summaryrefslogtreecommitdiff
path: root/webrtc/modules/audio_coding/codecs/isac/main/source/encode.c
blob: bf92d02c533ca14f85b2422fd3416b101b8ba556 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

/*
 * encode.c
 *
 * This file contains definition of funtions for encoding.
 * Decoding of upper-band, including 8-12 kHz, when the bandwidth is
 * 0-12 kHz, and 8-16 kHz, when the bandwidth is 0-16 kHz.
 *
 */

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#include "modules/audio_coding/codecs/isac/main/source/structs.h"
#include "modules/audio_coding/codecs/isac/main/source/codec.h"
#include "modules/audio_coding/codecs/isac/main/source/pitch_estimator.h"
#include "modules/audio_coding/codecs/isac/main/source/entropy_coding.h"
#include "modules/audio_coding/codecs/isac/main/source/arith_routines.h"
#include "modules/audio_coding/codecs/isac/main/source/pitch_gain_tables.h"
#include "modules/audio_coding/codecs/isac/main/source/pitch_lag_tables.h"
#include "modules/audio_coding/codecs/isac/main/source/spectrum_ar_model_tables.h"
#include "modules/audio_coding/codecs/isac/main/source/lpc_tables.h"
#include "modules/audio_coding/codecs/isac/main/source/lpc_analysis.h"
#include "modules/audio_coding/codecs/isac/main/source/bandwidth_estimator.h"
#include "modules/audio_coding/codecs/isac/main/source/lpc_shape_swb12_tables.h"
#include "modules/audio_coding/codecs/isac/main/source/lpc_shape_swb16_tables.h"
#include "modules/audio_coding/codecs/isac/main/source/lpc_gain_swb_tables.h"
#include "modules/audio_coding/codecs/isac/main/source/isac_vad.h"
#include "modules/audio_coding/codecs/isac/main/source/pitch_filter.h"


#define UB_LOOKAHEAD 24


/*
  Rate allocation tables of lower and upper-band bottleneck for
  12kHz & 16kHz bandwidth.

  12 kHz bandwidth
  -----------------
  The overall bottleneck of the coder is between 38 kbps and 45 kbps. We have
  considered 7 enteries, uniformly distributed in this interval, i.e. 38,
  39.17, 40.33, 41.5, 42.67, 43.83 and 45. For every entery, the lower-band
  and the upper-band bottlenecks are specified in
  'kLowerBandBitRate12' and 'kUpperBandBitRate12'
  tables, respectively. E.g. the overall rate of 41.5 kbps corresponts to a
  bottleneck of 31 kbps for lower-band and 27 kbps for upper-band. Given an
  overall bottleneck of the codec, we use linear interpolation to get
  lower-band and upper-band bottlenecks.

  16 kHz bandwidth
  -----------------
  The overall bottleneck of the coder is between 50 kbps and 56 kbps. We have
  considered 7 enteries, uniformly distributed in this interval, i.e. 50, 51.2,
  52.4, 53.6, 54.8 and 56. For every entery, the lower-band and the upper-band
  bottlenecks are specified in 'kLowerBandBitRate16' and
  'kUpperBandBitRate16' tables, respectively. E.g. the overall rate
  of 53.6 kbps corresponts to a bottleneck of 32 kbps for lower-band and 30
  kbps for upper-band. Given an overall bottleneck of the codec, we use linear
  interpolation to get lower-band and upper-band bottlenecks.

 */

/*     38  39.17  40.33   41.5  42.67  43.83     45 */
static const int16_t kLowerBandBitRate12[7] = {
    29000, 30000, 30000, 31000, 31000, 32000, 32000 };
static const int16_t kUpperBandBitRate12[7] = {
    25000, 25000, 27000, 27000, 29000, 29000, 32000 };

/*    50     51.2  52.4   53.6   54.8    56 */
static const int16_t kLowerBandBitRate16[6] = {
    31000, 31000, 32000, 32000, 32000, 32000 };
static const int16_t kUpperBandBitRate16[6] = {
    28000, 29000, 29000, 30000, 31000, 32000 };

/******************************************************************************
 * WebRtcIsac_RateAllocation()
 * Internal function to perform a rate-allocation for upper and lower-band,
 * given a total rate.
 *
 * Input:
 *   - inRateBitPerSec           : a total bottleneck in bits/sec.
 *
 * Output:
 *   - rateLBBitPerSec           : a bottleneck allocated to the lower-band
 *                                 in bits/sec.
 *   - rateUBBitPerSec           : a bottleneck allocated to the upper-band
 *                                 in bits/sec.
 *
 * Return value                  : 0 if rate allocation has been successful.
 *                                -1 if failed to allocate rates.
 */

int16_t WebRtcIsac_RateAllocation(int32_t inRateBitPerSec,
                                        double* rateLBBitPerSec,
                                        double* rateUBBitPerSec,
                                        enum ISACBandwidth* bandwidthKHz) {
  int16_t idx;
  double idxD;
  double idxErr;
  if (inRateBitPerSec < 38000) {
    /* If the given overall bottleneck is less than 38000 then
     * then codec has to operate in wideband mode, i.e. 8 kHz
     * bandwidth. */
    *rateLBBitPerSec = (int16_t)((inRateBitPerSec > 32000) ?
        32000 : inRateBitPerSec);
    *rateUBBitPerSec = 0;
    *bandwidthKHz = isac8kHz;
  } else if ((inRateBitPerSec >= 38000) && (inRateBitPerSec < 50000)) {
    /* At a bottleneck between 38 and 50 kbps the codec is operating
     * at 12 kHz bandwidth. Using xxxBandBitRate12[] to calculates
     * upper/lower bottleneck */

    /* Find the bottlenecks by linear interpolation,
     * step is (45000 - 38000)/6.0 we use the inverse of it. */
    const double stepSizeInv = 8.5714286e-4;
    idxD = (inRateBitPerSec - 38000) * stepSizeInv;
    idx = (idxD >= 6) ? 6 : ((int16_t)idxD);
    idxErr = idxD - idx;
    *rateLBBitPerSec = kLowerBandBitRate12[idx];
    *rateUBBitPerSec = kUpperBandBitRate12[idx];

    if (idx < 6) {
      *rateLBBitPerSec += (int16_t)(
          idxErr * (kLowerBandBitRate12[idx + 1] - kLowerBandBitRate12[idx]));
      *rateUBBitPerSec += (int16_t)(
          idxErr * (kUpperBandBitRate12[idx + 1] - kUpperBandBitRate12[idx]));
    }
    *bandwidthKHz = isac12kHz;
  } else if ((inRateBitPerSec >= 50000) && (inRateBitPerSec <= 56000)) {
    /* A bottleneck between 50 and 56 kbps corresponds to bandwidth
     * of 16 kHz. Using xxxBandBitRate16[] to calculates
     * upper/lower bottleneck. */

    /* Find the bottlenecks by linear interpolation
     * step is (56000 - 50000)/5 we use the inverse of it. */
    const double stepSizeInv = 8.3333333e-4;
    idxD = (inRateBitPerSec - 50000) * stepSizeInv;
    idx = (idxD >= 5) ? 5 : ((int16_t)idxD);
    idxErr = idxD - idx;
    *rateLBBitPerSec = kLowerBandBitRate16[idx];
    *rateUBBitPerSec  = kUpperBandBitRate16[idx];

    if (idx < 5) {
      *rateLBBitPerSec += (int16_t)(idxErr *
          (kLowerBandBitRate16[idx + 1] -
              kLowerBandBitRate16[idx]));

