[PART_LEN].real;
+ fft[3] = -efw[PART_LEN].imag;
+
+ outCFFT = WebRtcSpl_ComplexIFFT(fft, PART_LEN_SHIFT, 1);
+ pfft = fft;
+
+ __asm __volatile(
+ ".set push \n\t"
+ ".set noreorder \n\t"
+ "addiu %[i], $zero, 128 \n\t"
+ "1: \n\t"
+ "lh %[tmp1], 0(%[ppfft]) \n\t"
+ "lh %[tmp2], 4(%[ppfft]) \n\t"
+ "lh %[tmp3], 8(%[ppfft]) \n\t"
+ "lh %[tmp4], 12(%[ppfft]) \n\t"
+ "addiu %[i], %[i], -4 \n\t"
+ "sh %[tmp1], 0(%[pfft]) \n\t"
+ "sh %[tmp2], 2(%[pfft]) \n\t"
+ "sh %[tmp3], 4(%[pfft]) \n\t"
+ "sh %[tmp4], 6(%[pfft]) \n\t"
+ "addiu %[ppfft], %[ppfft], 16 \n\t"
+ "bgtz %[i], 1b \n\t"
+ " addiu %[pfft], %[pfft], 8 \n\t"
+ ".set pop \n\t"
+ : [tmp1] "=&r"(tmp1), [tmp2] "=&r"(tmp2), [pfft] "+r"(pfft), [i] "=&r"(i),
+ [tmp3] "=&r"(tmp3), [tmp4] "=&r"(tmp4), [ppfft] "+r"(ppfft)
+ :
+ : "memory");
+
+ pfft = fft;
+ out_aecm = (int32_t)(outCFFT - aecm->dfaCleanQDomain);
+
+ __asm __volatile(
+ ".set push "
+ "\n\t"
+ ".set noreorder "
+ "\n\t"
+ "addiu %[i], $zero, 64 "
+ "\n\t"
+ "11: "
+ "\n\t"
+ "lh %[tmp1], 0(%[pfft]) "
+ "\n\t"
+ "lh %[tmp2], 0(%[p_kSqrtHanning]) "
+ "\n\t"
+ "addiu %[i], %[i], -2 "
+ "\n\t"
+ "mul %[tmp1], %[tmp1], %[tmp2] "
+ "\n\t"
+ "lh %[tmp3], 2(%[pfft]) "
+ "\n\t"
+ "lh %[tmp4], 2(%[p_kSqrtHanning]) "
+ "\n\t"
+ "mul %[tmp3], %[tmp3], %[tmp4] "
+ "\n\t"
+ "addiu %[tmp1], %[tmp1], 8192 "
+ "\n\t"
+ "sra %[tmp1], %[tmp1], 14 "
+ "\n\t"
+ "addiu %[tmp3], %[tmp3], 8192 "
+ "\n\t"
+ "sra %[tmp3], %[tmp3], 14 "
+ "\n\t"
+ "bgez %[out_aecm], 1f "
+ "\n\t"
+ " negu %[tmp2], %[out_aecm] "
+ "\n\t"
+ "srav %[tmp1], %[tmp1], %[tmp2] "
+ "\n\t"
+ "b 2f "
+ "\n\t"
+ " srav %[tmp3], %[tmp3], %[tmp2] "
+ "\n\t"
+ "1: "
+ "\n\t"
+ "sllv %[tmp1], %[tmp1], %[out_aecm] "
+ "\n\t"
+ "sllv %[tmp3], %[tmp3], %[out_aecm] "
+ "\n\t"
+ "2: "
+ "\n\t"
+ "lh %[tmp4], 0(%[paecm_buf]) "
+ "\n\t"
+ "lh %[tmp2], 2(%[paecm_buf]) "
+ "\n\t"
+ "addu %[tmp3], %[tmp3], %[tmp2] "
+ "\n\t"
+ "addu %[tmp1], %[tmp1], %[tmp4] "
+ "\n\t"
+#if defined(MIPS_DSP_R1_LE)
+ "shll_s.w %[tmp1], %[tmp1], 16 "
+ "\n\t"
+ "sra %[tmp1], %[tmp1], 16 "
+ "\n\t"
+ "shll_s.w %[tmp3], %[tmp3], 16 "
+ "\n\t"
+ "sra %[tmp3], %[tmp3], 16 "
+ "\n\t"
+#else // #if defined(MIPS_DSP_R1_LE)
+ "sra %[tmp4], %[tmp1], 31 "
+ "\n\t"
+ "sra %[tmp2], %[tmp1], 15 "
+ "\n\t"
+ "beq %[tmp4], %[tmp2], 3f "
+ "\n\t"
+ " ori %[tmp2], $zero, 0x7fff "
+ "\n\t"
+ "xor %[tmp1], %[tmp2], %[tmp4] "
+ "\n\t"
+ "3: "
+ "\n\t"
+ "sra %[tmp2], %[tmp3], 31 "
+ "\n\t"
+ "sra %[tmp4], %[tmp3], 15 "
+ "\n\t"
+ "beq %[tmp2], %[tmp4], 4f "
+ "\n\t"
+ " ori %[tmp4], $zero, 0x7fff "
+ "\n\t"
+ "xor %[tmp3], %[tmp4], %[tmp2] "
+ "\n\t"
+ "4: "
+ "\n\t"
+#endif // #if defined(MIPS_DSP_R1_LE)
+ "sh %[tmp1], 0(%[pfft]) "
+ "\n\t"
+ "sh %[tmp1], 0(%[output1]) "
+ "\n\t"
+ "sh %[tmp3], 2(%[pfft]) "
+ "\n\t"
+ "sh %[tmp3], 2(%[output1]) "
+ "\n\t"
+ "lh %[tmp1], 128(%[pfft]) "
+ "\n\t"
+ "lh %[tmp2], 0(%[pp_kSqrtHanning]) "
+ "\n\t"
+ "mul %[tmp1], %[tmp1], %[tmp2] "
+ "\n\t"
+ "lh %[tmp3], 130(%[pfft]) "
+ "\n\t"
+ "lh %[tmp4], -2(%[pp_kSqrtHanning]) "
+ "\n\t"
+ "mul %[tmp3], %[tmp3], %[tmp4] "
+ "\n\t"
+ "sra %[tmp1], %[tmp1], 14 "
+ "\n\t"
+ "sra %[tmp3], %[tmp3], 14 "
+ "\n\t"
+ "bgez %[out_aecm], 5f "
+ "\n\t"
+ " negu %[tmp2], %[out_aecm] "
+ "\n\t"
+ "srav %[tmp3], %[tmp3], %[tmp2] "
+ "\n\t"
+ "b 6f "
+ "\n\t"
+ " srav %[tmp1], %[tmp1], %[tmp2] "
+ "\n\t"
+ "5: "
+ "\n\t"
+ "sllv %[tmp1], %[tmp1], %[out_aecm] "
+ "\n\t"
+ "sllv %[tmp3], %[tmp3], %[out_aecm] "
+ "\n\t"
+ "6: "
+ "\n\t"
+#if defined(MIPS_DSP_R1_LE)
+ "shll_s.w %[tmp1], %[tmp1], 16 "
+ "\n\t"
+ "sra %[tmp1], %[tmp1], 16 "
+ "\n\t"
+ "shll_s.w %[tmp3], %[tmp3], 16 "
+ "\n\t"
+ "sra %[tmp3], %[tmp3], 16 "
+ "\n\t"
+#else // #if defined(MIPS_DSP_R1_LE)
+ "sra %[tmp4], %[tmp1], 31 "
+ "\n\t"
+ "sra %[tmp2], %[tmp1], 15 "
+ "\n\t"
+ "beq %[tmp4], %[tmp2], 7f "
+ "\n\t"
+ " ori %[tmp2], $zero, 0x7fff "
+ "\n\t"
+ "xor %[tmp1], %[tmp2], %[tmp4] "
+ "\n\t"
+ "7: "
+ "\n\t"
+ "sra %[tmp2], %[tmp3], 31 "
+ "\n\t"
+ "sra %[tmp4], %[tmp3], 15 "
+ "\n\t"
+ "beq %[tmp2], %[tmp4], 8f "
+ "\n\t"
+ " ori %[tmp4], $zero, 0x7fff "
+ "\n\t"
+ "xor %[tmp3], %[tmp4], %[tmp2] "
+ "\n\t"
+ "8: "
+ "\n\t"
+#endif // #if defined(MIPS_DSP_R1_LE)
+ "sh %[tmp1], 0(%[paecm_buf]) "
+ "\n\t"
+ "sh %[tmp3], 2(%[paecm_buf]) "
+ "\n\t"
+ "addiu %[output1], %[output1], 4 "
+ "\n\t"
+ "addiu %[paecm_buf], %[paecm_buf], 4 "
+ "\n\t"
+ "addiu %[pfft], %[pfft], 4 "
+ "\n\t"
+ "addiu %[p_kSqrtHanning], %[p_kSqrtHanning], 4 "
+ "\n\t"
+ "bgtz %[i], 11b "
+ "\n\t"
+ " addiu %[pp_kSqrtHanning], %[pp_kSqrtHanning], -4 "
+ "\n\t"
+ ".set pop "
+ "\n\t"
