summaryrefslogtreecommitdiff
path: root/webrtc/common_audio/signal_processing/include/signal_processing_library.h
blob: 2e96883e6de96a1620d85a4f3118d4004b7bfc4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */


/*
 * This header file includes all of the fix point signal processing library (SPL) function
 * descriptions and declarations.
 * For specific function calls, see bottom of file.
 */

#ifndef WEBRTC_SPL_SIGNAL_PROCESSING_LIBRARY_H_
#define WEBRTC_SPL_SIGNAL_PROCESSING_LIBRARY_H_

#include <string.h>
#include "webrtc/typedefs.h"

// Macros specific for the fixed point implementation
#define WEBRTC_SPL_WORD16_MAX       32767
#define WEBRTC_SPL_WORD16_MIN       -32768
#define WEBRTC_SPL_WORD32_MAX       (int32_t)0x7fffffff
#define WEBRTC_SPL_WORD32_MIN       (int32_t)0x80000000
#define WEBRTC_SPL_MAX_LPC_ORDER    14
#define WEBRTC_SPL_MIN(A, B)        (A < B ? A : B)  // Get min value
#define WEBRTC_SPL_MAX(A, B)        (A > B ? A : B)  // Get max value
// TODO(kma/bjorn): For the next two macros, investigate how to correct the code
// for inputs of a = WEBRTC_SPL_WORD16_MIN or WEBRTC_SPL_WORD32_MIN.
#define WEBRTC_SPL_ABS_W16(a) \
    (((int16_t)a >= 0) ? ((int16_t)a) : -((int16_t)a))
#define WEBRTC_SPL_ABS_W32(a) \
    (((int32_t)a >= 0) ? ((int32_t)a) : -((int32_t)a))

#define WEBRTC_SPL_MUL(a, b) \
    ((int32_t) ((int32_t)(a) * (int32_t)(b)))
#define WEBRTC_SPL_UMUL(a, b) \
    ((uint32_t) ((uint32_t)(a) * (uint32_t)(b)))
#define WEBRTC_SPL_UMUL_32_16(a, b) \
    ((uint32_t) ((uint32_t)(a) * (uint16_t)(b)))
#define WEBRTC_SPL_MUL_16_U16(a, b) \
    ((int32_t)(int16_t)(a) * (uint16_t)(b))

#ifndef WEBRTC_ARCH_ARM_V7
// For ARMv7 platforms, these are inline functions in spl_inl_armv7.h
#ifndef MIPS32_LE
// For MIPS platforms, these are inline functions in spl_inl_mips.h
#define WEBRTC_SPL_MUL_16_16(a, b) \
    ((int32_t) (((int16_t)(a)) * ((int16_t)(b))))
#define WEBRTC_SPL_MUL_16_32_RSFT16(a, b) \
    (WEBRTC_SPL_MUL_16_16(a, b >> 16) \
     + ((WEBRTC_SPL_MUL_16_16(a, (b & 0xffff) >> 1) + 0x4000) >> 15))
#endif
#endif

#define WEBRTC_SPL_MUL_16_32_RSFT11(a, b) \
    ((WEBRTC_SPL_MUL_16_16(a, (b) >> 16) << 5) \
    + (((WEBRTC_SPL_MUL_16_U16(a, (uint16_t)(b)) >> 1) + 0x0200) >> 10))
#define WEBRTC_SPL_MUL_16_32_RSFT14(a, b) \
    ((WEBRTC_SPL_MUL_16_16(a, (b) >> 16) << 2) \
    + (((WEBRTC_SPL_MUL_16_U16(a, (uint16_t)(b)) >> 1) + 0x1000) >> 13))
#define WEBRTC_SPL_MUL_16_32_RSFT15(a, b) \
    ((WEBRTC_SPL_MUL_16_16(a, (b) >> 16) << 1) \
    + (((WEBRTC_SPL_MUL_16_U16(a, (uint16_t)(b)) >> 1) + 0x2000) >> 14))

#define WEBRTC_SPL_MUL_16_16_RSFT(a, b, c) \
    (WEBRTC_SPL_MUL_16_16(a, b) >> (c))

#define WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(a, b, c) \
    ((WEBRTC_SPL_MUL_16_16(a, b) + ((int32_t) \
                                  (((int32_t)1) << ((c) - 1)))) >> (c))

// C + the 32 most significant bits of A * B
#define WEBRTC_SPL_SCALEDIFF32(A, B, C) \
    (C + (B >> 16) * A + (((uint32_t)(0x0000FFFF & B) * A) >> 16))

#define WEBRTC_SPL_SAT(a, b, c)         (b > a ? a : b < c ? c : b)

// Shifting with negative numbers allowed
// Positive means left shift
#define WEBRTC_SPL_SHIFT_W32(x, c) \
    (((c) >= 0) ? ((x) << (c)) : ((x) >> (-(c))))

// Shifting with negative numbers not allowed
// We cannot do casting here due to signed/unsigned problem
#define WEBRTC_SPL_LSHIFT_W32(x, c)     ((x) << (c))

#define WEBRTC_SPL_RSHIFT_U32(x, c)     ((uint32_t)(x) >> (c))

#define WEBRTC_SPL_RAND(a) \
    ((int16_t)((((int16_t)a * 18816) >> 7) & 0x00007fff))

#ifdef __cplusplus
extern "C" {
#endif

#define WEBRTC_SPL_MEMCPY_W16(v1, v2, length) \
  memcpy(v1, v2, (length) * sizeof(int16_t))

// inline functions:
#include "webrtc/common_audio/signal_processing/include/spl_inl.h"

// Initialize SPL. Currently it contains only function pointer initialization.
// If the underlying platform is known to be ARM-Neon (WEBRTC_HAS_NEON defined),
// the pointers will be assigned to code optimized for Neon; otherwise
// if run-time Neon detection (WEBRTC_DETECT_NEON) is enabled, the pointers
// will be assigned to either Neon code or generic C code; otherwise, generic C
// code will be assigned.
// Note that this function MUST be called in any application that uses SPL
// functions.
void WebRtcSpl_Init();

int16_t WebRtcSpl_GetScalingSquare(int16_t* in_vector,
                                   size_t in_vector_length,
                                   size_t times);

// Copy and set operations. Implementation in copy_set_operations.c.
// Descriptions at bottom of file.
void WebRtcSpl_MemSetW16(int16_t* vector,
                         int16_t set_value,
                         size_t vector_length);
void WebRtcSpl_MemSetW32(int32_t* vector,
                         int32_t set_value,
                         size_t vector_length);
void WebRtcSpl_MemCpyReversedOrder(int16_t* out_vector,
                                   int16_t* in_vector,
                                   size_t vector_length);
void WebRtcSpl_CopyFromEndW16(const int16_t* in_vector,
                              size_t in_vector_length,
                              size_t samples,
                              int16_t* out_vector);
void WebRtcSpl_ZerosArrayW16(int16_t* vector,
                             size_t vector_length);
void WebRtcSpl_ZerosArrayW32(int32_t* vector,
                             size_t vector_length);
// End: Copy and set operations.


// Minimum and maximum operation functions and their pointers.
// Implementation in min_max_operations.c.