      *rateUBBitPerSec += (int16_t)(idxErr *
          (kUpperBandBitRate16[idx + 1] -
              kUpperBandBitRate16[idx]));
    }
    *bandwidthKHz = isac16kHz;
  } else {
    /* Out-of-range botlteneck value. */
    return -1;
  }

  /* limit the values. */
  *rateLBBitPerSec = (*rateLBBitPerSec > 32000) ? 32000 : *rateLBBitPerSec;
  *rateUBBitPerSec = (*rateUBBitPerSec > 32000) ? 32000 : *rateUBBitPerSec;
  return 0;
}


void WebRtcIsac_ResetBitstream(Bitstr* bit_stream) {
  bit_stream->W_upper = 0xFFFFFFFF;
  bit_stream->stream_index = 0;
  bit_stream->streamval = 0;
}

int WebRtcIsac_EncodeLb(const TransformTables* transform_tables,
                        float* in, ISACLBEncStruct* ISACencLB_obj,
                        int16_t codingMode,
                        int16_t bottleneckIndex) {
  int stream_length = 0;
  int err;
  int k;
  int iterCntr;

  double lofilt_coef[(ORDERLO + 1)*SUBFRAMES];
  double hifilt_coef[(ORDERHI + 1)*SUBFRAMES];
  float LP[FRAMESAMPLES_HALF];
  float HP[FRAMESAMPLES_HALF];

  double LP_lookahead[FRAMESAMPLES_HALF];
  double HP_lookahead[FRAMESAMPLES_HALF];
  double LP_lookahead_pf[FRAMESAMPLES_HALF + QLOOKAHEAD];
  double LPw[FRAMESAMPLES_HALF];

  double HPw[FRAMESAMPLES_HALF];
  double LPw_pf[FRAMESAMPLES_HALF];
  int16_t fre[FRAMESAMPLES_HALF];   /* Q7 */
  int16_t fim[FRAMESAMPLES_HALF];   /* Q7 */

  double PitchLags[4];
  double PitchGains[4];
  int16_t PitchGains_Q12[4];
  int16_t AvgPitchGain_Q12;

  int frame_mode; /* 0 for 30ms, 1 for 60ms */
  int status = 0;
  int my_index;
  transcode_obj transcodingParam;
  double bytesLeftSpecCoding;
  uint16_t payloadLimitBytes;

  /* Copy new frame-length and bottleneck rate only for the first 10 ms data */
  if (ISACencLB_obj->buffer_index == 0) {
    /* Set the framelength for the next packet. */
    ISACencLB_obj->current_framesamples = ISACencLB_obj->new_framelength;
  }
  /* 'frame_mode' is 0 (30 ms) or 1 (60 ms). */
  frame_mode = ISACencLB_obj->current_framesamples / MAX_FRAMESAMPLES;

  /* buffer speech samples (by 10ms packet) until the frame-length */
  /* is reached (30 or 60 ms).                                     */
  /*****************************************************************/

  /* fill the buffer with 10ms input data */
  for (k = 0; k < FRAMESAMPLES_10ms; k++) {
    ISACencLB_obj->data_buffer_float[k + ISACencLB_obj->buffer_index] = in[k];
  }

  /* If buffersize is not equal to current framesize then increase index
   * and return. We do no encoding untill we have enough audio.  */
  if (ISACencLB_obj->buffer_index + FRAMESAMPLES_10ms != FRAMESAMPLES) {
    ISACencLB_obj->buffer_index += FRAMESAMPLES_10ms;
    return 0;
  }
  /* If buffer reached the right size, reset index and continue with
   * encoding the frame. */
  ISACencLB_obj->buffer_index = 0;

  /* End of buffer function. */
  /**************************/

  /* Encoding */
  /************/

  if (frame_mode == 0 || ISACencLB_obj->frame_nb == 0) {
    /* This is to avoid Linux warnings until we change 'int' to 'Word32'
     * at all places. */
    int intVar;
    /* reset bitstream */
    WebRtcIsac_ResetBitstream(&(ISACencLB_obj->bitstr_obj));

    if ((codingMode == 0) && (frame_mode == 0) &&
        (ISACencLB_obj->enforceFrameSize == 0)) {
      ISACencLB_obj->new_framelength = WebRtcIsac_GetNewFrameLength(
          ISACencLB_obj->bottleneck, ISACencLB_obj->current_framesamples);
    }

    ISACencLB_obj->s2nr = WebRtcIsac_GetSnr(
        ISACencLB_obj->bottleneck, ISACencLB_obj->current_framesamples);

    /* Encode frame length. */
    status = WebRtcIsac_EncodeFrameLen(
        ISACencLB_obj->current_framesamples, &ISACencLB_obj->bitstr_obj);
    if (status < 0) {
      /* Wrong frame size. */
      return status;
    }
    /* Save framelength for multiple packets memory. */
    ISACencLB_obj->SaveEnc_obj.framelength =
        ISACencLB_obj->current_framesamples;

    /* To be used for Redundant Coding. */
    ISACencLB_obj->lastBWIdx = bottleneckIndex;
    intVar = (int)bottleneckIndex;
    WebRtcIsac_EncodeReceiveBw(&intVar, &ISACencLB_obj->bitstr_obj);
  }

  /* Split signal in two bands. */
  WebRtcIsac_SplitAndFilterFloat(ISACencLB_obj->data_buffer_float, LP, HP,
                                 LP_lookahead, HP_lookahead,
                                 &ISACencLB_obj->prefiltbankstr_obj);

  /* estimate pitch parameters and pitch-filter lookahead signal */
  WebRtcIsac_PitchAnalysis(LP_lookahead, LP_lookahead_pf,
                           &ISACencLB_obj->pitchanalysisstr_obj, PitchLags,
                           PitchGains);

  /* Encode in FIX Q12. */

  /* Convert PitchGain to Fixed point. */
  for (k = 0; k < PITCH_SUBFRAMES; k++) {
    PitchGains_Q12[k] = (int16_t)(PitchGains[k] * 4096.0);
  }

  /* Set where to store data in multiple packets memory. */
  if (frame_mode == 0 || ISACencLB_obj->frame_nb == 0) {
    ISACencLB_obj->SaveEnc_obj.startIdx = 0;
  } else {
    ISACencLB_obj->SaveEnc_obj.startIdx = 1;
  }

  /* Quantize & encode pitch parameters. */
  WebRtcIsac_EncodePitchGain(PitchGains_Q12, &ISACencLB_obj->bitstr_obj,
                             &ISACencLB_obj->SaveEnc_obj);
  WebRtcIsac_EncodePitchLag(PitchLags, PitchGains_Q12,
                            &ISACencLB_obj->bitstr_obj,
                            &ISACencLB_obj->SaveEnc_obj);

  AvgPitchGain_Q12 = (PitchGains_Q12[0] + PitchGains_Q12[1] +
      PitchGains_Q12[2] + PitchGains_Q12[3]) >> 2;

  /* Find coefficients for perceptual pre-filters. */
  WebRtcIsac_GetLpcCoefLb(LP_lookahead_pf, HP_lookahead,
                          &ISACencLB_obj->maskfiltstr_obj, ISACencLB_obj->s2nr,
                          PitchGains_Q12, lofilt_coef, hifilt_coef);

  /* Code LPC model and shape - gains not quantized yet. */
  WebRtcIsac_EncodeLpcLb(lofilt_coef, hifilt_coef, &ISACencLB_obj->bitstr_obj,
                         &ISACencLB_obj->SaveEnc_obj);

  /* Convert PitchGains back to FLOAT for pitchfilter_pre. */
  for (k = 0; k < 4; k++) {
    PitchGains[k] = ((float)PitchGains_Q12[k]) / 4096;
  }