+ : [tmp1] "=&r"(tmp1), [tmp2] "=&r"(tmp2), [pfft] "+r"(pfft),
+ [output1] "+r"(output1), [tmp3] "=&r"(tmp3), [tmp4] "=&r"(tmp4),
+ [paecm_buf] "+r"(paecm_buf), [i] "=&r"(i),
+ [pp_kSqrtHanning] "+r"(pp_kSqrtHanning),
+ [p_kSqrtHanning] "+r"(p_kSqrtHanning)
+ : [out_aecm] "r"(out_aecm),
+ [WebRtcAecm_kSqrtHanning] "r"(WebRtcAecm_kSqrtHanning)
+ : "hi", "lo", "memory");
+
+ // Copy the current block to the old position
+ // (aecm->outBuf is shifted elsewhere)
+ memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN);
+ memcpy(aecm->dBufNoisy, aecm->dBufNoisy + PART_LEN,
+ sizeof(int16_t) * PART_LEN);
+ if (nearendClean != NULL) {
+ memcpy(aecm->dBufClean, aecm->dBufClean + PART_LEN,
+ sizeof(int16_t) * PART_LEN);
+ }
+}
+
+void WebRtcAecm_CalcLinearEnergies_mips(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ int32_t* echo_est,
+ uint32_t* far_energy,
+ uint32_t* echo_energy_adapt,
+ uint32_t* echo_energy_stored) {
+ int i;
+ uint32_t par1 = (*far_energy);
+ uint32_t par2 = (*echo_energy_adapt);
+ uint32_t par3 = (*echo_energy_stored);
+ int16_t* ch_stored_p = &(aecm->channelStored[0]);
+ int16_t* ch_adapt_p = &(aecm->channelAdapt16[0]);
+ uint16_t* spectrum_p = (uint16_t*)(&(far_spectrum[0]));
+ int32_t* echo_p = &(echo_est[0]);
+ int32_t temp0, stored0, echo0, adept0, spectrum0;
+ int32_t stored1, adept1, spectrum1, echo1, temp1;
+
+ // Get energy for the delayed far end signal and estimated
+ // echo using both stored and adapted channels.
+ for (i = 0; i < PART_LEN; i += 4) {
+ __asm __volatile(
+ ".set push \n\t"
+ ".set noreorder \n\t"
+ "lh %[stored0], 0(%[ch_stored_p]) \n\t"
+ "lhu %[adept0], 0(%[ch_adapt_p]) \n\t"
+ "lhu %[spectrum0], 0(%[spectrum_p]) \n\t"
+ "lh %[stored1], 2(%[ch_stored_p]) \n\t"
+ "lhu %[adept1], 2(%[ch_adapt_p]) \n\t"
+ "lhu %[spectrum1], 2(%[spectrum_p]) \n\t"
+ "mul %[echo0], %[stored0], %[spectrum0] \n\t"
+ "mul %[temp0], %[adept0], %[spectrum0] \n\t"
+ "mul %[echo1], %[stored1], %[spectrum1] \n\t"
+ "mul %[temp1], %[adept1], %[spectrum1] \n\t"
+ "addu %[par1], %[par1], %[spectrum0] \n\t"
+ "addu %[par1], %[par1], %[spectrum1] \n\t"
+ "addiu %[echo_p], %[echo_p], 16 \n\t"
+ "addu %[par3], %[par3], %[echo0] \n\t"
+ "addu %[par2], %[par2], %[temp0] \n\t"
+ "addu %[par3], %[par3], %[echo1] \n\t"
+ "addu %[par2], %[par2], %[temp1] \n\t"
+ "usw %[echo0], -16(%[echo_p]) \n\t"
+ "usw %[echo1], -12(%[echo_p]) \n\t"
+ "lh %[stored0], 4(%[ch_stored_p]) \n\t"
+ "lhu %[adept0], 4(%[ch_adapt_p]) \n\t"
+ "lhu %[spectrum0], 4(%[spectrum_p]) \n\t"
+ "lh %[stored1], 6(%[ch_stored_p]) \n\t"
+ "lhu %[adept1], 6(%[ch_adapt_p]) \n\t"
+ "lhu %[spectrum1], 6(%[spectrum_p]) \n\t"
+ "mul %[echo0], %[stored0], %[spectrum0] \n\t"
+ "mul %[temp0], %[adept0], %[spectrum0] \n\t"
+ "mul %[echo1], %[stored1], %[spectrum1] \n\t"
+ "mul %[temp1], %[adept1], %[spectrum1] \n\t"
+ "addu %[par1], %[par1], %[spectrum0] \n\t"
+ "addu %[par1], %[par1], %[spectrum1] \n\t"
+ "addiu %[ch_stored_p], %[ch_stored_p], 8 \n\t"
+ "addiu %[ch_adapt_p], %[ch_adapt_p], 8 \n\t"
+ "addiu %[spectrum_p], %[spectrum_p], 8 \n\t"
+ "addu %[par3], %[par3], %[echo0] \n\t"
+ "addu %[par2], %[par2], %[temp0] \n\t"
+ "addu %[par3], %[par3], %[echo1] \n\t"
+ "addu %[par2], %[par2], %[temp1] \n\t"
+ "usw %[echo0], -8(%[echo_p]) \n\t"
+ "usw %[echo1], -4(%[echo_p]) \n\t"
+ ".set pop \n\t"
+ : [temp0] "=&r"(temp0), [stored0] "=&r"(stored0),
+ [adept0] "=&r"(adept0), [spectrum0] "=&r"(spectrum0),
+ [echo0] "=&r"(echo0), [echo_p] "+r"(echo_p), [par3] "+r"(par3),
+ [par1] "+r"(par1), [par2] "+r"(par2), [stored1] "=&r"(stored1),
+ [adept1] "=&r"(adept1), [echo1] "=&r"(echo1),
+ [spectrum1] "=&r"(spectrum1), [temp1] "=&r"(temp1),
+ [ch_stored_p] "+r"(ch_stored_p), [ch_adapt_p] "+r"(ch_adapt_p),
+ [spectrum_p] "+r"(spectrum_p)
+ :
+ : "hi", "lo", "memory");
+ }
+
+ echo_est[PART_LEN] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[PART_LEN],
+ far_spectrum[PART_LEN]);
+ par1 += (uint32_t)(far_spectrum[PART_LEN]);
+ par2 += aecm->channelAdapt16[PART_LEN] * far_spectrum[PART_LEN];
+ par3 += (uint32_t)echo_est[PART_LEN];
+
+ (*far_energy) = par1;
+ (*echo_energy_adapt) = par2;
+ (*echo_energy_stored) = par3;
+}
+
+#if defined(MIPS_DSP_R1_LE)
+void WebRtcAecm_StoreAdaptiveChannel_mips(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ int32_t* echo_est) {
+ int i;
+ int16_t* temp1;
+ uint16_t* temp8;
+ int32_t temp0, temp2, temp3, temp4, temp5, temp6;
+ int32_t* temp7 = &(echo_est[0]);
+ temp1 = &(aecm->channelStored[0]);
+ temp8 = (uint16_t*)(&far_spectrum[0]);
+
+ // During startup we store the channel every block.