// Returns the largest absolute value in a signed 16-bit vector.
//
// Input:
//      - vector : 16-bit input vector.
//      - length : Number of samples in vector.
//
// Return value  : Maximum absolute value in vector.
typedef int16_t (*MaxAbsValueW16)(const int16_t* vector, size_t length);
extern MaxAbsValueW16 WebRtcSpl_MaxAbsValueW16;
int16_t WebRtcSpl_MaxAbsValueW16C(const int16_t* vector, size_t length);
#if (defined WEBRTC_DETECT_NEON) || (defined WEBRTC_HAS_NEON)
int16_t WebRtcSpl_MaxAbsValueW16Neon(const int16_t* vector, size_t length);
#endif
#if defined(MIPS32_LE)
int16_t WebRtcSpl_MaxAbsValueW16_mips(const int16_t* vector, size_t length);
#endif

// Returns the largest absolute value in a signed 32-bit vector.
//
// Input:
//      - vector : 32-bit input vector.
//      - length : Number of samples in vector.
//
// Return value  : Maximum absolute value in vector.
typedef int32_t (*MaxAbsValueW32)(const int32_t* vector, size_t length);
extern MaxAbsValueW32 WebRtcSpl_MaxAbsValueW32;
int32_t WebRtcSpl_MaxAbsValueW32C(const int32_t* vector, size_t length);
#if (defined WEBRTC_DETECT_NEON) || (defined WEBRTC_HAS_NEON)
int32_t WebRtcSpl_MaxAbsValueW32Neon(const int32_t* vector, size_t length);
#endif
#if defined(MIPS_DSP_R1_LE)
int32_t WebRtcSpl_MaxAbsValueW32_mips(const int32_t* vector, size_t length);
#endif

// Returns the maximum value of a 16-bit vector.
//
// Input:
//      - vector : 16-bit input vector.
//      - length : Number of samples in vector.
//
// Return value  : Maximum sample value in |vector|.
typedef int16_t (*MaxValueW16)(const int16_t* vector, size_t length);
extern MaxValueW16 WebRtcSpl_MaxValueW16;
int16_t WebRtcSpl_MaxValueW16C(const int16_t* vector, size_t length);
#if (defined WEBRTC_DETECT_NEON) || (defined WEBRTC_HAS_NEON)
int16_t WebRtcSpl_MaxValueW16Neon(const int16_t* vector, size_t length);
#endif
#if defined(MIPS32_LE)
int16_t WebRtcSpl_MaxValueW16_mips(const int16_t* vector, size_t length);
#endif

// Returns the maximum value of a 32-bit vector.
//
// Input:
//      - vector : 32-bit input vector.
//      - length : Number of samples in vector.
//
// Return value  : Maximum sample value in |vector|.
typedef int32_t (*MaxValueW32)(const int32_t* vector, size_t length);
extern MaxValueW32 WebRtcSpl_MaxValueW32;
int32_t WebRtcSpl_MaxValueW32C(const int32_t* vector, size_t length);
#if (defined WEBRTC_DETECT_NEON) || (defined WEBRTC_HAS_NEON)
int32_t WebRtcSpl_MaxValueW32Neon(const int32_t* vector, size_t length);
#endif
#if defined(MIPS32_LE)
int32_t WebRtcSpl_MaxValueW32_mips(const int32_t* vector, size_t length);
#endif

// Returns the minimum value of a 16-bit vector.
//
// Input:
//      - vector : 16-bit input vector.
//      - length : Number of samples in vector.
//
// Return value  : Minimum sample value in |vector|.
typedef int16_t (*MinValueW16)(const int16_t* vector, size_t length);
extern MinValueW16 WebRtcSpl_MinValueW16;
int16_t WebRtcSpl_MinValueW16C(const int16_t* vector, size_t length);
#if (defined WEBRTC_DETECT_NEON) || (defined WEBRTC_HAS_NEON)
int16_t WebRtcSpl_MinValueW16Neon(const int16_t* vector, size_t length);
#endif
#if defined(MIPS32_LE)
int16_t WebRtcSpl_MinValueW16_mips(const int16_t* vector, size_t length);
#endif

// Returns the minimum value of a 32-bit vector.
//
// Input:
//      - vector : 32-bit input vector.
//      - length : Number of samples in vector.
//
// Return value  : Minimum sample value in |vector|.
typedef int32_t (*MinValueW32)(const int32_t* vector, size_t length);
extern MinValueW32 WebRtcSpl_MinValueW32;
int32_t WebRtcSpl_MinValueW32C(const int32_t* vector, size_t length);
#if (defined WEBRTC_DETECT_NEON) || (defined WEBRTC_HAS_NEON)
int32_t WebRtcSpl_MinValueW32Neon(const int32_t* vector, size_t length);
#endif
#if defined(MIPS32_LE)
int32_t WebRtcSpl_MinValueW32_mips(const int32_t* vector, size_t length);
#endif

// Returns the vector index to the largest absolute value of a 16-bit vector.
//
// Input:
//      - vector : 16-bit input vector.
//      - length : Number of samples in vector.
//
// Return value  : Index to the maximum absolute value in vector.
//                 If there are multiple equal maxima, return the index of the
//                 first. -32768 will always have precedence over 32767 (despite
//                 -32768 presenting an int16 absolute value of 32767).
size_t WebRtcSpl_MaxAbsIndexW16(const int16_t* vector, size_t length);

// Returns the vector index to the maximum sample value of a 16-bit vector.
//
// Input:
//      - vector : 16-bit input vector.
//      - length : Number of samples in vector.
//
// Return value  : Index to the maximum value in vector (if multiple
//                 indexes have the maximum, return the first).
size_t WebRtcSpl_MaxIndexW16(const int16_t* vector, size_t length);

// Returns the vector index to the maximum sample value of a 32-bit vector.
//
// Input:
//      - vector : 32-bit input vector.
//      - length : Number of samples in vector.
//
// Return value  : Index to the maximum value in vector (if multiple
//                 indexes have the maximum, return the first).
size_t WebRtcSpl_MaxIndexW32(const int32_t* vector, size_t length);

// Returns the vector index to the minimum sample value of a 16-bit vector.
//
// Input:
//      - vector : 16-bit input vector.
//      - length : Number of samples in vector.
//
// Return value  : Index to the mimimum value in vector  (if multiple
//                 indexes have the minimum, return the first).
size_t WebRtcSpl_MinIndexW16(const int16_t* vector, size_t length);

// Returns the vector index to the minimum sample value of a 32-bit vector.
//
// Input:
//      - vector : 32-bit input vector.
//      - length : Number of samples in vector.
//
// Return value  : Index to the mimimum value in vector  (if multiple
//                 indexes have the minimum, return the first).
size_t WebRtcSpl_MinIndexW32(const int32_t* vector, size_t length);

// End: Minimum and maximum operations.