  /* Store the state of arithmetic coder before coding LPC gains. */
  transcodingParam.W_upper = ISACencLB_obj->bitstr_obj.W_upper;
  transcodingParam.stream_index = ISACencLB_obj->bitstr_obj.stream_index;
  transcodingParam.streamval = ISACencLB_obj->bitstr_obj.streamval;
  transcodingParam.stream[0] =
      ISACencLB_obj->bitstr_obj.stream[ISACencLB_obj->bitstr_obj.stream_index -
                                       2];
  transcodingParam.stream[1] =
      ISACencLB_obj->bitstr_obj.stream[ISACencLB_obj->bitstr_obj.stream_index -
                                       1];
  transcodingParam.stream[2] =
      ISACencLB_obj->bitstr_obj.stream[ISACencLB_obj->bitstr_obj.stream_index];

  /* Store LPC Gains before encoding them. */
  for (k = 0; k < SUBFRAMES; k++) {
    transcodingParam.loFiltGain[k] = lofilt_coef[(LPC_LOBAND_ORDER + 1) * k];
    transcodingParam.hiFiltGain[k] = hifilt_coef[(LPC_HIBAND_ORDER + 1) * k];
  }

  /* Code gains */
  WebRtcIsac_EncodeLpcGainLb(lofilt_coef, hifilt_coef,
                             &ISACencLB_obj->bitstr_obj,
                             &ISACencLB_obj->SaveEnc_obj);

  /* Get the correct value for the payload limit and calculate the
   * number of bytes left for coding the spectrum. */
  if ((frame_mode == 1) && (ISACencLB_obj->frame_nb == 0)) {
    /* It is a 60ms and we are in the first 30ms then the limit at
     * this point should be half of the assigned value. */
    payloadLimitBytes = ISACencLB_obj->payloadLimitBytes60 >> 1;
  } else if (frame_mode == 0) {
    /* It is a 30ms frame */
    /* Subract 3 because termination process may add 3 bytes. */
    payloadLimitBytes = ISACencLB_obj->payloadLimitBytes30 - 3;
  } else {
    /* This is the second half of a 60ms frame. */
    /* Subract 3 because termination process may add 3 bytes. */
    payloadLimitBytes = ISACencLB_obj->payloadLimitBytes60 - 3;
  }
  bytesLeftSpecCoding = payloadLimitBytes - transcodingParam.stream_index;

  /* Perceptual pre-filtering (using normalized lattice filter). */
  /* Low-band filtering. */
  WebRtcIsac_NormLatticeFilterMa(ORDERLO,
                                 ISACencLB_obj->maskfiltstr_obj.PreStateLoF,
                                 ISACencLB_obj->maskfiltstr_obj.PreStateLoG,
                                 LP, lofilt_coef, LPw);
  /* High-band filtering. */
  WebRtcIsac_NormLatticeFilterMa(ORDERHI,
                                 ISACencLB_obj->maskfiltstr_obj.PreStateHiF,
                                 ISACencLB_obj->maskfiltstr_obj.PreStateHiG,
                                 HP, hifilt_coef, HPw);
  /* Pitch filter. */
  WebRtcIsac_PitchfilterPre(LPw, LPw_pf, &ISACencLB_obj->pitchfiltstr_obj,
                            PitchLags, PitchGains);
  /* Transform */
  WebRtcIsac_Time2Spec(transform_tables,
                       LPw_pf, HPw, fre, fim, &ISACencLB_obj->fftstr_obj);

  /* Save data for multiple packets memory. */
  my_index = ISACencLB_obj->SaveEnc_obj.startIdx * FRAMESAMPLES_HALF;
  memcpy(&ISACencLB_obj->SaveEnc_obj.fre[my_index], fre, sizeof(fre));
  memcpy(&ISACencLB_obj->SaveEnc_obj.fim[my_index], fim, sizeof(fim));

  ISACencLB_obj->SaveEnc_obj.AvgPitchGain[ISACencLB_obj->SaveEnc_obj.startIdx] =
      AvgPitchGain_Q12;

  /* Quantization and loss-less coding. */
  err = WebRtcIsac_EncodeSpec(fre, fim, AvgPitchGain_Q12, kIsacLowerBand,
                              &ISACencLB_obj->bitstr_obj);
  if ((err < 0) && (err != -ISAC_DISALLOWED_BITSTREAM_LENGTH)) {
    /* There has been an error but it was not too large payload
       (we can cure too large payload). */
    if (frame_mode == 1 && ISACencLB_obj->frame_nb == 1) {
      /* If this is the second 30ms of a 60ms frame reset
         this such that in the next call encoder starts fresh. */
      ISACencLB_obj->frame_nb = 0;
    }
    return err;
  }
  iterCntr = 0;
  while ((ISACencLB_obj->bitstr_obj.stream_index > payloadLimitBytes) ||
      (err == -ISAC_DISALLOWED_BITSTREAM_LENGTH)) {
    double bytesSpecCoderUsed;
    double transcodeScale;

    if (iterCntr >= MAX_PAYLOAD_LIMIT_ITERATION) {
      /* We were not able to limit the payload size */
      if ((frame_mode == 1) && (ISACencLB_obj->frame_nb == 0)) {
        /* This was the first 30ms of a 60ms frame. Although
           the payload is larger than it should be but we let
           the second 30ms be encoded. Maybe together we
           won't exceed the limit. */
        ISACencLB_obj->frame_nb = 1;
        return 0;
      } else if ((frame_mode == 1) && (ISACencLB_obj->frame_nb == 1)) {
        ISACencLB_obj->frame_nb = 0;
      }

      if (err != -ISAC_DISALLOWED_BITSTREAM_LENGTH) {
        return -ISAC_PAYLOAD_LARGER_THAN_LIMIT;
      } else {
        return status;
      }
    }

    if (err == -ISAC_DISALLOWED_BITSTREAM_LENGTH) {
      bytesSpecCoderUsed = STREAM_SIZE_MAX;
      /* Being conservative */
      transcodeScale = bytesLeftSpecCoding / bytesSpecCoderUsed * 0.5;
    } else {
      bytesSpecCoderUsed = ISACencLB_obj->bitstr_obj.stream_index -
          transcodingParam.stream_index;
      transcodeScale = bytesLeftSpecCoding / bytesSpecCoderUsed;
    }

    /* To be safe, we reduce the scale depending on
       the number of iterations. */
    transcodeScale *= (1.0 - (0.9 * (double)iterCntr /
        (double)MAX_PAYLOAD_LIMIT_ITERATION));

    /* Scale the LPC Gains. */
    for (k = 0; k < SUBFRAMES; k++) {
      lofilt_coef[(LPC_LOBAND_ORDER + 1) * k] =
          transcodingParam.loFiltGain[k] * transcodeScale;
      hifilt_coef[(LPC_HIBAND_ORDER + 1) * k] =
          transcodingParam.hiFiltGain[k] * transcodeScale;
      transcodingParam.loFiltGain[k] = lofilt_coef[(LPC_LOBAND_ORDER + 1) * k];
      transcodingParam.hiFiltGain[k] = hifilt_coef[(LPC_HIBAND_ORDER + 1) * k];
    }

    /* Scale DFT coefficients. */
    for (k = 0; k < FRAMESAMPLES_HALF; k++) {
      fre[k] = (int16_t)(fre[k] * transcodeScale);
      fim[k] = (int16_t)(fim[k] * transcodeScale);
    }

    /* Save data for multiple packets memory. */
    my_index = ISACencLB_obj->SaveEnc_obj.startIdx * FRAMESAMPLES_HALF;
    memcpy(&ISACencLB_obj->SaveEnc_obj.fre[my_index], fre, sizeof(fre));
    memcpy(&ISACencLB_obj->SaveEnc_obj.fim[my_index], fim, sizeof(fim));