+ memcpy(aecm->channelStored, aecm->channelAdapt16,
+ sizeof(int16_t) * PART_LEN1);
+ // Recalculate echo estimate
+ for (i = 0; i < PART_LEN; i += 4) {
+ __asm __volatile(
+ "ulw %[temp0], 0(%[temp8]) \n\t"
+ "ulw %[temp2], 0(%[temp1]) \n\t"
+ "ulw %[temp4], 4(%[temp8]) \n\t"
+ "ulw %[temp5], 4(%[temp1]) \n\t"
+ "muleq_s.w.phl %[temp3], %[temp2], %[temp0] \n\t"
+ "muleq_s.w.phr %[temp0], %[temp2], %[temp0] \n\t"
+ "muleq_s.w.phl %[temp6], %[temp5], %[temp4] \n\t"
+ "muleq_s.w.phr %[temp4], %[temp5], %[temp4] \n\t"
+ "addiu %[temp7], %[temp7], 16 \n\t"
+ "addiu %[temp1], %[temp1], 8 \n\t"
+ "addiu %[temp8], %[temp8], 8 \n\t"
+ "sra %[temp3], %[temp3], 1 \n\t"
+ "sra %[temp0], %[temp0], 1 \n\t"
+ "sra %[temp6], %[temp6], 1 \n\t"
+ "sra %[temp4], %[temp4], 1 \n\t"
+ "usw %[temp3], -12(%[temp7]) \n\t"
+ "usw %[temp0], -16(%[temp7]) \n\t"
+ "usw %[temp6], -4(%[temp7]) \n\t"
+ "usw %[temp4], -8(%[temp7]) \n\t"
+ : [temp0] "=&r"(temp0), [temp2] "=&r"(temp2), [temp3] "=&r"(temp3),
+ [temp4] "=&r"(temp4), [temp5] "=&r"(temp5), [temp6] "=&r"(temp6),
+ [temp1] "+r"(temp1), [temp8] "+r"(temp8), [temp7] "+r"(temp7)
+ :
+ : "hi", "lo", "memory");
+ }
+ echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i], far_spectrum[i]);
+}
+
+void WebRtcAecm_ResetAdaptiveChannel_mips(AecmCore* aecm) {
+ int i;
+ int32_t* temp3;
+ int16_t* temp0;
+ int32_t temp1, temp2, temp4, temp5;
+
+ temp0 = &(aecm->channelStored[0]);
+ temp3 = &(aecm->channelAdapt32[0]);
+
+ // The stored channel has a significantly lower MSE than the adaptive one for
+ // two consecutive calculations. Reset the adaptive channel.
+ memcpy(aecm->channelAdapt16, aecm->channelStored,
+ sizeof(int16_t) * PART_LEN1);
+
+ // Restore the W32 channel
+ for (i = 0; i < PART_LEN; i += 4) {
+ __asm __volatile(
+ "ulw %[temp1], 0(%[temp0]) \n\t"
+ "ulw %[temp4], 4(%[temp0]) \n\t"
+ "preceq.w.phl %[temp2], %[temp1] \n\t"
+ "preceq.w.phr %[temp1], %[temp1] \n\t"
+ "preceq.w.phl %[temp5], %[temp4] \n\t"
+ "preceq.w.phr %[temp4], %[temp4] \n\t"
+ "addiu %[temp0], %[temp0], 8 \n\t"
+ "usw %[temp2], 4(%[temp3]) \n\t"
+ "usw %[temp1], 0(%[temp3]) \n\t"
+ "usw %[temp5], 12(%[temp3]) \n\t"
+ "usw %[temp4], 8(%[temp3]) \n\t"
+ "addiu %[temp3], %[temp3], 16 \n\t"
+ : [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), [temp4] "=&r"(temp4),
+ [temp5] "=&r"(temp5), [temp3] "+r"(temp3), [temp0] "+r"(temp0)
+ :
+ : "memory");
+ }
+
+ aecm->channelAdapt32[i] = (int32_t)aecm->channelStored[i] << 16;
+}
+#endif // #if defined(MIPS_DSP_R1_LE)
+
+// Transforms a time domain signal into the frequency domain, outputting the
+// complex valued signal, absolute value and sum of absolute values.
+//
+// time_signal [in] Pointer to time domain signal
+// freq_signal_real [out] Pointer to real part of frequency domain array
+// freq_signal_imag [out] Pointer to imaginary part of frequency domain
+// array
+// freq_signal_abs [out] Pointer to absolute value of frequency domain
+// array
+// freq_signal_sum_abs [out] Pointer to the sum of all absolute values in
+// the frequency domain array
+// return value The Q-domain of current frequency values
+//
+static int TimeToFrequencyDomain(AecmCore* aecm,
+ const int16_t* time_signal,
+ ComplexInt16* freq_signal,
+ uint16_t* freq_signal_abs,
+ uint32_t* freq_signal_sum_abs) {
+ int i = 0;
+ int time_signal_scaling = 0;
+
+ // In fft_buf, +16 for 32-byte alignment.
+ int16_t fft_buf[PART_LEN4 + 16];
+ int16_t* fft = (int16_t*)(((uintptr_t)fft_buf + 31) & ~31);
+
+ int16_t tmp16no1;
+#if !defined(MIPS_DSP_R2_LE)
+ int32_t tmp32no1;
+ int32_t tmp32no2;
+ int16_t tmp16no2;
+#else
+ int32_t tmp32no10, tmp32no11, tmp32no12, tmp32no13;
+ int32_t tmp32no20, tmp32no21, tmp32no22, tmp32no23;
+ int16_t* freqp;
+ uint16_t* freqabsp;
+ uint32_t freqt0, freqt1, freqt2, freqt3;
+ uint32_t freqs;
+#endif
+
+#ifdef AECM_DYNAMIC_Q
+ tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2);
+ time_signal_scaling = WebRtcSpl_NormW16(tmp16no1);
+#endif
+
+ WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling);
+
+ // Extract imaginary and real part,
+ // calculate the magnitude for all frequency bins
+ freq_signal[0].imag = 0;
+ freq_signal[PART_LEN].imag = 0;
+ freq_signal[PART_LEN].real = fft[PART_LEN2];
+ freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real);
+ freq_signal_abs[PART_LEN] =
+ (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[PART_LEN].real);
+ (*freq_signal_sum_abs) =
+ (uint32_t)(freq_signal_abs[0]) + (uint32_t)(freq_signal_abs[PART_LEN]);
+
+#if !defined(MIPS_DSP_R2_LE)
+ for (i = 1; i < PART_LEN; i++) {
+ if (freq_signal[i].real == 0) {
+ freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
+ } else if (freq_signal[i].imag == 0) {
+ freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].real);
+ } else {
+ // Approximation for magnitude of complex fft output
+ // magn = sqrt(real^2 + imag^2)
+ // magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|)
+ //
+ // The parameters alpha and beta are stored in Q15
+ tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
+ tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
+ tmp32no1 = tmp16no1 * tmp16no1;
+ tmp32no2 = tmp16no2 * tmp16no2;
+ tmp32no2 = WebRtcSpl_AddSatW32(tmp32no1, tmp32no2);
+ tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2);
+
+ freq_signal_abs[i] = (uint16_t)tmp32no1;
+ }
+ (*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i];
+ }
+#else // #if !defined(MIPS_DSP_R2_LE)
+ freqs =