// Vector scaling operations. Implementation in vector_scaling_operations.c.
// Description at bottom of file.
void WebRtcSpl_VectorBitShiftW16(int16_t* out_vector,
                                 size_t vector_length,
                                 const int16_t* in_vector,
                                 int16_t right_shifts);
void WebRtcSpl_VectorBitShiftW32(int32_t* out_vector,
                                 size_t vector_length,
                                 const int32_t* in_vector,
                                 int16_t right_shifts);
void WebRtcSpl_VectorBitShiftW32ToW16(int16_t* out_vector,
                                      size_t vector_length,
                                      const int32_t* in_vector,
                                      int right_shifts);
void WebRtcSpl_ScaleVector(const int16_t* in_vector,
                           int16_t* out_vector,
                           int16_t gain,
                           size_t vector_length,
                           int16_t right_shifts);
void WebRtcSpl_ScaleVectorWithSat(const int16_t* in_vector,
                                  int16_t* out_vector,
                                  int16_t gain,
                                  size_t vector_length,
                                  int16_t right_shifts);
void WebRtcSpl_ScaleAndAddVectors(const int16_t* in_vector1,
                                  int16_t gain1, int right_shifts1,
                                  const int16_t* in_vector2,
                                  int16_t gain2, int right_shifts2,
                                  int16_t* out_vector,
                                  size_t vector_length);

// The functions (with related pointer) perform the vector operation:
//   out_vector[k] = ((scale1 * in_vector1[k]) + (scale2 * in_vector2[k])
//        + round_value) >> right_shifts,
//   where  round_value = (1 << right_shifts) >> 1.
//
// Input:
//      - in_vector1       : Input vector 1
//      - in_vector1_scale : Gain to be used for vector 1
//      - in_vector2       : Input vector 2
//      - in_vector2_scale : Gain to be used for vector 2
//      - right_shifts     : Number of right bit shifts to be applied
//      - length           : Number of elements in the input vectors
//
// Output:
//      - out_vector       : Output vector
// Return value            : 0 if OK, -1 if (in_vector1 == NULL
//                           || in_vector2 == NULL || out_vector == NULL
//                           || length <= 0 || right_shift < 0).
typedef int (*ScaleAndAddVectorsWithRound)(const int16_t* in_vector1,
                                           int16_t in_vector1_scale,
                                           const int16_t* in_vector2,
                                           int16_t in_vector2_scale,
                                           int right_shifts,
                                           int16_t* out_vector,
                                           size_t length);
extern ScaleAndAddVectorsWithRound WebRtcSpl_ScaleAndAddVectorsWithRound;
int WebRtcSpl_ScaleAndAddVectorsWithRoundC(const int16_t* in_vector1,
                                           int16_t in_vector1_scale,
                                           const int16_t* in_vector2,
                                           int16_t in_vector2_scale,
                                           int right_shifts,
                                           int16_t* out_vector,
                                           size_t length);
#if defined(MIPS_DSP_R1_LE)
int WebRtcSpl_ScaleAndAddVectorsWithRound_mips(const int16_t* in_vector1,
                                               int16_t in_vector1_scale,
                                               const int16_t* in_vector2,
                                               int16_t in_vector2_scale,
                                               int right_shifts,
                                               int16_t* out_vector,
                                               size_t length);
#endif
// End: Vector scaling operations.

// iLBC specific functions. Implementations in ilbc_specific_functions.c.
// Description at bottom of file.
void WebRtcSpl_ReverseOrderMultArrayElements(int16_t* out_vector,
                                             const int16_t* in_vector,
                                             const int16_t* window,
                                             size_t vector_length,
                                             int16_t right_shifts);
void WebRtcSpl_ElementwiseVectorMult(int16_t* out_vector,
                                     const int16_t* in_vector,
                                     const int16_t* window,
                                     size_t vector_length,
                                     int16_t right_shifts);
void WebRtcSpl_AddVectorsAndShift(int16_t* out_vector,
                                  const int16_t* in_vector1,
                                  const int16_t* in_vector2,
                                  size_t vector_length,
                                  int16_t right_shifts);
void WebRtcSpl_AddAffineVectorToVector(int16_t* out_vector,
                                       int16_t* in_vector,
                                       int16_t gain,
                                       int32_t add_constant,
                                       int16_t right_shifts,
                                       size_t vector_length);
void WebRtcSpl_AffineTransformVector(int16_t* out_vector,
                                     int16_t* in_vector,
                                     int16_t gain,
                                     int32_t add_constant,
                                     int16_t right_shifts,
                                     size_t vector_length);
// End: iLBC specific functions.

// Signal processing operations.

// A 32-bit fix-point implementation of auto-correlation computation
//
// Input:
//      - in_vector        : Vector to calculate autocorrelation upon
//      - in_vector_length : Length (in samples) of |vector|
//      - order            : The order up to which the autocorrelation should be
//                           calculated
//
// Output:
//      - result           : auto-correlation values (values should be seen
//                           relative to each other since the absolute values
//                           might have been down shifted to avoid overflow)
//
//      - scale            : The number of left shifts required to obtain the
//                           auto-correlation in Q0
//
// Return value            : Number of samples in |result|, i.e. (order+1)
size_t WebRtcSpl_AutoCorrelation(const int16_t* in_vector,
                                 size_t in_vector_length,
                                 size_t order,
                                 int32_t* result,
                                 int* scale);

// A 32-bit fix-point implementation of the Levinson-Durbin algorithm that
// does NOT use the 64 bit class
//
// Input:
//      - auto_corr : Vector with autocorrelation values of length >= |order|+1
//      - order     : The LPC filter order (support up to order 20)
//
// Output:
//      - lpc_coef  : lpc_coef[0..order] LPC coefficients in Q12
//      - refl_coef : refl_coef[0...order-1]| Reflection coefficients in Q15
//
// Return value     : 1 for stable 0 for unstable
int16_t WebRtcSpl_LevinsonDurbin(const int32_t* auto_corr,
                                 int16_t* lpc_coef,
                                 int16_t* refl_coef,
                                 size_t order);

// Converts reflection coefficients |refl_coef| to LPC coefficients |lpc_coef|.
// This version is a 16 bit operation.
//
// NOTE: The 16 bit refl_coef -> lpc_coef conversion might result in a
// "slightly unstable" filter (i.e., a pole just outside the unit circle) in
// "rare" cases even if the reflection coefficients are stable.
//
// Input:
//      - refl_coef : Reflection coefficients in Q15 that should be converted
//                    to LPC coefficients
//      - use_order : Number of coefficients in |refl_coef|
//
// Output:
//      - lpc_coef  : LPC coefficients in Q12
void WebRtcSpl_ReflCoefToLpc(const int16_t* refl_coef,
                             int use_order,
                             int16_t* lpc_coef);

// Converts LPC coefficients |lpc_coef| to reflection coefficients |refl_coef|.
// This version is a 16 bit operation.
// The conversion is implemented by the step-down algorithm.
//
// Input:
//      - lpc_coef  : LPC coefficients in Q12, that should be converted to
//                    reflection coefficients
//      - use_order : Number of coefficients in |lpc_coef|
//
// Output:
//      - refl_coef : Reflection coefficients in Q15.
void WebRtcSpl_LpcToReflCoef(int16_t* lpc_coef,
                             int use_order,
                             int16_t* refl_coef);

// Calculates reflection coefficients (16 bit) from auto-correlation values
//
// Input:
//      - auto_corr : Auto-correlation values
//      - use_order : Number of coefficients wanted be calculated
//
// Output:
//      - refl_coef : Reflection coefficients in Q15.
void WebRtcSpl_AutoCorrToReflCoef(const int32_t* auto_corr,
                                  int use_order,
                                  int16_t* refl_coef);