    /* Re-store the state of arithmetic coder before coding LPC gains. */
    ISACencLB_obj->bitstr_obj.W_upper = transcodingParam.W_upper;
    ISACencLB_obj->bitstr_obj.stream_index = transcodingParam.stream_index;
    ISACencLB_obj->bitstr_obj.streamval = transcodingParam.streamval;
    ISACencLB_obj->bitstr_obj.stream[transcodingParam.stream_index - 2] =
        transcodingParam.stream[0];
    ISACencLB_obj->bitstr_obj.stream[transcodingParam.stream_index - 1] =
        transcodingParam.stream[1];
    ISACencLB_obj->bitstr_obj.stream[transcodingParam.stream_index] =
        transcodingParam.stream[2];

    /* Code gains. */
    WebRtcIsac_EncodeLpcGainLb(lofilt_coef, hifilt_coef,
                               &ISACencLB_obj->bitstr_obj,
                               &ISACencLB_obj->SaveEnc_obj);

    /* Update the number of bytes left for encoding the spectrum. */
    bytesLeftSpecCoding = payloadLimitBytes - transcodingParam.stream_index;

    /* Encode the spectrum. */
    err = WebRtcIsac_EncodeSpec(fre, fim, AvgPitchGain_Q12, kIsacLowerBand,
                                &ISACencLB_obj->bitstr_obj);

    if ((err < 0) && (err != -ISAC_DISALLOWED_BITSTREAM_LENGTH)) {
      /* There has been an error but it was not too large
         payload (we can cure too large payload). */
      if (frame_mode == 1 && ISACencLB_obj->frame_nb == 1) {
        /* If this is the second 30 ms of a 60 ms frame reset
           this such that in the next call encoder starts fresh. */
        ISACencLB_obj->frame_nb = 0;
      }
      return err;
    }
    iterCntr++;
  }

  /* If 60 ms frame-size and just processed the first 30 ms, */
  /* go back to main function to buffer the other 30 ms speech frame. */
  if (frame_mode == 1) {
    if (ISACencLB_obj->frame_nb == 0) {
      ISACencLB_obj->frame_nb = 1;
      return 0;
    } else if (ISACencLB_obj->frame_nb == 1) {
      ISACencLB_obj->frame_nb = 0;
      /* Also update the frame-length for next packet,
         in Adaptive mode only. */
      if (codingMode == 0 && (ISACencLB_obj->enforceFrameSize == 0)) {
        ISACencLB_obj->new_framelength =
            WebRtcIsac_GetNewFrameLength(ISACencLB_obj->bottleneck,
                                         ISACencLB_obj->current_framesamples);
      }
    }
  } else {
    ISACencLB_obj->frame_nb = 0;
  }

  /* Complete arithmetic coding. */
  stream_length = WebRtcIsac_EncTerminate(&ISACencLB_obj->bitstr_obj);
  return stream_length;
}



static int LimitPayloadUb(ISACUBEncStruct* ISACencUB_obj,
                          uint16_t payloadLimitBytes,
                          double bytesLeftSpecCoding,
                          transcode_obj* transcodingParam,
                          int16_t* fre, int16_t* fim,
                          double* lpcGains, enum ISACBand band, int status) {

  int iterCntr = 0;
  int k;
  double bytesSpecCoderUsed;
  double transcodeScale;
  const int16_t kAveragePitchGain = 0.0;

  do {
    if (iterCntr >= MAX_PAYLOAD_LIMIT_ITERATION) {
      /* We were not able to limit the payload size. */
      return -ISAC_PAYLOAD_LARGER_THAN_LIMIT;
    }

    if (status == -ISAC_DISALLOWED_BITSTREAM_LENGTH) {
      bytesSpecCoderUsed = STREAM_SIZE_MAX;
      /* Being conservative. */
      transcodeScale = bytesLeftSpecCoding / bytesSpecCoderUsed * 0.5;
    } else {
      bytesSpecCoderUsed = ISACencUB_obj->bitstr_obj.stream_index -
          transcodingParam->stream_index;
      transcodeScale = bytesLeftSpecCoding / bytesSpecCoderUsed;
    }

    /* To be safe, we reduce the scale depending on the
       number of iterations. */
    transcodeScale *= (1.0 - (0.9 * (double)iterCntr /
        (double)MAX_PAYLOAD_LIMIT_ITERATION));

    /* Scale the LPC Gains. */
    if (band == kIsacUpperBand16) {
      /* Two sets of coefficients if 16 kHz. */
      for (k = 0; k < SUBFRAMES; k++) {
        transcodingParam->loFiltGain[k] *= transcodeScale;
        transcodingParam->hiFiltGain[k] *= transcodeScale;
      }
    } else {
      /* One sets of coefficients if 12 kHz. */
      for (k = 0; k < SUBFRAMES; k++) {
        transcodingParam->loFiltGain[k] *= transcodeScale;
      }
    }

    /* Scale DFT coefficients. */
    for (k = 0; k < FRAMESAMPLES_HALF; k++) {
      fre[k] = (int16_t)(fre[k] * transcodeScale + 0.5);
      fim[k] = (int16_t)(fim[k] * transcodeScale + 0.5);
    }
    /* Store FFT coefficients for multiple encoding. */
    memcpy(ISACencUB_obj->SaveEnc_obj.realFFT, fre,
          sizeof(ISACencUB_obj->SaveEnc_obj.realFFT));
    memcpy(ISACencUB_obj->SaveEnc_obj.imagFFT, fim,
           sizeof(ISACencUB_obj->SaveEnc_obj.imagFFT));

    /* Store the state of arithmetic coder before coding LPC gains */
    ISACencUB_obj->bitstr_obj.W_upper = transcodingParam->W_upper;
    ISACencUB_obj->bitstr_obj.stream_index = transcodingParam->stream_index;
    ISACencUB_obj->bitstr_obj.streamval = transcodingParam->streamval;
    ISACencUB_obj->bitstr_obj.stream[transcodingParam->stream_index - 2] =
        transcodingParam->stream[0];
    ISACencUB_obj->bitstr_obj.stream[transcodingParam->stream_index - 1] =
        transcodingParam->stream[1];
    ISACencUB_obj->bitstr_obj.stream[transcodingParam->stream_index] =
        transcodingParam->stream[2];

    /* Store the gains for multiple encoding. */
    memcpy(ISACencUB_obj->SaveEnc_obj.lpcGain, lpcGains,
           SUBFRAMES * sizeof(double));
    /* Entropy Code lpc-gains, indices are stored for a later use.*/
    WebRtcIsac_EncodeLpcGainUb(transcodingParam->loFiltGain,
                               &ISACencUB_obj->bitstr_obj,
                               ISACencUB_obj->SaveEnc_obj.lpcGainIndex);

    /* If 16kHz should do one more set. */
    if (band == kIsacUpperBand16) {
      /* Store the gains for multiple encoding. */
      memcpy(&ISACencUB_obj->SaveEnc_obj.lpcGain[SUBFRAMES],
             &lpcGains[SUBFRAMES], SUBFRAMES * sizeof(double));
      /* Entropy Code lpc-gains, indices are stored for a later use.*/
      WebRtcIsac_EncodeLpcGainUb(
          transcodingParam->hiFiltGain, &ISACencUB_obj->bitstr_obj,
          &ISACencUB_obj->SaveEnc_obj.lpcGainIndex[SUBFRAMES]);
    }

    /* Update the number of bytes left for encoding the spectrum. */
    bytesLeftSpecCoding = payloadLimitBytes -
        ISACencUB_obj->bitstr_obj.stream_index;

