summaryrefslogtreecommitdiff
path: root/webrtc/rtc_base/numerics/safe_minmax.h
diff options
context:
space:
mode:
Diffstat (limited to 'webrtc/rtc_base/numerics/safe_minmax.h')
-rw-r--r--webrtc/rtc_base/numerics/safe_minmax.h335
1 files changed, 335 insertions, 0 deletions
diff --git a/webrtc/rtc_base/numerics/safe_minmax.h b/webrtc/rtc_base/numerics/safe_minmax.h
new file mode 100644
index 0000000..6c41dfd
--- /dev/null
+++ b/webrtc/rtc_base/numerics/safe_minmax.h
@@ -0,0 +1,335 @@
+/*
+ * Copyright 2017 The WebRTC Project Authors. All rights reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+// Minimum and maximum
+// ===================
+//
+// rtc::SafeMin(x, y)
+// rtc::SafeMax(x, y)
+//
+// (These are both constexpr.)
+//
+// Accept two arguments of either any two integral or any two floating-point
+// types, and return the smaller and larger value, respectively, with no
+// truncation or wrap-around. If only one of the input types is statically
+// guaranteed to be able to represent the result, the return type is that type;
+// if either one would do, the result type is the smaller type. (One of these
+// two cases always applies.)
+//
+// * The case with one floating-point and one integral type is not allowed,
+// because the floating-point type will have greater range, but may not
+// have sufficient precision to represent the integer value exactly.)
+//
+// Clamp (a.k.a. constrain to a given interval)
+// ============================================
+//
+// rtc::SafeClamp(x, a, b)
+//
+// Accepts three arguments of any mix of integral types or any mix of
+// floating-point types, and returns the value in the closed interval [a, b]
+// that is closest to x (that is, if x < a it returns a; if x > b it returns b;
+// and if a <= x <= b it returns x). As for SafeMin() and SafeMax(), there is
+// no truncation or wrap-around. The result type
+//
+// 1. is statically guaranteed to be able to represent the result;
+//
+// 2. is no larger than the largest of the three argument types; and
+//
+// 3. has the same signedness as the type of the first argument, if this is
+// possible without violating the First or Second Law.
+//
+// There is always at least one type that meets criteria 1 and 2. If more than
+// one type meets these criteria equally well, the result type is one of the
+// types that is smallest. Note that unlike SafeMin() and SafeMax(),
+// SafeClamp() will sometimes pick a return type that isn't the type of any of
+// its arguments.
+//
+// * In this context, a type A is smaller than a type B if it has a smaller
+// range; that is, if A::max() - A::min() < B::max() - B::min(). For
+// example, int8_t < int16_t == uint16_t < int32_t, and all integral types
+// are smaller than all floating-point types.)
+//
+// * As for SafeMin and SafeMax, mixing integer and floating-point arguments
+// is not allowed, because floating-point types have greater range than
+// integer types, but do not have sufficient precision to represent the
+// values of most integer types exactly.
+//
+// Requesting a specific return type
+// =================================
+//
+// All three functions allow callers to explicitly specify the return type as a
+// template parameter, overriding the default return type. E.g.
+//
+// rtc::SafeMin<int>(x, y) // returns an int
+//
+// If the requested type is statically guaranteed to be able to represent the
+// result, then everything's fine, and the return type is as requested. But if
+// the requested type is too small, a static_assert is triggered.
+
+#ifndef RTC_BASE_NUMERICS_SAFE_MINMAX_H_
+#define RTC_BASE_NUMERICS_SAFE_MINMAX_H_
+
+#include <limits>
+#include <type_traits>
+
+#include "rtc_base/checks.h"
+#include "rtc_base/numerics/safe_compare.h"
+#include "rtc_base/type_traits.h"
+
+namespace rtc {
+
+namespace safe_minmax_impl {
+
+// Make the range of a type available via something other than a constexpr
+// function, to work around MSVC limitations. See
+// https://blogs.msdn.microsoft.com/vcblog/2015/12/02/partial-support-for-expression-sfinae-in-vs-2015-update-1/
+template <typename T>
+struct Limits {
+ static constexpr T lowest = std::numeric_limits<T>::lowest();
+ static constexpr T max = std::numeric_limits<T>::max();
+};
+
+template <typename T, bool is_enum = std::is_enum<T>::value>
+struct UnderlyingType;
+
+template <typename T>
+struct UnderlyingType<T, false> {
+ using type = T;
+};
+
+template <typename T>
+struct UnderlyingType<T, true> {
+ using type = typename std::underlying_type<T>::type;
+};
+
+// Given two types T1 and T2, find types that can hold the smallest (in
+// ::min_t) and the largest (in ::max_t) of the two values.