// The functions (with related pointer) calculate the cross-correlation between
// two sequences |seq1| and |seq2|.
// |seq1| is fixed and |seq2| slides as the pointer is increased with the
// amount |step_seq2|. Note the arguments should obey the relationship:
// |dim_seq| - 1 + |step_seq2| * (|dim_cross_correlation| - 1) <
//      buffer size of |seq2|
//
// Input:
//      - seq1           : First sequence (fixed throughout the correlation)
//      - seq2           : Second sequence (slides |step_vector2| for each
//                            new correlation)
//      - dim_seq        : Number of samples to use in the cross-correlation
//      - dim_cross_correlation : Number of cross-correlations to calculate (the
//                            start position for |vector2| is updated for each
//                            new one)
//      - right_shifts   : Number of right bit shifts to use. This will
//                            become the output Q-domain.
//      - step_seq2      : How many (positive or negative) steps the
//                            |vector2| pointer should be updated for each new
//                            cross-correlation value.
//
// Output:
//      - cross_correlation : The cross-correlation in Q(-right_shifts)
typedef void (*CrossCorrelation)(int32_t* cross_correlation,
                                 const int16_t* seq1,
                                 const int16_t* seq2,
                                 size_t dim_seq,
                                 size_t dim_cross_correlation,
                                 int right_shifts,
                                 int step_seq2);
extern CrossCorrelation WebRtcSpl_CrossCorrelation;
void WebRtcSpl_CrossCorrelationC(int32_t* cross_correlation,
                                 const int16_t* seq1,
                                 const int16_t* seq2,
                                 size_t dim_seq,
                                 size_t dim_cross_correlation,
                                 int right_shifts,
                                 int step_seq2);
#if (defined WEBRTC_DETECT_NEON) || (defined WEBRTC_HAS_NEON)
void WebRtcSpl_CrossCorrelationNeon(int32_t* cross_correlation,
                                    const int16_t* seq1,
                                    const int16_t* seq2,
                                    size_t dim_seq,
                                    size_t dim_cross_correlation,
                                    int right_shifts,
                                    int step_seq2);
#endif
#if defined(MIPS32_LE)
void WebRtcSpl_CrossCorrelation_mips(int32_t* cross_correlation,
                                     const int16_t* seq1,
                                     const int16_t* seq2,
                                     size_t dim_seq,
                                     size_t dim_cross_correlation,
                                     int right_shifts,
                                     int step_seq2);
#endif

// Creates (the first half of) a Hanning window. Size must be at least 1 and
// at most 512.
//
// Input:
//      - size      : Length of the requested Hanning window (1 to 512)
//
// Output:
//      - window    : Hanning vector in Q14.
void WebRtcSpl_GetHanningWindow(int16_t* window, size_t size);

// Calculates y[k] = sqrt(1 - x[k]^2) for each element of the input vector
// |in_vector|. Input and output values are in Q15.
//
// Inputs:
//      - in_vector     : Values to calculate sqrt(1 - x^2) of
//      - vector_length : Length of vector |in_vector|
//
// Output:
//      - out_vector    : Output values in Q15
void WebRtcSpl_SqrtOfOneMinusXSquared(int16_t* in_vector,
                                      size_t vector_length,
                                      int16_t* out_vector);
// End: Signal processing operations.

// Randomization functions. Implementations collected in
// randomization_functions.c and descriptions at bottom of this file.
int16_t WebRtcSpl_RandU(uint32_t* seed);
int16_t WebRtcSpl_RandN(uint32_t* seed);
int16_t WebRtcSpl_RandUArray(int16_t* vector,
                             int16_t vector_length,
                             uint32_t* seed);
// End: Randomization functions.

// Math functions
int32_t WebRtcSpl_Sqrt(int32_t value);
int32_t WebRtcSpl_SqrtFloor(int32_t value);

// Divisions. Implementations collected in division_operations.c and
// descriptions at bottom of this file.
uint32_t WebRtcSpl_DivU32U16(uint32_t num, uint16_t den);
int32_t WebRtcSpl_DivW32W16(int32_t num, int16_t den);
int16_t WebRtcSpl_DivW32W16ResW16(int32_t num, int16_t den);
int32_t WebRtcSpl_DivResultInQ31(int32_t num, int32_t den);
int32_t WebRtcSpl_DivW32HiLow(int32_t num, int16_t den_hi, int16_t den_low);
// End: Divisions.

int32_t WebRtcSpl_Energy(int16_t* vector,
                         size_t vector_length,
                         int* scale_factor);

// Calculates the dot product between two (int16_t) vectors.
//
// Input:
//      - vector1       : Vector 1
//      - vector2       : Vector 2
//      - vector_length : Number of samples used in the dot product
//      - scaling       : The number of right bit shifts to apply on each term
//                        during calculation to avoid overflow, i.e., the
//                        output will be in Q(-|scaling|)
//
// Return value         : The dot product in Q(-scaling)
int32_t WebRtcSpl_DotProductWithScale(const int16_t* vector1,
                                      const int16_t* vector2,
                                      size_t length,
                                      int scaling);

// Filter operations.
size_t WebRtcSpl_FilterAR(const int16_t* ar_coef,
                          size_t ar_coef_length,
                          const int16_t* in_vector,
                          size_t in_vector_length,
                          int16_t* filter_state,
                          size_t filter_state_length,
                          int16_t* filter_state_low,
                          size_t filter_state_low_length,
                          int16_t* out_vector,
                          int16_t* out_vector_low,
                          size_t out_vector_low_length);

// WebRtcSpl_FilterMAFastQ12(...)
//
// Performs a MA filtering on a vector in Q12
//
// Input:
//      - in_vector         : Input samples (state in positions
//                            in_vector[-order] .. in_vector[-1])
//      - ma_coef           : Filter coefficients (in Q12)
//      - ma_coef_length    : Number of B coefficients (order+1)
//      - vector_length     : Number of samples to be filtered
//
// Output:
//      - out_vector        : Filtered samples
//
void WebRtcSpl_FilterMAFastQ12(const int16_t* in_vector,
                               int16_t* out_vector,
                               const int16_t* ma_coef,
                               size_t ma_coef_length,
                               size_t vector_length);

// Performs a AR filtering on a vector in Q12
// Input:
//      - data_in            : Input samples
//      - data_out           : State information in positions
//                               data_out[-order] .. data_out[-1]
//      - coefficients       : Filter coefficients (in Q12)
//      - coefficients_length: Number of coefficients (order+1)
//      - data_length        : Number of samples to be filtered
// Output:
//      - data_out           : Filtered samples
void WebRtcSpl_FilterARFastQ12(const int16_t* data_in,
                               int16_t* data_out,
                               const int16_t* __restrict coefficients,
                               size_t coefficients_length,
                               size_t data_length);

// The functions (with related pointer) perform a MA down sampling filter
// on a vector.
// Input:
//      - data_in            : Input samples (state in positions
//                               data_in[-order] .. data_in[-1])
//      - data_in_length     : Number of samples in |data_in| to be filtered.
//                               This must be at least
//                               |delay| + |factor|*(|out_vector_length|-1) + 1)
//      - data_out_length    : Number of down sampled samples desired
//      - coefficients       : Filter coefficients (in Q12)
//      - coefficients_length: Number of coefficients (order+1)
//      - factor             : Decimation factor
//      - delay              : Delay of filter (compensated for in out_vector)
// Output:
//      - data_out           : Filtered samples
// Return value              : 0 if OK, -1 if |in_vector| is too short
typedef int (*DownsampleFast)(const int16_t* data_in,
                              size_t data_in_length,
                              int16_t* data_out,
                              size_t data_out_length,
                              const int16_t* __restrict coefficients,
                              size_t coefficients_length,
                              int factor,
                              size_t delay);
extern DownsampleFast WebRtcSpl_DownsampleFast;
int WebRtcSpl_DownsampleFastC(const int16_t* data_in,
                              size_t data_in_length,
                              int16_t* data_out,
                              size_t data_out_length,
                              const int16_t* __restrict coefficients,
                              size_t coefficients_length,
                              int factor,
                              size_t delay);
#if (defined WEBRTC_DETECT_NEON) || (defined WEBRTC_HAS_NEON)
int WebRtcSpl_DownsampleFastNeon(const int16_t* data_in,
                                 size_t data_in_length,
                                 int16_t* data_out,
                                 size_t data_out_length,
                                 const int16_t* __restrict coefficients,
                                 size_t coefficients_length,
                                 int factor,
                                 size_t delay);
#endif
#if defined(MIPS32_LE)
int WebRtcSpl_DownsampleFast_mips(const int16_t* data_in,
                                  size_t data_in_length,
                                  int16_t* data_out,
                                  size_t data_out_length,
                                  const int16_t* __restrict coefficients,
                                  size_t coefficients_length,
                                  int factor,
                                  size_t delay);
#endif

// End: Filter operations.