+ (uint32_t)(freq_signal_abs[0]) + (uint32_t)(freq_signal_abs[PART_LEN]);
+ freqp = &(freq_signal[1].real);
+
+ __asm __volatile(
+ "lw %[freqt0], 0(%[freqp]) \n\t"
+ "lw %[freqt1], 4(%[freqp]) \n\t"
+ "lw %[freqt2], 8(%[freqp]) \n\t"
+ "mult $ac0, $zero, $zero \n\t"
+ "mult $ac1, $zero, $zero \n\t"
+ "mult $ac2, $zero, $zero \n\t"
+ "dpaq_s.w.ph $ac0, %[freqt0], %[freqt0] \n\t"
+ "dpaq_s.w.ph $ac1, %[freqt1], %[freqt1] \n\t"
+ "dpaq_s.w.ph $ac2, %[freqt2], %[freqt2] \n\t"
+ "addiu %[freqp], %[freqp], 12 \n\t"
+ "extr.w %[tmp32no20], $ac0, 1 \n\t"
+ "extr.w %[tmp32no21], $ac1, 1 \n\t"
+ "extr.w %[tmp32no22], $ac2, 1 \n\t"
+ : [freqt0] "=&r"(freqt0), [freqt1] "=&r"(freqt1), [freqt2] "=&r"(freqt2),
+ [freqp] "+r"(freqp), [tmp32no20] "=r"(tmp32no20),
+ [tmp32no21] "=r"(tmp32no21), [tmp32no22] "=r"(tmp32no22)
+ :
+ : "memory", "hi", "lo", "$ac1hi", "$ac1lo", "$ac2hi", "$ac2lo");
+
+ tmp32no10 = WebRtcSpl_SqrtFloor(tmp32no20);
+ tmp32no11 = WebRtcSpl_SqrtFloor(tmp32no21);
+ tmp32no12 = WebRtcSpl_SqrtFloor(tmp32no22);
+ freq_signal_abs[1] = (uint16_t)tmp32no10;
+ freq_signal_abs[2] = (uint16_t)tmp32no11;
+ freq_signal_abs[3] = (uint16_t)tmp32no12;
+ freqs += (uint32_t)tmp32no10;
+ freqs += (uint32_t)tmp32no11;
+ freqs += (uint32_t)tmp32no12;
+ freqabsp = &(freq_signal_abs[4]);
+ for (i = 4; i < PART_LEN; i += 4) {
+ __asm __volatile(
+ "ulw %[freqt0], 0(%[freqp]) \n\t"
+ "ulw %[freqt1], 4(%[freqp]) \n\t"
+ "ulw %[freqt2], 8(%[freqp]) \n\t"
+ "ulw %[freqt3], 12(%[freqp]) \n\t"
+ "mult $ac0, $zero, $zero \n\t"
+ "mult $ac1, $zero, $zero \n\t"
+ "mult $ac2, $zero, $zero \n\t"
+ "mult $ac3, $zero, $zero \n\t"
+ "dpaq_s.w.ph $ac0, %[freqt0], %[freqt0] \n\t"
+ "dpaq_s.w.ph $ac1, %[freqt1], %[freqt1] \n\t"
+ "dpaq_s.w.ph $ac2, %[freqt2], %[freqt2] \n\t"
+ "dpaq_s.w.ph $ac3, %[freqt3], %[freqt3] \n\t"
+ "addiu %[freqp], %[freqp], 16 \n\t"
+ "addiu %[freqabsp], %[freqabsp], 8 \n\t"
+ "extr.w %[tmp32no20], $ac0, 1 \n\t"
+ "extr.w %[tmp32no21], $ac1, 1 \n\t"
+ "extr.w %[tmp32no22], $ac2, 1 \n\t"
+ "extr.w %[tmp32no23], $ac3, 1 \n\t"
+ : [freqt0] "=&r"(freqt0), [freqt1] "=&r"(freqt1),
+ [freqt2] "=&r"(freqt2), [freqt3] "=&r"(freqt3),
+ [tmp32no20] "=r"(tmp32no20), [tmp32no21] "=r"(tmp32no21),
+ [tmp32no22] "=r"(tmp32no22), [tmp32no23] "=r"(tmp32no23),
+ [freqabsp] "+r"(freqabsp), [freqp] "+r"(freqp)
+ :
+ : "memory", "hi", "lo", "$ac1hi", "$ac1lo", "$ac2hi", "$ac2lo",
+ "$ac3hi", "$ac3lo");
+
+ tmp32no10 = WebRtcSpl_SqrtFloor(tmp32no20);
+ tmp32no11 = WebRtcSpl_SqrtFloor(tmp32no21);
+ tmp32no12 = WebRtcSpl_SqrtFloor(tmp32no22);
+ tmp32no13 = WebRtcSpl_SqrtFloor(tmp32no23);
+
+ __asm __volatile(
+ "sh %[tmp32no10], -8(%[freqabsp]) \n\t"
+ "sh %[tmp32no11], -6(%[freqabsp]) \n\t"
+ "sh %[tmp32no12], -4(%[freqabsp]) \n\t"
+ "sh %[tmp32no13], -2(%[freqabsp]) \n\t"
+ "addu %[freqs], %[freqs], %[tmp32no10] \n\t"
+ "addu %[freqs], %[freqs], %[tmp32no11] \n\t"
+ "addu %[freqs], %[freqs], %[tmp32no12] \n\t"
+ "addu %[freqs], %[freqs], %[tmp32no13] \n\t"
+ : [freqs] "+r"(freqs)
+ : [tmp32no10] "r"(tmp32no10), [tmp32no11] "r"(tmp32no11),
+ [tmp32no12] "r"(tmp32no12), [tmp32no13] "r"(tmp32no13),
+ [freqabsp] "r"(freqabsp)
+ : "memory");
+ }
+
+ (*freq_signal_sum_abs) = freqs;
+#endif
+
+ return time_signal_scaling;
+}
+
+int WebRtcAecm_ProcessBlock(AecmCore* aecm,
+ const int16_t* farend,
+ const int16_t* nearendNoisy,
+ const int16_t* nearendClean,
+ int16_t* output) {
+ int i;
+ uint32_t xfaSum;
+ uint32_t dfaNoisySum;
+ uint32_t dfaCleanSum;
+ uint32_t echoEst32Gained;
+ uint32_t tmpU32;
+ int32_t tmp32no1;
+
+ uint16_t xfa[PART_LEN1];
+ uint16_t dfaNoisy[PART_LEN1];
+ uint16_t dfaClean[PART_LEN1];
+ uint16_t* ptrDfaClean = dfaClean;
+ const uint16_t* far_spectrum_ptr = NULL;
+
+ // 32 byte aligned buffers (with +8 or +16).
+ int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
+ int32_t echoEst32_buf[PART_LEN1 + 8];
+ int32_t dfw_buf[PART_LEN2 + 8];
+ int32_t efw_buf[PART_LEN2 + 8];
+
+ int16_t* fft = (int16_t*)(((uint32_t)fft_buf + 31) & ~31);
+ int32_t* echoEst32 = (int32_t*)(((uint32_t)echoEst32_buf + 31) & ~31);
+ ComplexInt16* dfw = (ComplexInt16*)(((uint32_t)dfw_buf + 31) & ~31);
+ ComplexInt16* efw = (ComplexInt16*)(((uint32_t)efw_buf + 31) & ~31);
+
+ int16_t hnl[PART_LEN1];
+ int16_t numPosCoef = 0;
+ int delay;
+ int16_t tmp16no1;
+ int16_t tmp16no2;
+ int16_t mu;
+ int16_t supGain;
+ int16_t zeros32, zeros16;
+ int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf;
+ int far_q;
+ int16_t resolutionDiff, qDomainDiff, dfa_clean_q_domain_diff;
+
+ const int kMinPrefBand = 4;
+ const int kMaxPrefBand = 24;
+ int32_t avgHnl32 = 0;
+
+ int32_t temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8;
+ int16_t* ptr;
+ int16_t* ptr1;
+ int16_t* er_ptr;
+ int16_t* dr_ptr;
+
+ ptr = &hnl[0];
+ ptr1 = &hnl[0];
+ er_ptr = &efw[0].real;
+ dr_ptr = &dfw[0].real;
+
+ // Determine startup state. There are three states:
+ // (0) the first CONV_LEN blocks
+ // (1) another CONV_LEN blocks
+ // (2) the rest
+
+ if (aecm->startupState < 2) {
+ aecm->startupState =
+ (aecm->totCount >= CONV_LEN) + (aecm->totCount >= CONV_LEN2);
+ }
+ // END: Determine startup state
+
+ // Buffer near and far end signals
+ memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN);
+ memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN);
+ if (nearendClean != NULL) {
+ memcpy(aecm->dBufClean + PART_LEN, nearendClean,
+ sizeof(int16_t) * PART_LEN);
+ }
+
+ // Transform far end signal from time domain to frequency domain.