+template <typename T1,
+ typename T2,
+ bool int1 = IsIntlike<T1>::value,
+ bool int2 = IsIntlike<T2>::value>
+struct MType {
+ static_assert(int1 == int2,
+ "You may not mix integral and floating-point arguments");
+};
+
+// Specialization for when neither type is integral (and therefore presumably
+// floating-point).
+template <typename T1, typename T2>
+struct MType<T1, T2, false, false> {
+ using min_t = typename std::common_type<T1, T2>::type;
+ static_assert(std::is_same<min_t, T1>::value ||
+ std::is_same<min_t, T2>::value,
+ "");
+
+ using max_t = typename std::common_type<T1, T2>::type;
+ static_assert(std::is_same<max_t, T1>::value ||
+ std::is_same<max_t, T2>::value,
+ "");
+};
+
+// Specialization for when both types are integral.
+template <typename T1, typename T2>
+struct MType<T1, T2, true, true> {
+ // The type with the lowest minimum value. In case of a tie, the type with
+ // the lowest maximum value. In case that too is a tie, the types have the
+ // same range, and we arbitrarily pick T1.
+ using min_t = typename std::conditional<
+ SafeLt(Limits<T1>::lowest, Limits<T2>::lowest),
+ T1,
+ typename std::conditional<
+ SafeGt(Limits<T1>::lowest, Limits<T2>::lowest),
+ T2,
+ typename std::conditional<SafeLe(Limits<T1>::max, Limits<T2>::max),
+ T1,
+ T2>::type>::type>::type;
+ static_assert(std::is_same<min_t, T1>::value ||
+ std::is_same<min_t, T2>::value,
+ "");
+
+ // The type with the highest maximum value. In case of a tie, the types have
+ // the same range (because in C++, integer types with the same maximum also
+ // have the same minimum).
+ static_assert(SafeNe(Limits<T1>::max, Limits<T2>::max) ||
+ SafeEq(Limits<T1>::lowest, Limits<T2>::lowest),
+ "integer types with the same max should have the same min");
+ using max_t = typename std::
+ conditional<SafeGe(Limits<T1>::max, Limits<T2>::max), T1, T2>::type;
+ static_assert(std::is_same<max_t, T1>::value ||
+ std::is_same<max_t, T2>::value,
+ "");
+};
+
+// A dummy type that we pass around at compile time but never actually use.
+// Declared but not defined.
+struct DefaultType;
+
+// ::type is A, except we fall back to B if A is DefaultType. We static_assert
+// that the chosen type can hold all values that B can hold.
+template <typename A, typename B>
+struct TypeOr {
+ using type = typename std::
+ conditional<std::is_same<A, DefaultType>::value, B, A>::type;
+ static_assert(SafeLe(Limits<type>::lowest, Limits<B>::lowest) &&
+ SafeGe(Limits<type>::max, Limits<B>::max),
+ "The specified type isn't large enough");
+ static_assert(IsIntlike<type>::value == IsIntlike<B>::value &&
+ std::is_floating_point<type>::value ==
+ std::is_floating_point<type>::value,
+ "float<->int conversions not allowed");
+};
+
+} // namespace safe_minmax_impl
+
+template <
+ typename R = safe_minmax_impl::DefaultType,
+ typename T1 = safe_minmax_impl::DefaultType,
+ typename T2 = safe_minmax_impl::DefaultType,
+ typename R2 = typename safe_minmax_impl::TypeOr<
+ R,
+ typename safe_minmax_impl::MType<
+ typename safe_minmax_impl::UnderlyingType<T1>::type,
+ typename safe_minmax_impl::UnderlyingType<T2>::type>::min_t>::type>
+constexpr R2 SafeMin(T1 a, T2 b) {
+ static_assert(IsIntlike<T1>::value || std::is_floating_point<T1>::value,
+ "The first argument must be integral or floating-point");
+ static_assert(IsIntlike<T2>::value || std::is_floating_point<T2>::value,
+ "The second argument must be integral or floating-point");
+ return SafeLt(a, b) ? static_cast<R2>(a) : static_cast<R2>(b);
+}
+
+template <
+ typename R = safe_minmax_impl::DefaultType,
+ typename T1 = safe_minmax_impl::DefaultType,
+ typename T2 = safe_minmax_impl::DefaultType,
+ typename R2 = typename safe_minmax_impl::TypeOr<
+ R,
+ typename safe_minmax_impl::MType<
+ typename safe_minmax_impl::UnderlyingType<T1>::type,
+ typename safe_minmax_impl::UnderlyingType<T2>::type>::max_t>::type>
+constexpr R2 SafeMax(T1 a, T2 b) {
+ static_assert(IsIntlike<T1>::value || std::is_floating_point<T1>::value,
+ "The first argument must be integral or floating-point");
+ static_assert(IsIntlike<T2>::value || std::is_floating_point<T2>::value,
+ "The second argument must be integral or floating-point");
+ return SafeGt(a, b) ? static_cast<R2>(a) : static_cast<R2>(b);
+}
+
+namespace safe_minmax_impl {
+
+// Given three types T, L, and H, let ::type be a suitable return value for
+// SafeClamp(T, L, H). See the docs at the top of this file for details.