    /* Save the bit-stream object at this point for FEC. */
    memcpy(&ISACencUB_obj->SaveEnc_obj.bitStreamObj,
           &ISACencUB_obj->bitstr_obj, sizeof(Bitstr));

    /* Encode the spectrum. */
    status = WebRtcIsac_EncodeSpec(fre, fim, kAveragePitchGain,
                                   band, &ISACencUB_obj->bitstr_obj);
    if ((status < 0) && (status != -ISAC_DISALLOWED_BITSTREAM_LENGTH)) {
      /* There has been an error but it was not too large payload
         (we can cure too large payload). */
      return status;
    }
    iterCntr++;
  } while ((ISACencUB_obj->bitstr_obj.stream_index > payloadLimitBytes) ||
      (status == -ISAC_DISALLOWED_BITSTREAM_LENGTH));
  return 0;
}

int WebRtcIsac_EncodeUb16(const TransformTables* transform_tables,
                          float* in, ISACUBEncStruct* ISACencUB_obj,
                          int32_t jitterInfo) {
  int err;
  int k;

  double lpcVecs[UB_LPC_ORDER * UB16_LPC_VEC_PER_FRAME];
  double percepFilterParams[(1 + UB_LPC_ORDER) * (SUBFRAMES << 1) +
                            (1 + UB_LPC_ORDER)];

  double LP_lookahead[FRAMESAMPLES];
  int16_t fre[FRAMESAMPLES_HALF];   /* Q7 */
  int16_t fim[FRAMESAMPLES_HALF];   /* Q7 */

  int status = 0;

  double varscale[2];
  double corr[SUBFRAMES << 1][UB_LPC_ORDER + 1];
  double lpcGains[SUBFRAMES << 1];
  transcode_obj transcodingParam;
  uint16_t payloadLimitBytes;
  double s2nr;
  const int16_t kAveragePitchGain = 0.0;
  int bytesLeftSpecCoding;

  /* Buffer speech samples (by 10ms packet) until the frame-length is   */
  /* reached (30 ms).                                                   */
  /*********************************************************************/

  /* fill the buffer with 10ms input data */
  memcpy(&ISACencUB_obj->data_buffer_float[ISACencUB_obj->buffer_index], in,
         FRAMESAMPLES_10ms * sizeof(float));

  /* If buffer size is not equal to current frame-size, and end of file is
   * not reached yet, we don't do encoding unless we have the whole frame. */
  if (ISACencUB_obj->buffer_index + FRAMESAMPLES_10ms < FRAMESAMPLES) {
    ISACencUB_obj->buffer_index += FRAMESAMPLES_10ms;
    return 0;
  }

  /* End of buffer function. */
  /**************************/

  /* Encoding */
  /************/

  /* Reset bit-stream */
  WebRtcIsac_ResetBitstream(&(ISACencUB_obj->bitstr_obj));

  /* Encoding of bandwidth information. */
  WebRtcIsac_EncodeJitterInfo(jitterInfo, &ISACencUB_obj->bitstr_obj);

  status = WebRtcIsac_EncodeBandwidth(isac16kHz, &ISACencUB_obj->bitstr_obj);
  if (status < 0) {
    return status;
  }

  s2nr = WebRtcIsac_GetSnr(ISACencUB_obj->bottleneck, FRAMESAMPLES);

  memcpy(lpcVecs, ISACencUB_obj->lastLPCVec, UB_LPC_ORDER * sizeof(double));

  for (k = 0; k < FRAMESAMPLES; k++) {
    LP_lookahead[k] = ISACencUB_obj->data_buffer_float[UB_LOOKAHEAD + k];
  }

  /* Find coefficients for perceptual pre-filters. */
  WebRtcIsac_GetLpcCoefUb(LP_lookahead, &ISACencUB_obj->maskfiltstr_obj,
                          &lpcVecs[UB_LPC_ORDER], corr, varscale, isac16kHz);

  memcpy(ISACencUB_obj->lastLPCVec,
         &lpcVecs[(UB16_LPC_VEC_PER_FRAME - 1) * (UB_LPC_ORDER)],
         sizeof(double) * UB_LPC_ORDER);

  /* Code LPC model and shape - gains not quantized yet. */
  WebRtcIsac_EncodeLpcUB(lpcVecs, &ISACencUB_obj->bitstr_obj,
                         percepFilterParams, isac16kHz,
                         &ISACencUB_obj->SaveEnc_obj);

  /* the first set of lpc parameters are from the last sub-frame of
   * the previous frame. so we don't care about them. */
  WebRtcIsac_GetLpcGain(s2nr, &percepFilterParams[UB_LPC_ORDER + 1],
                        (SUBFRAMES << 1), lpcGains, corr, varscale);

  /* Store the state of arithmetic coder before coding LPC gains */
  transcodingParam.stream_index = ISACencUB_obj->bitstr_obj.stream_index;
  transcodingParam.W_upper = ISACencUB_obj->bitstr_obj.W_upper;
  transcodingParam.streamval = ISACencUB_obj->bitstr_obj.streamval;
  transcodingParam.stream[0] =
      ISACencUB_obj->bitstr_obj.stream[ISACencUB_obj->bitstr_obj.stream_index -
                                       2];
  transcodingParam.stream[1] =
      ISACencUB_obj->bitstr_obj.stream[ISACencUB_obj->bitstr_obj.stream_index -
                                       1];
  transcodingParam.stream[2] =
      ISACencUB_obj->bitstr_obj.stream[ISACencUB_obj->bitstr_obj.stream_index];

  /* Store LPC Gains before encoding them. */
  for (k = 0; k < SUBFRAMES; k++) {
    transcodingParam.loFiltGain[k] = lpcGains[k];
    transcodingParam.hiFiltGain[k] = lpcGains[SUBFRAMES + k];
  }

  /* Store the gains for multiple encoding. */
  memcpy(ISACencUB_obj->SaveEnc_obj.lpcGain, lpcGains,
         (SUBFRAMES << 1) * sizeof(double));

  WebRtcIsac_EncodeLpcGainUb(lpcGains, &ISACencUB_obj->bitstr_obj,
                             ISACencUB_obj->SaveEnc_obj.lpcGainIndex);
  WebRtcIsac_EncodeLpcGainUb(
      &lpcGains[SUBFRAMES], &ISACencUB_obj->bitstr_obj,
      &ISACencUB_obj->SaveEnc_obj.lpcGainIndex[SUBFRAMES]);

  /* Get the correct value for the payload limit and calculate the number of
     bytes left for coding the spectrum. It is a 30ms frame
     Subract 3 because termination process may add 3 bytes */
  payloadLimitBytes = ISACencUB_obj->maxPayloadSizeBytes -
      ISACencUB_obj->numBytesUsed - 3;
  bytesLeftSpecCoding = payloadLimitBytes -
        ISACencUB_obj->bitstr_obj.stream_index;

  for (k = 0; k < (SUBFRAMES << 1); k++) {
    percepFilterParams[k * (UB_LPC_ORDER + 1) + (UB_LPC_ORDER + 1)] =
        lpcGains[k];
  }

  /* LPC filtering (using normalized lattice filter), */
  /* first half-frame. */
  WebRtcIsac_NormLatticeFilterMa(UB_LPC_ORDER,
                                 ISACencUB_obj->maskfiltstr_obj.PreStateLoF,
                                 ISACencUB_obj->maskfiltstr_obj.PreStateLoG,
                                 &ISACencUB_obj->data_buffer_float[0],
                                 &percepFilterParams[UB_LPC_ORDER + 1],
                                 &LP_lookahead[0]);