+ far_q = TimeToFrequencyDomain(aecm, aecm->xBuf, dfw, xfa, &xfaSum);
+
+ // Transform noisy near end signal from time domain to frequency domain.
+ zerosDBufNoisy =
+ TimeToFrequencyDomain(aecm, aecm->dBufNoisy, dfw, dfaNoisy, &dfaNoisySum);
+ aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain;
+ aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy;
+
+ if (nearendClean == NULL) {
+ ptrDfaClean = dfaNoisy;
+ aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld;
+ aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain;
+ dfaCleanSum = dfaNoisySum;
+ } else {
+ // Transform clean near end signal from time domain to frequency domain.
+ zerosDBufClean = TimeToFrequencyDomain(aecm, aecm->dBufClean, dfw, dfaClean,
+ &dfaCleanSum);
+ aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain;
+ aecm->dfaCleanQDomain = (int16_t)zerosDBufClean;
+ }
+
+ // Get the delay
+ // Save far-end history and estimate delay
+ WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q);
+
+ if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend, xfa, PART_LEN1,
+ far_q) == -1) {
+ return -1;
+ }
+ delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator, dfaNoisy,
+ PART_LEN1, zerosDBufNoisy);
+ if (delay == -1) {
+ return -1;
+ } else if (delay == -2) {
+ // If the delay is unknown, we assume zero.
+ // NOTE: this will have to be adjusted if we ever add lookahead.
+ delay = 0;
+ }
+
+ if (aecm->fixedDelay >= 0) {
+ // Use fixed delay
+ delay = aecm->fixedDelay;
+ }
+
+ // Get aligned far end spectrum
+ far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay);
+ zerosXBuf = (int16_t)far_q;
+
+ if (far_spectrum_ptr == NULL) {
+ return -1;
+ }
+
+ // Calculate log(energy) and update energy threshold levels
+ WebRtcAecm_CalcEnergies(aecm, far_spectrum_ptr, zerosXBuf, dfaNoisySum,
+ echoEst32);
+ // Calculate stepsize
+ mu = WebRtcAecm_CalcStepSize(aecm);
+
+ // Update counters
+ aecm->totCount++;
+
+ // This is the channel estimation algorithm.
+ // It is base on NLMS but has a variable step length,
+ // which was calculated above.
+ WebRtcAecm_UpdateChannel(aecm, far_spectrum_ptr, zerosXBuf, dfaNoisy, mu,
+ echoEst32);
+
+ supGain = WebRtcAecm_CalcSuppressionGain(aecm);
+
+ // Calculate Wiener filter hnl[]
+ for (i = 0; i < PART_LEN1; i++) {
+ // Far end signal through channel estimate in Q8
+ // How much can we shift right to preserve resolution
+ tmp32no1 = echoEst32[i] - aecm->echoFilt[i];
+ aecm->echoFilt[i] +=
+ rtc::dchecked_cast<int32_t>((int64_t{tmp32no1} * 50) >> 8);
+
+ zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1;
+ zeros16 = WebRtcSpl_NormW16(supGain) + 1;
+ if (zeros32 + zeros16 > 16) {
+ // Multiplication is safe
+ // Result in
+ // Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+aecm->xfaQDomainBuf[diff])
+ echoEst32Gained =
+ WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i], (uint16_t)supGain);
+ resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
+ resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
+ } else {
+ tmp16no1 = 17 - zeros32 - zeros16;
+ resolutionDiff =
+ 14 + tmp16no1 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
+ resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
+ if (zeros32 > tmp16no1) {
+ echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
+ supGain >> tmp16no1);
+ } else {
+ // Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
+ echoEst32Gained = (aecm->echoFilt[i] >> tmp16no1) * supGain;
+ }
+ }
+
+ zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]);
+ RTC_DCHECK_GE(zeros16, 0); // |zeros16| is a norm, hence non-negative.
+ dfa_clean_q_domain_diff = aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld;
+ if (zeros16 < dfa_clean_q_domain_diff && aecm->nearFilt[i]) {
+ tmp16no1 = aecm->nearFilt[i] << zeros16;
+ qDomainDiff = zeros16 - dfa_clean_q_domain_diff;
+ tmp16no2 = ptrDfaClean[i] >> -qDomainDiff;
+ } else {
+ tmp16no1 = dfa_clean_q_domain_diff < 0
+ ? aecm->nearFilt[i] >> -dfa_clean_q_domain_diff
+ : aecm->nearFilt[i] << dfa_clean_q_domain_diff;
+ qDomainDiff = 0;
+ tmp16no2 = ptrDfaClean[i];
+ }
+
+ tmp32no1 = (int32_t)(tmp16no2 - tmp16no1);
+ tmp16no2 = (int16_t)(tmp32no1 >> 4);
+ tmp16no2 += tmp16no1;
+ zeros16 = WebRtcSpl_NormW16(tmp16no2);
+ if ((tmp16no2) & (-qDomainDiff > zeros16)) {
+ aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX;
+ } else {
+ aecm->nearFilt[i] =
+ qDomainDiff < 0 ? tmp16no2 << -qDomainDiff : tmp16no2 >> qDomainDiff;
+ }
+
+ // Wiener filter coefficients, resulting hnl in Q14
+ if (echoEst32Gained == 0) {
+ hnl[i] = ONE_Q14;
+ numPosCoef++;
+ } else if (aecm->nearFilt[i] == 0) {
+ hnl[i] = 0;
+ } else {
+ // Multiply the suppression gain
+ // Rounding
+ echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1);
+ tmpU32 =
+ WebRtcSpl_DivU32U16(echoEst32Gained, (uint16_t)aecm->nearFilt[i]);
+
+ // Current resolution is
+ // Q-(RESOLUTION_CHANNEL + RESOLUTION_SUPGAIN
+ // - max(0, 17 - zeros16 - zeros32))
+ // Make sure we are in Q14
+ tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff);
+ if (tmp32no1 > ONE_Q14) {
+ hnl[i] = 0;
+ } else if (tmp32no1 < 0) {
+ hnl[i] = ONE_Q14;
+ numPosCoef++;
+ } else {
+ // 1-echoEst/dfa
+ hnl[i] = ONE_Q14 - (int16_t)tmp32no1;
+ if (hnl[i] <= 0) {
+ hnl[i] = 0;
+ } else {
+ numPosCoef++;
+ }
+ }
+ }
+ }
+
+ // Only in wideband. Prevent the gain in upper band from being larger than
+ // in lower band.
+ if (aecm->mult == 2) {
+ // TODO(bjornv): Investigate if the scaling of hnl[i] below can cause
+ // speech distortion in double-talk.