// FFT operations

int WebRtcSpl_ComplexFFT(int16_t vector[], int stages, int mode);
int WebRtcSpl_ComplexIFFT(int16_t vector[], int stages, int mode);

// Treat a 16-bit complex data buffer |complex_data| as an array of 32-bit
// values, and swap elements whose indexes are bit-reverses of each other.
//
// Input:
//      - complex_data  : Complex data buffer containing 2^|stages| real
//                        elements interleaved with 2^|stages| imaginary
//                        elements: [Re Im Re Im Re Im....]
//      - stages        : Number of FFT stages. Must be at least 3 and at most
//                        10, since the table WebRtcSpl_kSinTable1024[] is 1024
//                        elements long.
//
// Output:
//      - complex_data  : The complex data buffer.

void WebRtcSpl_ComplexBitReverse(int16_t* __restrict complex_data, int stages);

// End: FFT operations

/************************************************************
 *
 * RESAMPLING FUNCTIONS AND THEIR STRUCTS ARE DEFINED BELOW
 *
 ************************************************************/

/*******************************************************************
 * resample.c
 *
 * Includes the following resampling combinations
 * 22 kHz -> 16 kHz
 * 16 kHz -> 22 kHz
 * 22 kHz ->  8 kHz
 *  8 kHz -> 22 kHz
 *
 ******************************************************************/

// state structure for 22 -> 16 resampler
typedef struct {
  int32_t S_22_44[8];
  int32_t S_44_32[8];
  int32_t S_32_16[8];
} WebRtcSpl_State22khzTo16khz;

void WebRtcSpl_Resample22khzTo16khz(const int16_t* in,
                                    int16_t* out,
                                    WebRtcSpl_State22khzTo16khz* state,
                                    int32_t* tmpmem);

void WebRtcSpl_ResetResample22khzTo16khz(WebRtcSpl_State22khzTo16khz* state);

// state structure for 16 -> 22 resampler
typedef struct {
  int32_t S_16_32[8];
  int32_t S_32_22[8];
} WebRtcSpl_State16khzTo22khz;

void WebRtcSpl_Resample16khzTo22khz(const int16_t* in,
                                    int16_t* out,
                                    WebRtcSpl_State16khzTo22khz* state,
                                    int32_t* tmpmem);

void WebRtcSpl_ResetResample16khzTo22khz(WebRtcSpl_State16khzTo22khz* state);

// state structure for 22 -> 8 resampler
typedef struct {
  int32_t S_22_22[16];
  int32_t S_22_16[8];
  int32_t S_16_8[8];
} WebRtcSpl_State22khzTo8khz;

void WebRtcSpl_Resample22khzTo8khz(const int16_t* in, int16_t* out,
                                   WebRtcSpl_State22khzTo8khz* state,
                                   int32_t* tmpmem);

void WebRtcSpl_ResetResample22khzTo8khz(WebRtcSpl_State22khzTo8khz* state);

// state structure for 8 -> 22 resampler
typedef struct {
  int32_t S_8_16[8];
  int32_t S_16_11[8];
  int32_t S_11_22[8];
} WebRtcSpl_State8khzTo22khz;

void WebRtcSpl_Resample8khzTo22khz(const int16_t* in, int16_t* out,
                                   WebRtcSpl_State8khzTo22khz* state,
                                   int32_t* tmpmem);

void WebRtcSpl_ResetResample8khzTo22khz(WebRtcSpl_State8khzTo22khz* state);

/*******************************************************************
 * resample_fractional.c
 * Functions for internal use in the other resample functions
 *
 * Includes the following resampling combinations
 * 48 kHz -> 32 kHz
 * 32 kHz -> 24 kHz
 * 44 kHz -> 32 kHz
 *
 ******************************************************************/

void WebRtcSpl_Resample48khzTo32khz(const int32_t* In, int32_t* Out, size_t K);

void WebRtcSpl_Resample32khzTo24khz(const int32_t* In, int32_t* Out, size_t K);

void WebRtcSpl_Resample44khzTo32khz(const int32_t* In, int32_t* Out, size_t K);

/*******************************************************************
 * resample_48khz.c
 *
 * Includes the following resampling combinations
 * 48 kHz -> 16 kHz
 * 16 kHz -> 48 kHz
 * 48 kHz ->  8 kHz
 *  8 kHz -> 48 kHz
 *
 ******************************************************************/

typedef struct {
  int32_t S_48_48[16];
  int32_t S_48_32[8];
  int32_t S_32_16[8];
} WebRtcSpl_State48khzTo16khz;

void WebRtcSpl_Resample48khzTo16khz(const int16_t* in, int16_t* out,
                                    WebRtcSpl_State48khzTo16khz* state,
                                    int32_t* tmpmem);

void WebRtcSpl_ResetResample48khzTo16khz(WebRtcSpl_State48khzTo16khz* state);

typedef struct {
  int32_t S_16_32[8];
  int32_t S_32_24[8];
  int32_t S_24_48[8];
} WebRtcSpl_State16khzTo48khz;

void WebRtcSpl_Resample16khzTo48khz(const int16_t* in, int16_t* out,
                                    WebRtcSpl_State16khzTo48khz* state,
                                    int32_t* tmpmem);

void WebRtcSpl_ResetResample16khzTo48khz(WebRtcSpl_State16khzTo48khz* state);

typedef struct {
  int32_t S_48_24[8];
  int32_t S_24_24[16];
  int32_t S_24_16[8];
  int32_t S_16_8[8];
} WebRtcSpl_State48khzTo8khz;

void WebRtcSpl_Resample48khzTo8khz(const int16_t* in, int16_t* out,
                                   WebRtcSpl_State48khzTo8khz* state,
                                   int32_t* tmpmem);

void WebRtcSpl_ResetResample48khzTo8khz(WebRtcSpl_State48khzTo8khz* state);

typedef struct {
  int32_t S_8_16[8];
  int32_t S_16_12[8];
  int32_t S_12_24[8];
  int32_t S_24_48[8];
} WebRtcSpl_State8khzTo48khz;

void WebRtcSpl_Resample8khzTo48khz(const int16_t* in, int16_t* out,
                                   WebRtcSpl_State8khzTo48khz* state,
                                   int32_t* tmpmem);

void WebRtcSpl_ResetResample8khzTo48khz(WebRtcSpl_State8khzTo48khz* state);

/*******************************************************************
 * resample_by_2.c
 *
 * Includes down and up sampling by a factor of two.
 *
 ******************************************************************/

void WebRtcSpl_DownsampleBy2(const int16_t* in, size_t len,
                             int16_t* out, int32_t* filtState);

void WebRtcSpl_UpsampleBy2(const int16_t* in, size_t len,
                           int16_t* out, int32_t* filtState);