  /* Second half-frame filtering. */
  WebRtcIsac_NormLatticeFilterMa(
      UB_LPC_ORDER, ISACencUB_obj->maskfiltstr_obj.PreStateLoF,
      ISACencUB_obj->maskfiltstr_obj.PreStateLoG,
      &ISACencUB_obj->data_buffer_float[FRAMESAMPLES_HALF],
      &percepFilterParams[(UB_LPC_ORDER + 1) + SUBFRAMES * (UB_LPC_ORDER + 1)],
      &LP_lookahead[FRAMESAMPLES_HALF]);

  WebRtcIsac_Time2Spec(transform_tables,
                       &LP_lookahead[0], &LP_lookahead[FRAMESAMPLES_HALF],
                       fre, fim, &ISACencUB_obj->fftstr_obj);

  /* Store FFT coefficients for multiple encoding. */
  memcpy(ISACencUB_obj->SaveEnc_obj.realFFT, fre, sizeof(fre));
  memcpy(ISACencUB_obj->SaveEnc_obj.imagFFT, fim, sizeof(fim));

  /* Prepare the audio buffer for the next packet
   * move the last 3 ms to the beginning of the buffer. */
  memcpy(ISACencUB_obj->data_buffer_float,
         &ISACencUB_obj->data_buffer_float[FRAMESAMPLES],
         LB_TOTAL_DELAY_SAMPLES * sizeof(float));
  /* start writing with 3 ms delay to compensate for the delay
   * of the lower-band. */
  ISACencUB_obj->buffer_index = LB_TOTAL_DELAY_SAMPLES;

  /* Save the bit-stream object at this point for FEC. */
  memcpy(&ISACencUB_obj->SaveEnc_obj.bitStreamObj, &ISACencUB_obj->bitstr_obj,
         sizeof(Bitstr));

  /* Qantization and lossless coding */
  /* Note that there is no pitch-gain for this band so kAveragePitchGain = 0
   * is passed to the function. In fact, the function ignores the 3rd parameter
   * for this band. */
  err = WebRtcIsac_EncodeSpec(fre, fim, kAveragePitchGain, kIsacUpperBand16,
                              &ISACencUB_obj->bitstr_obj);
  if ((err < 0) && (err != -ISAC_DISALLOWED_BITSTREAM_LENGTH)) {
    return err;
  }

  if ((ISACencUB_obj->bitstr_obj.stream_index > payloadLimitBytes) ||
      (err == -ISAC_DISALLOWED_BITSTREAM_LENGTH)) {
    err = LimitPayloadUb(ISACencUB_obj, payloadLimitBytes, bytesLeftSpecCoding,
                         &transcodingParam, fre, fim, lpcGains,
                         kIsacUpperBand16, err);
  }
  if (err < 0) {
    return err;
  }
  /* Complete arithmetic coding. */
  return WebRtcIsac_EncTerminate(&ISACencUB_obj->bitstr_obj);
}


int WebRtcIsac_EncodeUb12(const TransformTables* transform_tables,
                          float* in, ISACUBEncStruct* ISACencUB_obj,
                          int32_t jitterInfo) {
  int err;
  int k;

  double lpcVecs[UB_LPC_ORDER * UB_LPC_VEC_PER_FRAME];

  double percepFilterParams[(1 + UB_LPC_ORDER) * SUBFRAMES];
  float LP[FRAMESAMPLES_HALF];
  float HP[FRAMESAMPLES_HALF];

  double LP_lookahead[FRAMESAMPLES_HALF];
  double HP_lookahead[FRAMESAMPLES_HALF];
  double LPw[FRAMESAMPLES_HALF];

  double HPw[FRAMESAMPLES_HALF];
  int16_t fre[FRAMESAMPLES_HALF];   /* Q7 */
  int16_t fim[FRAMESAMPLES_HALF];   /* Q7 */

  int status = 0;

  double varscale[1];

  double corr[UB_LPC_GAIN_DIM][UB_LPC_ORDER + 1];
  double lpcGains[SUBFRAMES];
  transcode_obj transcodingParam;
  uint16_t payloadLimitBytes;
  double s2nr;
  const int16_t kAveragePitchGain = 0.0;
  double bytesLeftSpecCoding;

  /* Buffer speech samples (by 10ms packet) until the framelength is  */
  /* reached (30 ms).                                                 */
  /********************************************************************/

  /* Fill the buffer with 10ms input data. */
  memcpy(&ISACencUB_obj->data_buffer_float[ISACencUB_obj->buffer_index], in,
         FRAMESAMPLES_10ms * sizeof(float));

  /* if buffer-size is not equal to current frame-size then increase the
     index and return. We do the encoding when we have enough audio.     */
  if (ISACencUB_obj->buffer_index + FRAMESAMPLES_10ms < FRAMESAMPLES) {
    ISACencUB_obj->buffer_index += FRAMESAMPLES_10ms;
    return 0;
  }
  /* If buffer reached the right size, reset index and continue
     with encoding the frame */
  ISACencUB_obj->buffer_index = 0;

  /* End of buffer function */
  /**************************/

  /* Encoding */
  /************/

  /* Reset bit-stream. */
  WebRtcIsac_ResetBitstream(&(ISACencUB_obj->bitstr_obj));

  /* Encoding bandwidth information. */
  WebRtcIsac_EncodeJitterInfo(jitterInfo, &ISACencUB_obj->bitstr_obj);
  status = WebRtcIsac_EncodeBandwidth(isac12kHz, &ISACencUB_obj->bitstr_obj);
  if (status < 0) {
    return status;
  }

  s2nr = WebRtcIsac_GetSnr(ISACencUB_obj->bottleneck, FRAMESAMPLES);

  /* Split signal in two bands. */
  WebRtcIsac_SplitAndFilterFloat(ISACencUB_obj->data_buffer_float, HP, LP,
                                 HP_lookahead, LP_lookahead,
                                 &ISACencUB_obj->prefiltbankstr_obj);

  /* Find coefficients for perceptual pre-filters. */
  WebRtcIsac_GetLpcCoefUb(LP_lookahead, &ISACencUB_obj->maskfiltstr_obj,
                          lpcVecs, corr, varscale, isac12kHz);

  /* Code LPC model and shape - gains not quantized yet. */
  WebRtcIsac_EncodeLpcUB(lpcVecs, &ISACencUB_obj->bitstr_obj,
                         percepFilterParams, isac12kHz,
                         &ISACencUB_obj->SaveEnc_obj);

  WebRtcIsac_GetLpcGain(s2nr, percepFilterParams, SUBFRAMES, lpcGains, corr,
                        varscale);

  /* Store the state of arithmetic coder before coding LPC gains. */
  transcodingParam.W_upper = ISACencUB_obj->bitstr_obj.W_upper;
  transcodingParam.stream_index = ISACencUB_obj->bitstr_obj.stream_index;
  transcodingParam.streamval = ISACencUB_obj->bitstr_obj.streamval;
  transcodingParam.stream[0] =
      ISACencUB_obj->bitstr_obj.stream[ISACencUB_obj->bitstr_obj.stream_index -
                                       2];
  transcodingParam.stream[1] =
      ISACencUB_obj->bitstr_obj.stream[ISACencUB_obj->bitstr_obj.stream_index -
                                       1];
  transcodingParam.stream[2] =
      ISACencUB_obj->bitstr_obj.stream[ISACencUB_obj->bitstr_obj.stream_index];

  /* Store LPC Gains before encoding them. */
  for (k = 0; k < SUBFRAMES; k++) {
    transcodingParam.loFiltGain[k] = lpcGains[k];
  }

  /* Store the gains for multiple encoding. */
  memcpy(ISACencUB_obj->SaveEnc_obj.lpcGain, lpcGains, SUBFRAMES *
         sizeof(double));