+ for (i = 0; i < (PART_LEN1 >> 3); i++) {
+ __asm __volatile(
+ "lh %[temp1], 0(%[ptr1]) \n\t"
+ "lh %[temp2], 2(%[ptr1]) \n\t"
+ "lh %[temp3], 4(%[ptr1]) \n\t"
+ "lh %[temp4], 6(%[ptr1]) \n\t"
+ "lh %[temp5], 8(%[ptr1]) \n\t"
+ "lh %[temp6], 10(%[ptr1]) \n\t"
+ "lh %[temp7], 12(%[ptr1]) \n\t"
+ "lh %[temp8], 14(%[ptr1]) \n\t"
+ "mul %[temp1], %[temp1], %[temp1] \n\t"
+ "mul %[temp2], %[temp2], %[temp2] \n\t"
+ "mul %[temp3], %[temp3], %[temp3] \n\t"
+ "mul %[temp4], %[temp4], %[temp4] \n\t"
+ "mul %[temp5], %[temp5], %[temp5] \n\t"
+ "mul %[temp6], %[temp6], %[temp6] \n\t"
+ "mul %[temp7], %[temp7], %[temp7] \n\t"
+ "mul %[temp8], %[temp8], %[temp8] \n\t"
+ "sra %[temp1], %[temp1], 14 \n\t"
+ "sra %[temp2], %[temp2], 14 \n\t"
+ "sra %[temp3], %[temp3], 14 \n\t"
+ "sra %[temp4], %[temp4], 14 \n\t"
+ "sra %[temp5], %[temp5], 14 \n\t"
+ "sra %[temp6], %[temp6], 14 \n\t"
+ "sra %[temp7], %[temp7], 14 \n\t"
+ "sra %[temp8], %[temp8], 14 \n\t"
+ "sh %[temp1], 0(%[ptr1]) \n\t"
+ "sh %[temp2], 2(%[ptr1]) \n\t"
+ "sh %[temp3], 4(%[ptr1]) \n\t"
+ "sh %[temp4], 6(%[ptr1]) \n\t"
+ "sh %[temp5], 8(%[ptr1]) \n\t"
+ "sh %[temp6], 10(%[ptr1]) \n\t"
+ "sh %[temp7], 12(%[ptr1]) \n\t"
+ "sh %[temp8], 14(%[ptr1]) \n\t"
+ "addiu %[ptr1], %[ptr1], 16 \n\t"
+ : [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), [temp3] "=&r"(temp3),
+ [temp4] "=&r"(temp4), [temp5] "=&r"(temp5), [temp6] "=&r"(temp6),
+ [temp7] "=&r"(temp7), [temp8] "=&r"(temp8), [ptr1] "+r"(ptr1)
+ :
+ : "memory", "hi", "lo");
+ }
+ for (i = 0; i < (PART_LEN1 & 7); i++) {
+ __asm __volatile(
+ "lh %[temp1], 0(%[ptr1]) \n\t"
+ "mul %[temp1], %[temp1], %[temp1] \n\t"
+ "sra %[temp1], %[temp1], 14 \n\t"
+ "sh %[temp1], 0(%[ptr1]) \n\t"
+ "addiu %[ptr1], %[ptr1], 2 \n\t"
+ : [temp1] "=&r"(temp1), [ptr1] "+r"(ptr1)
+ :
+ : "memory", "hi", "lo");
+ }
+
+ for (i = kMinPrefBand; i <= kMaxPrefBand; i++) {
+ avgHnl32 += (int32_t)hnl[i];
+ }
+
+ RTC_DCHECK_GT(kMaxPrefBand - kMinPrefBand + 1, 0);
+ avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1);
+
+ for (i = kMaxPrefBand; i < PART_LEN1; i++) {
+ if (hnl[i] > (int16_t)avgHnl32) {
+ hnl[i] = (int16_t)avgHnl32;
+ }
+ }
+ }
+
+ // Calculate NLP gain, result is in Q14
+ if (aecm->nlpFlag) {
+ if (numPosCoef < 3) {
+ for (i = 0; i < PART_LEN1; i++) {
+ efw[i].real = 0;
+ efw[i].imag = 0;
+ hnl[i] = 0;
+ }
+ } else {
+ for (i = 0; i < PART_LEN1; i++) {
+#if defined(MIPS_DSP_R1_LE)
+ __asm __volatile(
+ ".set push \n\t"
+ ".set noreorder \n\t"
+ "lh %[temp1], 0(%[ptr]) \n\t"
+ "lh %[temp2], 0(%[dr_ptr]) \n\t"
+ "slti %[temp4], %[temp1], 0x4001 \n\t"
+ "beqz %[temp4], 3f \n\t"
+ " lh %[temp3], 2(%[dr_ptr]) \n\t"
+ "slti %[temp5], %[temp1], 3277 \n\t"
+ "bnez %[temp5], 2f \n\t"
+ " addiu %[dr_ptr], %[dr_ptr], 4 \n\t"
+ "mul %[temp2], %[temp2], %[temp1] \n\t"
+ "mul %[temp3], %[temp3], %[temp1] \n\t"
+ "shra_r.w %[temp2], %[temp2], 14 \n\t"
+ "shra_r.w %[temp3], %[temp3], 14 \n\t"
+ "b 4f \n\t"
+ " nop \n\t"
+ "2: \n\t"
+ "addu %[temp1], $zero, $zero \n\t"
+ "addu %[temp2], $zero, $zero \n\t"
+ "addu %[temp3], $zero, $zero \n\t"
+ "b 1f \n\t"
+ " nop \n\t"
+ "3: \n\t"
+ "addiu %[temp1], $0, 0x4000 \n\t"
+ "1: \n\t"
+ "sh %[temp1], 0(%[ptr]) \n\t"
+ "4: \n\t"
+ "sh %[temp2], 0(%[er_ptr]) \n\t"
+ "sh %[temp3], 2(%[er_ptr]) \n\t"
+ "addiu %[ptr], %[ptr], 2 \n\t"
+ "addiu %[er_ptr], %[er_ptr], 4 \n\t"
+ ".set pop \n\t"
+ : [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), [temp3] "=&r"(temp3),
+ [temp4] "=&r"(temp4), [temp5] "=&r"(temp5), [ptr] "+r"(ptr),
+ [er_ptr] "+r"(er_ptr), [dr_ptr] "+r"(dr_ptr)
+ :
+ : "memory", "hi", "lo");
+#else
+ __asm __volatile(
+ ".set push \n\t"
+ ".set noreorder \n\t"
+ "lh %[temp1], 0(%[ptr]) \n\t"
+ "lh %[temp2], 0(%[dr_ptr]) \n\t"
+ "slti %[temp4], %[temp1], 0x4001 \n\t"
+ "beqz %[temp4], 3f \n\t"
+ " lh %[temp3], 2(%[dr_ptr]) \n\t"
+ "slti %[temp5], %[temp1], 3277 \n\t"
+ "bnez %[temp5], 2f \n\t"
+ " addiu %[dr_ptr], %[dr_ptr], 4 \n\t"
+ "mul %[temp2], %[temp2], %[temp1] \n\t"
+ "mul %[temp3], %[temp3], %[temp1] \n\t"
+ "addiu %[temp2], %[temp2], 0x2000 \n\t"
+ "addiu %[temp3], %[temp3], 0x2000 \n\t"
+ "sra %[temp2], %[temp2], 14 \n\t"
+ "sra %[temp3], %[temp3], 14 \n\t"
+ "b 4f \n\t"
+ " nop \n\t"
+ "2: \n\t"
+ "addu %[temp1], $zero, $zero \n\t"
+ "addu %[temp2], $zero, $zero \n\t"
+ "addu %[temp3], $zero, $zero \n\t"
+ "b 1f \n\t"
+ " nop \n\t"
+ "3: \n\t"
+ "addiu %[temp1], $0, 0x4000 \n\t"
+ "1: \n\t"
+ "sh %[temp1], 0(%[ptr]) \n\t"
+ "4: \n\t"
+ "sh %[temp2], 0(%[er_ptr]) \n\t"
+ "sh %[temp3], 2(%[er_ptr]) \n\t"
+ "addiu %[ptr], %[ptr], 2 \n\t"
+ "addiu %[er_ptr], %[er_ptr], 4 \n\t"
+ ".set pop \n\t"
+ : [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), [temp3] "=&r"(temp3),
+ [temp4] "=&r"(temp4), [temp5] "=&r"(temp5), [ptr] "+r"(ptr),
+ [er_ptr] "+r"(er_ptr), [dr_ptr] "+r"(dr_ptr)
+ :
+ : "memory", "hi", "lo");
+#endif
+ }
+ }
+ } else {
+ // multiply with Wiener coefficients
+ for (i = 0; i < PART_LEN1; i++) {
+ efw[i].real = (int16_t)(
+ WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, hnl[i], 14));
+ efw[i].imag = (int16_t)(
+ WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, hnl[i], 14));
+ }
+ }
+
+ if (aecm->cngMode == AecmTrue) {
+ ComfortNoise(aecm, ptrDfaClean, efw, hnl);
+ }
+
+ InverseFFTAndWindow(aecm, fft, efw, output, nearendClean);
+
+ return 0;
+}
+
+// Generate comfort noise and add to output signal.