/************************************************************
 * END OF RESAMPLING FUNCTIONS
 ************************************************************/
void WebRtcSpl_AnalysisQMF(const int16_t* in_data,
                           size_t in_data_length,
                           int16_t* low_band,
                           int16_t* high_band,
                           int32_t* filter_state1,
                           int32_t* filter_state2);
void WebRtcSpl_SynthesisQMF(const int16_t* low_band,
                            const int16_t* high_band,
                            size_t band_length,
                            int16_t* out_data,
                            int32_t* filter_state1,
                            int32_t* filter_state2);

#ifdef __cplusplus
}
#endif  // __cplusplus
#endif  // WEBRTC_SPL_SIGNAL_PROCESSING_LIBRARY_H_

//
// WebRtcSpl_AddSatW16(...)
// WebRtcSpl_AddSatW32(...)
//
// Returns the result of a saturated 16-bit, respectively 32-bit, addition of
// the numbers specified by the |var1| and |var2| parameters.
//
// Input:
//      - var1      : Input variable 1
//      - var2      : Input variable 2
//
// Return value     : Added and saturated value
//

//
// WebRtcSpl_SubSatW16(...)
// WebRtcSpl_SubSatW32(...)
//
// Returns the result of a saturated 16-bit, respectively 32-bit, subtraction
// of the numbers specified by the |var1| and |var2| parameters.
//
// Input:
//      - var1      : Input variable 1
//      - var2      : Input variable 2
//
// Returned value   : Subtracted and saturated value
//

//
// WebRtcSpl_GetSizeInBits(...)
//
// Returns the # of bits that are needed at the most to represent the number
// specified by the |value| parameter.
//
// Input:
//      - value     : Input value
//
// Return value     : Number of bits needed to represent |value|
//

//
// WebRtcSpl_NormW32(...)
//
// Norm returns the # of left shifts required to 32-bit normalize the 32-bit
// signed number specified by the |value| parameter.
//
// Input:
//      - value     : Input value
//
// Return value     : Number of bit shifts needed to 32-bit normalize |value|
//

//
// WebRtcSpl_NormW16(...)
//
// Norm returns the # of left shifts required to 16-bit normalize the 16-bit
// signed number specified by the |value| parameter.
//
// Input:
//      - value     : Input value
//
// Return value     : Number of bit shifts needed to 32-bit normalize |value|
//

//
// WebRtcSpl_NormU32(...)
//
// Norm returns the # of left shifts required to 32-bit normalize the unsigned
// 32-bit number specified by the |value| parameter.
//
// Input:
//      - value     : Input value
//
// Return value     : Number of bit shifts needed to 32-bit normalize |value|
//

//
// WebRtcSpl_GetScalingSquare(...)
//
// Returns the # of bits required to scale the samples specified in the
// |in_vector| parameter so that, if the squares of the samples are added the
// # of times specified by the |times| parameter, the 32-bit addition will not
// overflow (result in int32_t).
//
// Input:
//      - in_vector         : Input vector to check scaling on
//      - in_vector_length  : Samples in |in_vector|
//      - times             : Number of additions to be performed
//
// Return value             : Number of right bit shifts needed to avoid
//                            overflow in the addition calculation
//

//
// WebRtcSpl_MemSetW16(...)
//
// Sets all the values in the int16_t vector |vector| of length
// |vector_length| to the specified value |set_value|
//
// Input:
//      - vector        : Pointer to the int16_t vector
//      - set_value     : Value specified
//      - vector_length : Length of vector
//

//
// WebRtcSpl_MemSetW32(...)
//
// Sets all the values in the int32_t vector |vector| of length
// |vector_length| to the specified value |set_value|
//
// Input:
//      - vector        : Pointer to the int16_t vector
//      - set_value     : Value specified
//      - vector_length : Length of vector
//

//
// WebRtcSpl_MemCpyReversedOrder(...)
//
// Copies all the values from the source int16_t vector |in_vector| to a
// destination int16_t vector |out_vector|. It is done in reversed order,
// meaning that the first sample of |in_vector| is copied to the last sample of
// the |out_vector|. The procedure continues until the last sample of
// |in_vector| has been copied to the first sample of |out_vector|. This
// creates a reversed vector. Used in e.g. prediction in iLBC.
//
// Input:
//      - in_vector     : Pointer to the first sample in a int16_t vector
//                        of length |length|
//      - vector_length : Number of elements to copy
//
// Output:
//      - out_vector    : Pointer to the last sample in a int16_t vector
//                        of length |length|
//

//
// WebRtcSpl_CopyFromEndW16(...)
//
// Copies the rightmost |samples| of |in_vector| (of length |in_vector_length|)
// to the vector |out_vector|.
//
// Input:
//      - in_vector         : Input vector
//      - in_vector_length  : Number of samples in |in_vector|
//      - samples           : Number of samples to extract (from right side)
//                            from |in_vector|
//
// Output:
//      - out_vector        : Vector with the requested samples
//

//
// WebRtcSpl_ZerosArrayW16(...)
// WebRtcSpl_ZerosArrayW32(...)
//
// Inserts the value "zero" in all positions of a w16 and a w32 vector
// respectively.
//
// Input:
//      - vector_length : Number of samples in vector
//
// Output:
//      - vector        : Vector containing all zeros
//

//
// WebRtcSpl_VectorBitShiftW16(...)
// WebRtcSpl_VectorBitShiftW32(...)
//
// Bit shifts all the values in a vector up or downwards. Different calls for
// int16_t and int32_t vectors respectively.
//
// Input:
//      - vector_length : Length of vector
//      - in_vector     : Pointer to the vector that should be bit shifted
//      - right_shifts  : Number of right bit shifts (negative value gives left
//                        shifts)
//
// Output:
//      - out_vector    : Pointer to the result vector (can be the same as
//                        |in_vector|)
//

//
// WebRtcSpl_VectorBitShiftW32ToW16(...)
//
// Bit shifts all the values in a int32_t vector up or downwards and
// stores the result as an int16_t vector. The function will saturate the
// signal if needed, before storing in the output vector.
//
// Input:
//      - vector_length : Length of vector
//      - in_vector     : Pointer to the vector that should be bit shifted
//      - right_shifts  : Number of right bit shifts (negative value gives left
//                        shifts)
//
// Output:
//      - out_vector    : Pointer to the result vector (can be the same as
//                        |in_vector|)
//

//
// WebRtcSpl_ScaleVector(...)
//
// Performs the vector operation:
//  out_vector[k] = (gain*in_vector[k])>>right_shifts
//
// Input:
//      - in_vector     : Input vector
//      - gain          : Scaling gain
//      - vector_length : Elements in the |in_vector|
//      - right_shifts  : Number of right bit shifts applied
//
// Output:
//      - out_vector    : Output vector (can be the same as |in_vector|)
//

//
// WebRtcSpl_ScaleVectorWithSat(...)
//
// Performs the vector operation:
//  out_vector[k] = SATURATE( (gain*in_vector[k])>>right_shifts )
//
// Input:
//      - in_vector     : Input vector
//      - gain          : Scaling gain
//      - vector_length : Elements in the |in_vector|
//      - right_shifts  : Number of right bit shifts applied
//
// Output:
//      - out_vector    : Output vector (can be the same as |in_vector|)
//