  WebRtcIsac_EncodeLpcGainUb(lpcGains, &ISACencUB_obj->bitstr_obj,
                             ISACencUB_obj->SaveEnc_obj.lpcGainIndex);

  for (k = 0; k < SUBFRAMES; k++) {
    percepFilterParams[k * (UB_LPC_ORDER + 1)] = lpcGains[k];
  }

  /* perceptual pre-filtering (using normalized lattice filter) */
  /* low-band filtering */
  WebRtcIsac_NormLatticeFilterMa(UB_LPC_ORDER,
                                 ISACencUB_obj->maskfiltstr_obj.PreStateLoF,
                                 ISACencUB_obj->maskfiltstr_obj.PreStateLoG, LP,
                                 percepFilterParams, LPw);

  /* Get the correct value for the payload limit and calculate the number
     of bytes left for coding the spectrum. It is a 30ms frame Subract 3
     because termination process may add 3 bytes */
  payloadLimitBytes = ISACencUB_obj->maxPayloadSizeBytes -
      ISACencUB_obj->numBytesUsed - 3;
  bytesLeftSpecCoding = payloadLimitBytes -
      ISACencUB_obj->bitstr_obj.stream_index;

  memset(HPw, 0, sizeof(HPw));

  /* Transform */
  WebRtcIsac_Time2Spec(transform_tables,
                       LPw, HPw, fre, fim, &ISACencUB_obj->fftstr_obj);

  /* Store FFT coefficients for multiple encoding. */
  memcpy(ISACencUB_obj->SaveEnc_obj.realFFT, fre,
         sizeof(ISACencUB_obj->SaveEnc_obj.realFFT));
  memcpy(ISACencUB_obj->SaveEnc_obj.imagFFT, fim,
         sizeof(ISACencUB_obj->SaveEnc_obj.imagFFT));

  /* Save the bit-stream object at this point for FEC. */
  memcpy(&ISACencUB_obj->SaveEnc_obj.bitStreamObj,
         &ISACencUB_obj->bitstr_obj, sizeof(Bitstr));

  /* Quantization and loss-less coding */
  /* The 4th parameter to this function is pitch-gain, which is only used
   * when encoding 0-8 kHz band, and irrelevant in this function, therefore,
   * we insert zero here. */
  err = WebRtcIsac_EncodeSpec(fre, fim, kAveragePitchGain, kIsacUpperBand12,
                              &ISACencUB_obj->bitstr_obj);
  if ((err < 0) && (err != -ISAC_DISALLOWED_BITSTREAM_LENGTH)) {
    /* There has been an error but it was not too large
       payload (we can cure too large payload) */
    return err;
  }

  if ((ISACencUB_obj->bitstr_obj.stream_index > payloadLimitBytes) ||
      (err == -ISAC_DISALLOWED_BITSTREAM_LENGTH)) {
    err = LimitPayloadUb(ISACencUB_obj, payloadLimitBytes, bytesLeftSpecCoding,
                         &transcodingParam, fre, fim, lpcGains,
                         kIsacUpperBand12, err);
  }
  if (err < 0) {
    return err;
  }
  /* Complete arithmetic coding. */
  return WebRtcIsac_EncTerminate(&ISACencUB_obj->bitstr_obj);
}






/* This function is used to create a new bit-stream with new BWE.
   The same data as previously encoded with the function WebRtcIsac_Encoder().
   The data needed is taken from the structure, where it was stored
   when calling the encoder. */

int WebRtcIsac_EncodeStoredDataLb(const IsacSaveEncoderData* ISACSavedEnc_obj,
                                  Bitstr* ISACBitStr_obj, int BWnumber,
                                  float scale) {
  int ii;
  int status;
  int BWno = BWnumber;

  const uint16_t* WebRtcIsac_kQPitchGainCdf_ptr[1];
  const uint16_t** cdf;

  double tmpLPCcoeffs_lo[(ORDERLO + 1)*SUBFRAMES * 2];
  double tmpLPCcoeffs_hi[(ORDERHI + 1)*SUBFRAMES * 2];
  int tmpLPCindex_g[12 * 2];
  int16_t tmp_fre[FRAMESAMPLES], tmp_fim[FRAMESAMPLES];
  const int kModel = 0;

  /* Sanity Check - possible values for BWnumber is 0 - 23. */
  if ((BWnumber < 0) || (BWnumber > 23)) {
    return -ISAC_RANGE_ERROR_BW_ESTIMATOR;
  }

  /* Reset bit-stream. */
  WebRtcIsac_ResetBitstream(ISACBitStr_obj);

  /* Encode frame length */
  status = WebRtcIsac_EncodeFrameLen(ISACSavedEnc_obj->framelength,
                                     ISACBitStr_obj);
  if (status < 0) {
    /* Wrong frame size. */
    return status;
  }

  /* Transcoding */
  if ((scale > 0.0) && (scale < 1.0)) {
    /* Compensate LPC gain. */
    for (ii = 0;
        ii < ((ORDERLO + 1)* SUBFRAMES * (1 + ISACSavedEnc_obj->startIdx));
        ii++) {
      tmpLPCcoeffs_lo[ii] = scale *  ISACSavedEnc_obj->LPCcoeffs_lo[ii];
    }
    for (ii = 0;
        ii < ((ORDERHI + 1) * SUBFRAMES * (1 + ISACSavedEnc_obj->startIdx));
        ii++) {
      tmpLPCcoeffs_hi[ii] = scale *  ISACSavedEnc_obj->LPCcoeffs_hi[ii];
    }
    /* Scale DFT. */
    for (ii = 0;
        ii < (FRAMESAMPLES_HALF * (1 + ISACSavedEnc_obj->startIdx));
        ii++) {
      tmp_fre[ii] = (int16_t)((scale) * (float)ISACSavedEnc_obj->fre[ii]);
      tmp_fim[ii] = (int16_t)((scale) * (float)ISACSavedEnc_obj->fim[ii]);
    }
  } else {
    for (ii = 0;
        ii < (KLT_ORDER_GAIN * (1 + ISACSavedEnc_obj->startIdx));
        ii++) {
      tmpLPCindex_g[ii] =  ISACSavedEnc_obj->LPCindex_g[ii];
    }
    for (ii = 0;
        ii < (FRAMESAMPLES_HALF * (1 + ISACSavedEnc_obj->startIdx));
        ii++) {
      tmp_fre[ii] = ISACSavedEnc_obj->fre[ii];
      tmp_fim[ii] = ISACSavedEnc_obj->fim[ii];
    }
  }

  /* Encode bandwidth estimate. */
  WebRtcIsac_EncodeReceiveBw(&BWno, ISACBitStr_obj);

  /* Loop over number of 30 msec */
  for (ii = 0; ii <= ISACSavedEnc_obj->startIdx; ii++) {
    /* Encode pitch gains. */
    *WebRtcIsac_kQPitchGainCdf_ptr = WebRtcIsac_kQPitchGainCdf;
    WebRtcIsac_EncHistMulti(ISACBitStr_obj,
                            &ISACSavedEnc_obj->pitchGain_index[ii],
                            WebRtcIsac_kQPitchGainCdf_ptr, 1);

    /* Entropy coding of quantization pitch lags */
    /* Voicing classification. */
    if (ISACSavedEnc_obj->meanGain[ii] < 0.2) {
      cdf = WebRtcIsac_kQPitchLagCdfPtrLo;
    } else if (ISACSavedEnc_obj->meanGain[ii] < 0.4) {
      cdf = WebRtcIsac_kQPitchLagCdfPtrMid;
    } else {
      cdf = WebRtcIsac_kQPitchLagCdfPtrHi;
    }
    WebRtcIsac_EncHistMulti(ISACBitStr_obj,
                            &ISACSavedEnc_obj->pitchIndex[PITCH_SUBFRAMES * ii],
                            cdf, PITCH_SUBFRAMES);