+static void ComfortNoise(AecmCore* aecm,
+ const uint16_t* dfa,
+ ComplexInt16* out,
+ const int16_t* lambda) {
+ int16_t i;
+ int16_t tmp16, tmp161, tmp162, tmp163, nrsh1, nrsh2;
+ int32_t tmp32, tmp321, tnoise, tnoise1;
+ int32_t tmp322, tmp323, *tmp1;
+ int16_t* dfap;
+ int16_t* lambdap;
+ const int32_t c2049 = 2049;
+ const int32_t c359 = 359;
+ const int32_t c114 = ONE_Q14;
+
+ int16_t randW16[PART_LEN];
+ int16_t uReal[PART_LEN1];
+ int16_t uImag[PART_LEN1];
+ int32_t outLShift32;
+
+ int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain;
+ int16_t minTrackShift = 9;
+
+ RTC_DCHECK_GE(shiftFromNearToNoise, 0);
+ RTC_DCHECK_LT(shiftFromNearToNoise, 16);
+
+ if (aecm->noiseEstCtr < 100) {
+ // Track the minimum more quickly initially.
+ aecm->noiseEstCtr++;
+ minTrackShift = 6;
+ }
+
+ // Generate a uniform random array on [0 2^15-1].
+ WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed);
+ int16_t* randW16p = (int16_t*)randW16;
+#if defined(MIPS_DSP_R1_LE)
+ int16_t* kCosTablep = (int16_t*)WebRtcAecm_kCosTable;
+ int16_t* kSinTablep = (int16_t*)WebRtcAecm_kSinTable;
+#endif // #if defined(MIPS_DSP_R1_LE)
+ tmp1 = (int32_t*)aecm->noiseEst + 1;
+ dfap = (int16_t*)dfa + 1;
+ lambdap = (int16_t*)lambda + 1;
+ // Estimate noise power.
+ for (i = 1; i < PART_LEN1; i += 2) {
+ // Shift to the noise domain.
+ __asm __volatile(
+ "lh %[tmp32], 0(%[dfap]) \n\t"
+ "lw %[tnoise], 0(%[tmp1]) \n\t"
+ "sllv %[outLShift32], %[tmp32], %[shiftFromNearToNoise] \n\t"
+ : [tmp32] "=&r"(tmp32), [outLShift32] "=r"(outLShift32),
+ [tnoise] "=&r"(tnoise)
+ : [tmp1] "r"(tmp1), [dfap] "r"(dfap),
+ [shiftFromNearToNoise] "r"(shiftFromNearToNoise)
+ : "memory");
+
+ if (outLShift32 < tnoise) {
+ // Reset "too low" counter
+ aecm->noiseEstTooLowCtr[i] = 0;
+ // Track the minimum.
+ if (tnoise < (1 << minTrackShift)) {
+ // For small values, decrease noiseEst[i] every
+ // |kNoiseEstIncCount| block. The regular approach below can not
+ // go further down due to truncation.
+ aecm->noiseEstTooHighCtr[i]++;
+ if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount) {
+ tnoise--;
+ aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter
+ }
+ } else {
+ __asm __volatile(
+ "subu %[tmp32], %[tnoise], %[outLShift32] \n\t"
+ "srav %[tmp32], %[tmp32], %[minTrackShift] \n\t"
+ "subu %[tnoise], %[tnoise], %[tmp32] \n\t"
+ : [tmp32] "=&r"(tmp32), [tnoise] "+r"(tnoise)
+ :
+ [outLShift32] "r"(outLShift32), [minTrackShift] "r"(minTrackShift));
+ }
+ } else {
+ // Reset "too high" counter
+ aecm->noiseEstTooHighCtr[i] = 0;
+ // Ramp slowly upwards until we hit the minimum again.
+ if ((tnoise >> 19) <= 0) {
+ if ((tnoise >> 11) > 0) {
+ // Large enough for relative increase
+ __asm __volatile(
+ "mul %[tnoise], %[tnoise], %[c2049] \n\t"
+ "sra %[tnoise], %[tnoise], 11 \n\t"
+ : [tnoise] "+r"(tnoise)
+ : [c2049] "r"(c2049)
+ : "hi", "lo");
+ } else {
+ // Make incremental increases based on size every
+ // |kNoiseEstIncCount| block
+ aecm->noiseEstTooLowCtr[i]++;
+ if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount) {
+ __asm __volatile(
+ "sra %[tmp32], %[tnoise], 9 \n\t"
+ "addi %[tnoise], %[tnoise], 1 \n\t"
+ "addu %[tnoise], %[tnoise], %[tmp32] \n\t"
+ : [tnoise] "+r"(tnoise), [tmp32] "=&r"(tmp32)
+ :);
+ aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
+ }
+ }
+ } else {
+ // Avoid overflow.
+ // Multiplication with 2049 will cause wrap around. Scale
+ // down first and then multiply
+ __asm __volatile(
+ "sra %[tnoise], %[tnoise], 11 \n\t"
+ "mul %[tnoise], %[tnoise], %[c2049] \n\t"
+ : [tnoise] "+r"(tnoise)
+ : [c2049] "r"(c2049)
+ : "hi", "lo");
+ }
+ }
+
+ // Shift to the noise domain.
+ __asm __volatile(
+ "lh %[tmp32], 2(%[dfap]) \n\t"
+ "lw %[tnoise1], 4(%[tmp1]) \n\t"
+ "addiu %[dfap], %[dfap], 4 \n\t"
+ "sllv %[outLShift32], %[tmp32], %[shiftFromNearToNoise] \n\t"
+ : [tmp32] "=&r"(tmp32), [dfap] "+r"(dfap),
+ [outLShift32] "=r"(outLShift32), [tnoise1] "=&r"(tnoise1)
+ : [tmp1] "r"(tmp1), [shiftFromNearToNoise] "r"(shiftFromNearToNoise)
+ : "memory");
+
+ if (outLShift32 < tnoise1) {
+ // Reset "too low" counter
+ aecm->noiseEstTooLowCtr[i + 1] = 0;
+ // Track the minimum.
+ if (tnoise1 < (1 << minTrackShift)) {
+ // For small values, decrease noiseEst[i] every
+ // |kNoiseEstIncCount| block. The regular approach below can not
+ // go further down due to truncation.
+ aecm->noiseEstTooHighCtr[i + 1]++;
+ if (aecm->noiseEstTooHighCtr[i + 1] >= kNoiseEstIncCount) {
+ tnoise1--;
+ aecm->noiseEstTooHighCtr[i + 1] = 0; // Reset the counter
+ }
+ } else {
+ __asm __volatile(
+ "subu %[tmp32], %[tnoise1], %[outLShift32] \n\t"
+ "srav %[tmp32], %[tmp32], %[minTrackShift] \n\t"
+ "subu %[tnoise1], %[tnoise1], %[tmp32] \n\t"
+ : [tmp32] "=&r"(tmp32), [tnoise1] "+r"(tnoise1)
+ :
+ [outLShift32] "r"(outLShift32), [minTrackShift] "r"(minTrackShift));
+ }
+ } else {
+ // Reset "too high" counter
+ aecm->noiseEstTooHighCtr[i + 1] = 0;
+ // Ramp slowly upwards until we hit the minimum again.