//
// WebRtcSpl_ScaleAndAddVectors(...)
//
// Performs the vector operation:
//  out_vector[k] = (gain1*in_vector1[k])>>right_shifts1
//                  + (gain2*in_vector2[k])>>right_shifts2
//
// Input:
//      - in_vector1    : Input vector 1
//      - gain1         : Gain to be used for vector 1
//      - right_shifts1 : Right bit shift to be used for vector 1
//      - in_vector2    : Input vector 2
//      - gain2         : Gain to be used for vector 2
//      - right_shifts2 : Right bit shift to be used for vector 2
//      - vector_length : Elements in the input vectors
//
// Output:
//      - out_vector    : Output vector
//

//
// WebRtcSpl_ReverseOrderMultArrayElements(...)
//
// Performs the vector operation:
//  out_vector[n] = (in_vector[n]*window[-n])>>right_shifts
//
// Input:
//      - in_vector     : Input vector
//      - window        : Window vector (should be reversed). The pointer
//                        should be set to the last value in the vector
//      - right_shifts  : Number of right bit shift to be applied after the
//                        multiplication
//      - vector_length : Number of elements in |in_vector|
//
// Output:
//      - out_vector    : Output vector (can be same as |in_vector|)
//

//
// WebRtcSpl_ElementwiseVectorMult(...)
//
// Performs the vector operation:
//  out_vector[n] = (in_vector[n]*window[n])>>right_shifts
//
// Input:
//      - in_vector     : Input vector
//      - window        : Window vector.
//      - right_shifts  : Number of right bit shift to be applied after the
//                        multiplication
//      - vector_length : Number of elements in |in_vector|
//
// Output:
//      - out_vector    : Output vector (can be same as |in_vector|)
//

//
// WebRtcSpl_AddVectorsAndShift(...)
//
// Performs the vector operation:
//  out_vector[k] = (in_vector1[k] + in_vector2[k])>>right_shifts
//
// Input:
//      - in_vector1    : Input vector 1
//      - in_vector2    : Input vector 2
//      - right_shifts  : Number of right bit shift to be applied after the
//                        multiplication
//      - vector_length : Number of elements in |in_vector1| and |in_vector2|
//
// Output:
//      - out_vector    : Output vector (can be same as |in_vector1|)
//

//
// WebRtcSpl_AddAffineVectorToVector(...)
//
// Adds an affine transformed vector to another vector |out_vector|, i.e,
// performs
//  out_vector[k] += (in_vector[k]*gain+add_constant)>>right_shifts
//
// Input:
//      - in_vector     : Input vector
//      - gain          : Gain value, used to multiply the in vector with
//      - add_constant  : Constant value to add (usually 1<<(right_shifts-1),
//                        but others can be used as well
//      - right_shifts  : Number of right bit shifts (0-16)
//      - vector_length : Number of samples in |in_vector| and |out_vector|
//
// Output:
//      - out_vector    : Vector with the output
//

//
// WebRtcSpl_AffineTransformVector(...)
//
// Affine transforms a vector, i.e, performs
//  out_vector[k] = (in_vector[k]*gain+add_constant)>>right_shifts
//
// Input:
//      - in_vector     : Input vector
//      - gain          : Gain value, used to multiply the in vector with
//      - add_constant  : Constant value to add (usually 1<<(right_shifts-1),
//                        but others can be used as well
//      - right_shifts  : Number of right bit shifts (0-16)
//      - vector_length : Number of samples in |in_vector| and |out_vector|
//
// Output:
//      - out_vector    : Vector with the output
//

//
// WebRtcSpl_IncreaseSeed(...)
//
// Increases the seed (and returns the new value)
//
// Input:
//      - seed      : Seed for random calculation
//
// Output:
//      - seed      : Updated seed value
//
// Return value     : The new seed value
//

//
// WebRtcSpl_RandU(...)
//
// Produces a uniformly distributed value in the int16_t range
//
// Input:
//      - seed      : Seed for random calculation
//
// Output:
//      - seed      : Updated seed value
//
// Return value     : Uniformly distributed value in the range
//                    [Word16_MIN...Word16_MAX]
//

//
// WebRtcSpl_RandN(...)
//
// Produces a normal distributed value in the int16_t range
//
// Input:
//      - seed      : Seed for random calculation
//
// Output:
//      - seed      : Updated seed value
//
// Return value     : N(0,1) value in the Q13 domain
//

//
// WebRtcSpl_RandUArray(...)
//
// Produces a uniformly distributed vector with elements in the int16_t
// range
//
// Input:
//      - vector_length : Samples wanted in the vector
//      - seed          : Seed for random calculation
//
// Output:
//      - vector        : Vector with the uniform values
//      - seed          : Updated seed value
//
// Return value         : Number of samples in vector, i.e., |vector_length|
//

//
// WebRtcSpl_Sqrt(...)
//
// Returns the square root of the input value |value|. The precision of this
// function is integer precision, i.e., sqrt(8) gives 2 as answer.
// If |value| is a negative number then 0 is returned.
//
// Algorithm:
//
// A sixth order Taylor Series expansion is used here to compute the square
// root of a number y^0.5 = (1+x)^0.5
// where
// x = y-1
//   = 1+(x/2)-0.5*((x/2)^2+0.5*((x/2)^3-0.625*((x/2)^4+0.875*((x/2)^5)
// 0.5 <= x < 1
//
// Input:
//      - value     : Value to calculate sqrt of
//
// Return value     : Result of the sqrt calculation
//

//
// WebRtcSpl_SqrtFloor(...)
//
// Returns the square root of the input value |value|. The precision of this
// function is rounding down integer precision, i.e., sqrt(8) gives 2 as answer.
// If |value| is a negative number then 0 is returned.
//
// Algorithm:
//
// An iterative 4 cylce/bit routine
//
// Input:
//      - value     : Value to calculate sqrt of
//
// Return value     : Result of the sqrt calculation
//

//
// WebRtcSpl_DivU32U16(...)
//
// Divides a uint32_t |num| by a uint16_t |den|.
//
// If |den|==0, (uint32_t)0xFFFFFFFF is returned.
//
// Input:
//      - num       : Numerator
//      - den       : Denominator
//
// Return value     : Result of the division (as a uint32_t), i.e., the
//                    integer part of num/den.
//

//
// WebRtcSpl_DivW32W16(...)
//
// Divides a int32_t |num| by a int16_t |den|.
//
// If |den|==0, (int32_t)0x7FFFFFFF is returned.
//
// Input:
//      - num       : Numerator
//      - den       : Denominator
//
// Return value     : Result of the division (as a int32_t), i.e., the
//                    integer part of num/den.
//

//
// WebRtcSpl_DivW32W16ResW16(...)
//
// Divides a int32_t |num| by a int16_t |den|, assuming that the
// result is less than 32768, otherwise an unpredictable result will occur.
//
// If |den|==0, (int16_t)0x7FFF is returned.
//
// Input:
//      - num       : Numerator
//      - den       : Denominator
//
// Return value     : Result of the division (as a int16_t), i.e., the
//                    integer part of num/den.
//

//
// WebRtcSpl_DivResultInQ31(...)
//
// Divides a int32_t |num| by a int16_t |den|, assuming that the
// absolute value of the denominator is larger than the numerator, otherwise
// an unpredictable result will occur.
//
// Input:
//      - num       : Numerator
//      - den       : Denominator
//
// Return value     : Result of the division in Q31.
//