+template <typename T,
+ typename L,
+ typename H,
+ bool int1 = IsIntlike<T>::value,
+ bool int2 = IsIntlike<L>::value,
+ bool int3 = IsIntlike<H>::value>
+struct ClampType {
+ static_assert(int1 == int2 && int1 == int3,
+ "You may not mix integral and floating-point arguments");
+};
+
+// Specialization for when all three types are floating-point.
+template <typename T, typename L, typename H>
+struct ClampType<T, L, H, false, false, false> {
+ using type = typename std::common_type<T, L, H>::type;
+};
+
+// Specialization for when all three types are integral.
+template <typename T, typename L, typename H>
+struct ClampType<T, L, H, true, true, true> {
+ private:
+ // Range of the return value. The return type must be able to represent this
+ // full range.
+ static constexpr auto r_min =
+ SafeMax(Limits<L>::lowest, SafeMin(Limits<H>::lowest, Limits<T>::lowest));
+ static constexpr auto r_max =
+ SafeMin(Limits<H>::max, SafeMax(Limits<L>::max, Limits<T>::max));
+
+ // Is the given type an acceptable return type? (That is, can it represent
+ // all possible return values, and is it no larger than the largest of the
+ // input types?)
+ template <typename A>
+ struct AcceptableType {
+ private:
+ static constexpr bool not_too_large = sizeof(A) <= sizeof(L) ||
+ sizeof(A) <= sizeof(H) ||
+ sizeof(A) <= sizeof(T);
+ static constexpr bool range_contained =
+ SafeLe(Limits<A>::lowest, r_min) && SafeLe(r_max, Limits<A>::max);
+
+ public:
+ static constexpr bool value = not_too_large && range_contained;
+ };
+
+ using best_signed_type = typename std::conditional<
+ AcceptableType<int8_t>::value,
+ int8_t,
+ typename std::conditional<
+ AcceptableType<int16_t>::value,
+ int16_t,
+ typename std::conditional<AcceptableType<int32_t>::value,
+ int32_t,
+ int64_t>::type>::type>::type;
+
+ using best_unsigned_type = typename std::conditional<
+ AcceptableType<uint8_t>::value,
+ uint8_t,
+ typename std::conditional<
+ AcceptableType<uint16_t>::value,
+ uint16_t,
+ typename std::conditional<AcceptableType<uint32_t>::value,
+ uint32_t,
+ uint64_t>::type>::type>::type;
+
+ public:
+ // Pick the best type, preferring the same signedness as T but falling back
+ // to the other one if necessary.
+ using type = typename std::conditional<
+ std::is_signed<T>::value,
+ typename std::conditional<AcceptableType<best_signed_type>::value,
+ best_signed_type,
+ best_unsigned_type>::type,
+ typename std::conditional<AcceptableType<best_unsigned_type>::value,
+ best_unsigned_type,
+ best_signed_type>::type>::type;
+ static_assert(AcceptableType<type>::value, "");
+};
+
+} // namespace safe_minmax_impl
+
+template <
+ typename R = safe_minmax_impl::DefaultType,
+ typename T = safe_minmax_impl::DefaultType,
+ typename L = safe_minmax_impl::DefaultType,
+ typename H = safe_minmax_impl::DefaultType,
+ typename R2 = typename safe_minmax_impl::TypeOr<
+ R,
+ typename safe_minmax_impl::ClampType<
+ typename safe_minmax_impl::UnderlyingType<T>::type,
+ typename safe_minmax_impl::UnderlyingType<L>::type,
+ typename safe_minmax_impl::UnderlyingType<H>::type>::type>::type>
+R2 SafeClamp(T x, L min, H max) {
+ static_assert(IsIntlike<H>::value || std::is_floating_point<H>::value,
+ "The first argument must be integral or floating-point");
+ static_assert(IsIntlike<T>::value || std::is_floating_point<T>::value,
+ "The second argument must be integral or floating-point");
+ static_assert(IsIntlike<L>::value || std::is_floating_point<L>::value,
+ "The third argument must be integral or floating-point");
+ RTC_DCHECK_LE(min, max);
+ return SafeLe(x, min)
+ ? static_cast<R2>(min)
+ : SafeGe(x, max) ? static_cast<R2>(max) : static_cast<R2>(x);
+}
+
+} // namespace rtc
+
+#endif // RTC_BASE_NUMERICS_SAFE_MINMAX_H_