+ if ((tnoise1 >> 19) <= 0) {
+ if ((tnoise1 >> 11) > 0) {
+ // Large enough for relative increase
+ __asm __volatile(
+ "mul %[tnoise1], %[tnoise1], %[c2049] \n\t"
+ "sra %[tnoise1], %[tnoise1], 11 \n\t"
+ : [tnoise1] "+r"(tnoise1)
+ : [c2049] "r"(c2049)
+ : "hi", "lo");
+ } else {
+ // Make incremental increases based on size every
+ // |kNoiseEstIncCount| block
+ aecm->noiseEstTooLowCtr[i + 1]++;
+ if (aecm->noiseEstTooLowCtr[i + 1] >= kNoiseEstIncCount) {
+ __asm __volatile(
+ "sra %[tmp32], %[tnoise1], 9 \n\t"
+ "addi %[tnoise1], %[tnoise1], 1 \n\t"
+ "addu %[tnoise1], %[tnoise1], %[tmp32] \n\t"
+ : [tnoise1] "+r"(tnoise1), [tmp32] "=&r"(tmp32)
+ :);
+ aecm->noiseEstTooLowCtr[i + 1] = 0; // Reset counter
+ }
+ }
+ } else {
+ // Avoid overflow.
+ // Multiplication with 2049 will cause wrap around. Scale
+ // down first and then multiply
+ __asm __volatile(
+ "sra %[tnoise1], %[tnoise1], 11 \n\t"
+ "mul %[tnoise1], %[tnoise1], %[c2049] \n\t"
+ : [tnoise1] "+r"(tnoise1)
+ : [c2049] "r"(c2049)
+ : "hi", "lo");
+ }
+ }
+
+ __asm __volatile(
+ "lh %[tmp16], 0(%[lambdap]) \n\t"
+ "lh %[tmp161], 2(%[lambdap]) \n\t"
+ "sw %[tnoise], 0(%[tmp1]) \n\t"
+ "sw %[tnoise1], 4(%[tmp1]) \n\t"
+ "subu %[tmp16], %[c114], %[tmp16] \n\t"
+ "subu %[tmp161], %[c114], %[tmp161] \n\t"
+ "srav %[tmp32], %[tnoise], %[shiftFromNearToNoise] \n\t"
+ "srav %[tmp321], %[tnoise1], %[shiftFromNearToNoise] \n\t"
+ "addiu %[lambdap], %[lambdap], 4 \n\t"
+ "addiu %[tmp1], %[tmp1], 8 \n\t"
+ : [tmp16] "=&r"(tmp16), [tmp161] "=&r"(tmp161), [tmp1] "+r"(tmp1),
+ [tmp32] "=&r"(tmp32), [tmp321] "=&r"(tmp321), [lambdap] "+r"(lambdap)
+ : [tnoise] "r"(tnoise), [tnoise1] "r"(tnoise1), [c114] "r"(c114),
+ [shiftFromNearToNoise] "r"(shiftFromNearToNoise)
+ : "memory");
+
+ if (tmp32 > 32767) {
+ tmp32 = 32767;
+ aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise;
+ }
+ if (tmp321 > 32767) {
+ tmp321 = 32767;
+ aecm->noiseEst[i + 1] = tmp321 << shiftFromNearToNoise;
+ }
+
+ __asm __volatile(
+ "mul %[tmp32], %[tmp32], %[tmp16] \n\t"
+ "mul %[tmp321], %[tmp321], %[tmp161] \n\t"
+ "sra %[nrsh1], %[tmp32], 14 \n\t"
+ "sra %[nrsh2], %[tmp321], 14 \n\t"
+ : [nrsh1] "=&r"(nrsh1), [nrsh2] "=r"(nrsh2)
+ : [tmp16] "r"(tmp16), [tmp161] "r"(tmp161), [tmp32] "r"(tmp32),
+ [tmp321] "r"(tmp321)
+ : "memory", "hi", "lo");
+
+ __asm __volatile(
+ "lh %[tmp32], 0(%[randW16p]) \n\t"
+ "lh %[tmp321], 2(%[randW16p]) \n\t"
+ "addiu %[randW16p], %[randW16p], 4 \n\t"
+ "mul %[tmp32], %[tmp32], %[c359] \n\t"
+ "mul %[tmp321], %[tmp321], %[c359] \n\t"
+ "sra %[tmp16], %[tmp32], 15 \n\t"
+ "sra %[tmp161], %[tmp321], 15 \n\t"
+ : [randW16p] "+r"(randW16p), [tmp32] "=&r"(tmp32), [tmp16] "=r"(tmp16),
+ [tmp161] "=r"(tmp161), [tmp321] "=&r"(tmp321)
+ : [c359] "r"(c359)
+ : "memory", "hi", "lo");
+
+#if !defined(MIPS_DSP_R1_LE)
+ tmp32 = WebRtcAecm_kCosTable[tmp16];
+ tmp321 = WebRtcAecm_kSinTable[tmp16];
+ tmp322 = WebRtcAecm_kCosTable[tmp161];
+ tmp323 = WebRtcAecm_kSinTable[tmp161];
+#else
+ __asm __volatile(
+ "sll %[tmp16], %[tmp16], 1 \n\t"
+ "sll %[tmp161], %[tmp161], 1 \n\t"
+ "lhx %[tmp32], %[tmp16](%[kCosTablep]) \n\t"
+ "lhx %[tmp321], %[tmp16](%[kSinTablep]) \n\t"
+ "lhx %[tmp322], %[tmp161](%[kCosTablep]) \n\t"
+ "lhx %[tmp323], %[tmp161](%[kSinTablep]) \n\t"
+ : [tmp32] "=&r"(tmp32), [tmp321] "=&r"(tmp321), [tmp322] "=&r"(tmp322),
+ [tmp323] "=&r"(tmp323)
+ : [kCosTablep] "r"(kCosTablep), [tmp16] "r"(tmp16),
+ [tmp161] "r"(tmp161), [kSinTablep] "r"(kSinTablep)
+ : "memory");
+#endif
+ __asm __volatile(
+ "mul %[tmp32], %[tmp32], %[nrsh1] \n\t"
+ "negu %[tmp162], %[nrsh1] \n\t"
+ "mul %[tmp322], %[tmp322], %[nrsh2] \n\t"
+ "negu %[tmp163], %[nrsh2] \n\t"
+ "sra %[tmp32], %[tmp32], 13 \n\t"
+ "mul %[tmp321], %[tmp321], %[tmp162] \n\t"
+ "sra %[tmp322], %[tmp322], 13 \n\t"
+ "mul %[tmp323], %[tmp323], %[tmp163] \n\t"
+ "sra %[tmp321], %[tmp321], 13 \n\t"
+ "sra %[tmp323], %[tmp323], 13 \n\t"
+ : [tmp32] "+r"(tmp32), [tmp321] "+r"(tmp321), [tmp162] "=&r"(tmp162),
+ [tmp322] "+r"(tmp322), [tmp323] "+r"(tmp323), [tmp163] "=&r"(tmp163)
+ : [nrsh1] "r"(nrsh1), [nrsh2] "r"(nrsh2)
+ : "hi", "lo");
+ // Tables are in Q13.
+ uReal[i] = (int16_t)tmp32;
+ uImag[i] = (int16_t)tmp321;
+ uReal[i + 1] = (int16_t)tmp322;
+ uImag[i + 1] = (int16_t)tmp323;
+ }
+
+ int32_t tt, sgn;
+ tt = out[0].real;
+ sgn = ((int)tt) >> 31;
+ out[0].real = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
+ tt = out[0].imag;
+ sgn = ((int)tt) >> 31;
+ out[0].imag = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
+ for (i = 1; i < PART_LEN; i++) {
+ tt = out[i].real + uReal[i];
+ sgn = ((int)tt) >> 31;
+ out[i].real = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
+ tt = out[i].imag + uImag[i];
+ sgn = ((int)tt) >> 31;
+ out[i].imag = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
+ }
+ tt = out[PART_LEN].real + uReal[PART_LEN];
+ sgn = ((int)tt) >> 31;
+ out[PART_LEN].real = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
+ tt = out[PART_LEN].imag;
+ sgn = ((int)tt) >> 31;
+ out[PART_LEN].imag = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
+}
+
+} // namespace webrtc