//
// WebRtcSpl_DivW32HiLow(...)
//
// Divides a int32_t |num| by a denominator in hi, low format. The
// absolute value of the denominator has to be larger (or equal to) the
// numerator.
//
// Input:
//      - num       : Numerator
//      - den_hi    : High part of denominator
//      - den_low   : Low part of denominator
//
// Return value     : Divided value in Q31
//

//
// WebRtcSpl_Energy(...)
//
// Calculates the energy of a vector
//
// Input:
//      - vector        : Vector which the energy should be calculated on
//      - vector_length : Number of samples in vector
//
// Output:
//      - scale_factor  : Number of left bit shifts needed to get the physical
//                        energy value, i.e, to get the Q0 value
//
// Return value         : Energy value in Q(-|scale_factor|)
//

//
// WebRtcSpl_FilterAR(...)
//
// Performs a 32-bit AR filtering on a vector in Q12
//
// Input:
//  - ar_coef                   : AR-coefficient vector (values in Q12),
//                                ar_coef[0] must be 4096.
//  - ar_coef_length            : Number of coefficients in |ar_coef|.
//  - in_vector                 : Vector to be filtered.
//  - in_vector_length          : Number of samples in |in_vector|.
//  - filter_state              : Current state (higher part) of the filter.
//  - filter_state_length       : Length (in samples) of |filter_state|.
//  - filter_state_low          : Current state (lower part) of the filter.
//  - filter_state_low_length   : Length (in samples) of |filter_state_low|.
//  - out_vector_low_length     : Maximum length (in samples) of
//                                |out_vector_low|.
//
// Output:
//  - filter_state              : Updated state (upper part) vector.
//  - filter_state_low          : Updated state (lower part) vector.
//  - out_vector                : Vector containing the upper part of the
//                                filtered values.
//  - out_vector_low            : Vector containing the lower part of the
//                                filtered values.
//
// Return value                 : Number of samples in the |out_vector|.
//

//
// WebRtcSpl_ComplexIFFT(...)
//
// Complex Inverse FFT
//
// Computes an inverse complex 2^|stages|-point FFT on the input vector, which
// is in bit-reversed order. The original content of the vector is destroyed in
// the process, since the input is overwritten by the output, normal-ordered,
// FFT vector. With X as the input complex vector, y as the output complex
// vector and with M = 2^|stages|, the following is computed:
//
//        M-1
// y(k) = sum[X(i)*[cos(2*pi*i*k/M) + j*sin(2*pi*i*k/M)]]
//        i=0
//
// The implementations are optimized for speed, not for code size. It uses the
// decimation-in-time algorithm with radix-2 butterfly technique.
//
// Input:
//      - vector    : In pointer to complex vector containing 2^|stages|
//                    real elements interleaved with 2^|stages| imaginary
//                    elements.
//                    [ReImReImReIm....]
//                    The elements are in Q(-scale) domain, see more on Return
//                    Value below.
//
//      - stages    : Number of FFT stages. Must be at least 3 and at most 10,
//                    since the table WebRtcSpl_kSinTable1024[] is 1024
//                    elements long.
//
//      - mode      : This parameter gives the user to choose how the FFT
//                    should work.
//                    mode==0: Low-complexity and Low-accuracy mode
//                    mode==1: High-complexity and High-accuracy mode
//
// Output:
//      - vector    : Out pointer to the FFT vector (the same as input).
//
// Return Value     : The scale value that tells the number of left bit shifts
//                    that the elements in the |vector| should be shifted with
//                    in order to get Q0 values, i.e. the physically correct
//                    values. The scale parameter is always 0 or positive,
//                    except if N>1024 (|stages|>10), which returns a scale
//                    value of -1, indicating error.
//

//
// WebRtcSpl_ComplexFFT(...)
//
// Complex FFT
//
// Computes a complex 2^|stages|-point FFT on the input vector, which is in
// bit-reversed order. The original content of the vector is destroyed in
// the process, since the input is overwritten by the output, normal-ordered,
// FFT vector. With x as the input complex vector, Y as the output complex
// vector and with M = 2^|stages|, the following is computed:
//
//              M-1
// Y(k) = 1/M * sum[x(i)*[cos(2*pi*i*k/M) + j*sin(2*pi*i*k/M)]]
//              i=0
//
// The implementations are optimized for speed, not for code size. It uses the
// decimation-in-time algorithm with radix-2 butterfly technique.
//
// This routine prevents overflow by scaling by 2 before each FFT stage. This is
// a fixed scaling, for proper normalization - there will be log2(n) passes, so
// this results in an overall factor of 1/n, distributed to maximize arithmetic
// accuracy.
//
// Input:
//      - vector    : In pointer to complex vector containing 2^|stages| real
//                    elements interleaved with 2^|stages| imaginary elements.
//                    [ReImReImReIm....]
//                    The output is in the Q0 domain.
//
//      - stages    : Number of FFT stages. Must be at least 3 and at most 10,
//                    since the table WebRtcSpl_kSinTable1024[] is 1024
//                    elements long.
//
//      - mode      : This parameter gives the user to choose how the FFT
//                    should work.
//                    mode==0: Low-complexity and Low-accuracy mode
//                    mode==1: High-complexity and High-accuracy mode
//
// Output:
//      - vector    : The output FFT vector is in the Q0 domain.
//
// Return value     : The scale parameter is always 0, except if N>1024,
//                    which returns a scale value of -1, indicating error.
//

//
// WebRtcSpl_AnalysisQMF(...)
//
// Splits a 0-2*F Hz signal into two sub bands: 0-F Hz and F-2*F Hz. The
// current version has F = 8000, therefore, a super-wideband audio signal is
// split to lower-band 0-8 kHz and upper-band 8-16 kHz.
//
// Input:
//      - in_data       : Wide band speech signal, 320 samples (10 ms)
//
// Input & Output:
//      - filter_state1 : Filter state for first All-pass filter
//      - filter_state2 : Filter state for second All-pass filter
//
// Output:
//      - low_band      : Lower-band signal 0-8 kHz band, 160 samples (10 ms)
//      - high_band     : Upper-band signal 8-16 kHz band (flipped in frequency
//                        domain), 160 samples (10 ms)
//

//
// WebRtcSpl_SynthesisQMF(...)
//
// Combines the two sub bands (0-F and F-2*F Hz) into a signal of 0-2*F
// Hz, (current version has F = 8000 Hz). So the filter combines lower-band
// (0-8 kHz) and upper-band (8-16 kHz) channels to obtain super-wideband 0-16
// kHz audio.
//
// Input:
//      - low_band      : The signal with the 0-8 kHz band, 160 samples (10 ms)
//      - high_band     : The signal with the 8-16 kHz band, 160 samples (10 ms)
//
// Input & Output:
//      - filter_state1 : Filter state for first All-pass filter
//      - filter_state2 : Filter state for second All-pass filter
//
// Output:
//      - out_data      : Super-wideband speech signal, 0-16 kHz
//

// int16_t WebRtcSpl_SatW32ToW16(...)
//
// This function saturates a 32-bit word into a 16-bit word.
//
// Input:
//      - value32   : The value of a 32-bit word.
//
// Output:
//      - out16     : the saturated 16-bit word.
//

// int32_t WebRtc_MulAccumW16(...)
//
// This function multiply a 16-bit word by a 16-bit word, and accumulate this
// value to a 32-bit integer.
//
// Input:
//      - a    : The value of the first 16-bit word.
//      - b    : The value of the second 16-bit word.
//      - c    : The value of an 32-bit integer.
//
// Return Value: The value of a * b + c.
//