    /* LPC */
    /* Only one model exists. The entropy coding is done only for backward
     * compatibility. */
    WebRtcIsac_EncHistMulti(ISACBitStr_obj, &kModel,
                            WebRtcIsac_kQKltModelCdfPtr, 1);
    /* Entropy coding of quantization indices - LPC shape only. */
    WebRtcIsac_EncHistMulti(ISACBitStr_obj,
                            &ISACSavedEnc_obj->LPCindex_s[KLT_ORDER_SHAPE * ii],
                            WebRtcIsac_kQKltCdfPtrShape,
                            KLT_ORDER_SHAPE);

    /* If transcoding, get new LPC gain indices */
    if (scale < 1.0) {
      WebRtcIsac_TranscodeLPCCoef(
          &tmpLPCcoeffs_lo[(ORDERLO + 1) * SUBFRAMES * ii],
          &tmpLPCcoeffs_hi[(ORDERHI + 1)*SUBFRAMES * ii],
          &tmpLPCindex_g[KLT_ORDER_GAIN * ii]);
    }

    /* Entropy coding of quantization indices - LPC gain. */
    WebRtcIsac_EncHistMulti(ISACBitStr_obj, &tmpLPCindex_g[KLT_ORDER_GAIN * ii],
                            WebRtcIsac_kQKltCdfPtrGain, KLT_ORDER_GAIN);

    /* Quantization and loss-less coding. */
    status = WebRtcIsac_EncodeSpec(&tmp_fre[ii * FRAMESAMPLES_HALF],
                                   &tmp_fim[ii * FRAMESAMPLES_HALF],
                                   ISACSavedEnc_obj->AvgPitchGain[ii],
                                   kIsacLowerBand, ISACBitStr_obj);
    if (status < 0) {
      return status;
    }
  }
  /* Complete arithmetic coding. */
  return WebRtcIsac_EncTerminate(ISACBitStr_obj);
}


int WebRtcIsac_EncodeStoredDataUb(
    const ISACUBSaveEncDataStruct* ISACSavedEnc_obj,
    Bitstr* bitStream,
    int32_t jitterInfo,
    float scale,
    enum ISACBandwidth bandwidth) {
  int n;
  int err;
  double lpcGain[SUBFRAMES];
  int16_t realFFT[FRAMESAMPLES_HALF];
  int16_t imagFFT[FRAMESAMPLES_HALF];
  const uint16_t** shape_cdf;
  int shape_len;
  const int16_t kAveragePitchGain = 0.0;
  enum ISACBand band;
  /* Reset bitstream. */
  WebRtcIsac_ResetBitstream(bitStream);

  /* Encode jitter index. */
  WebRtcIsac_EncodeJitterInfo(jitterInfo, bitStream);

  err = WebRtcIsac_EncodeBandwidth(bandwidth, bitStream);
  if (err < 0) {
    return err;
  }

  /* Encode LPC-shape. */
  if (bandwidth == isac12kHz) {
    shape_cdf = WebRtcIsac_kLpcShapeCdfMatUb12;
    shape_len = UB_LPC_ORDER * UB_LPC_VEC_PER_FRAME;
    band = kIsacUpperBand12;
  } else {
    shape_cdf = WebRtcIsac_kLpcShapeCdfMatUb16;
    shape_len = UB_LPC_ORDER * UB16_LPC_VEC_PER_FRAME;
    band = kIsacUpperBand16;
  }
  WebRtcIsac_EncHistMulti(bitStream, ISACSavedEnc_obj->indexLPCShape,
                          shape_cdf, shape_len);

  if ((scale <= 0.0) || (scale >= 1.0)) {
    /* We only consider scales between zero and one. */
    WebRtcIsac_EncHistMulti(bitStream, ISACSavedEnc_obj->lpcGainIndex,
                            WebRtcIsac_kLpcGainCdfMat, UB_LPC_GAIN_DIM);
    if (bandwidth == isac16kHz) {
      /* Store gain indices of the second half. */
      WebRtcIsac_EncHistMulti(bitStream,
                              &ISACSavedEnc_obj->lpcGainIndex[SUBFRAMES],
                              WebRtcIsac_kLpcGainCdfMat, UB_LPC_GAIN_DIM);
    }
    /* Store FFT coefficients. */
    err = WebRtcIsac_EncodeSpec(ISACSavedEnc_obj->realFFT,
                                ISACSavedEnc_obj->imagFFT, kAveragePitchGain,
                                band, bitStream);
  } else {
    /* Scale LPC gain and FFT coefficients. */
    for (n = 0; n < SUBFRAMES; n++) {
      lpcGain[n] = scale * ISACSavedEnc_obj->lpcGain[n];
    }
    /* Store LPC gains. */
    WebRtcIsac_StoreLpcGainUb(lpcGain, bitStream);

    if (bandwidth == isac16kHz) {
      /* Scale and code the gains of the second half of the frame, if 16kHz. */
      for (n = 0; n < SUBFRAMES; n++) {
        lpcGain[n] = scale * ISACSavedEnc_obj->lpcGain[n + SUBFRAMES];
      }
      WebRtcIsac_StoreLpcGainUb(lpcGain, bitStream);
    }

    for (n = 0; n < FRAMESAMPLES_HALF; n++) {
      realFFT[n] = (int16_t)(scale * (float)ISACSavedEnc_obj->realFFT[n] +
          0.5f);
      imagFFT[n] = (int16_t)(scale * (float)ISACSavedEnc_obj->imagFFT[n] +
          0.5f);
    }
    /* Store FFT coefficients. */
    err = WebRtcIsac_EncodeSpec(realFFT, imagFFT, kAveragePitchGain,
                                band, bitStream);
  }
  if (err < 0) {
    /* Error happened while encoding FFT coefficients. */
    return err;
  }

  /* Complete arithmetic coding. */
  return WebRtcIsac_EncTerminate(bitStream);
}

int16_t WebRtcIsac_GetRedPayloadUb(
    const ISACUBSaveEncDataStruct* ISACSavedEncObj,
    Bitstr*                        bitStreamObj,
    enum ISACBandwidth             bandwidth) {
  int n;
  int16_t status;
  int16_t realFFT[FRAMESAMPLES_HALF];
  int16_t imagFFT[FRAMESAMPLES_HALF];
  enum ISACBand band;
  const int16_t kAveragePitchGain = 0.0;
  /* Store bit-stream object. */
  memcpy(bitStreamObj, &ISACSavedEncObj->bitStreamObj, sizeof(Bitstr));

  /* Scale FFT coefficients. */
  for (n = 0; n < FRAMESAMPLES_HALF; n++) {
    realFFT[n] = (int16_t)((float)ISACSavedEncObj->realFFT[n] *
        RCU_TRANSCODING_SCALE_UB + 0.5);
    imagFFT[n] = (int16_t)((float)ISACSavedEncObj->imagFFT[n] *
        RCU_TRANSCODING_SCALE_UB + 0.5);
  }

  band = (bandwidth == isac12kHz) ? kIsacUpperBand12 : kIsacUpperBand16;
  status = WebRtcIsac_EncodeSpec(realFFT, imagFFT, kAveragePitchGain, band,
                                 bitStreamObj);
  if (status < 0) {
    return status;
  } else {
    /* Terminate entropy coding */
    return WebRtcIsac_EncTerminate(bitStreamObj);
  }
}