summaryrefslogtreecommitdiff
path: root/webrtc/modules/audio_processing/aec3/comfort_noise_generator.cc
blob: de5227c0898ca692c061596d8d63de31bc9e9605 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
 *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_processing/aec3/comfort_noise_generator.h"

// Defines WEBRTC_ARCH_X86_FAMILY, used below.
#include "rtc_base/system/arch.h"

#if defined(WEBRTC_ARCH_X86_FAMILY)
#include <emmintrin.h>
#endif
#include <algorithm>
#include <array>
#include <cmath>
#include <cstdint>
#include <functional>
#include <numeric>

#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "modules/audio_processing/aec3/vector_math.h"
#include "rtc_base/checks.h"

namespace webrtc {

namespace {

// Computes the noise floor value that matches a WGN input of noise_floor_dbfs.
float GetNoiseFloorFactor(float noise_floor_dbfs) {
  // kdBfsNormalization = 20.f*log10(32768.f).
  constexpr float kdBfsNormalization = 90.30899869919436f;
  return 64.f * powf(10.f, (kdBfsNormalization + noise_floor_dbfs) * 0.1f);
}

// Table of sqrt(2) * sin(2*pi*i/32).
constexpr float kSqrt2Sin[32] = {
    +0.0000000f, +0.2758994f, +0.5411961f, +0.7856950f, +1.0000000f,
    +1.1758756f, +1.3065630f, +1.3870398f, +1.4142136f, +1.3870398f,
    +1.3065630f, +1.1758756f, +1.0000000f, +0.7856950f, +0.5411961f,
    +0.2758994f, +0.0000000f, -0.2758994f, -0.5411961f, -0.7856950f,
    -1.0000000f, -1.1758756f, -1.3065630f, -1.3870398f, -1.4142136f,
    -1.3870398f, -1.3065630f, -1.1758756f, -1.0000000f, -0.7856950f,
    -0.5411961f, -0.2758994f};

void GenerateComfortNoise(Aec3Optimization optimization,
                          const std::array<float, kFftLengthBy2Plus1>& N2,
                          uint32_t* seed,
                          FftData* lower_band_noise,
                          FftData* upper_band_noise) {
  FftData* N_low = lower_band_noise;
  FftData* N_high = upper_band_noise;

  // Compute square root spectrum.
  std::array<float, kFftLengthBy2Plus1> N;
  std::copy(N2.begin(), N2.end(), N.begin());
  aec3::VectorMath(optimization).Sqrt(N);

  // Compute the noise level for the upper bands.
  constexpr float kOneByNumBands = 1.f / (kFftLengthBy2Plus1 / 2 + 1);
  constexpr int kFftLengthBy2Plus1By2 = kFftLengthBy2Plus1 / 2;
  const float high_band_noise_level =
      std::accumulate(N.begin() + kFftLengthBy2Plus1By2, N.end(), 0.f) *
      kOneByNumBands;

  // The analysis and synthesis windowing cause loss of power when
  // cross-fading the noise where frames are completely uncorrelated
  // (generated with random phase), hence the factor sqrt(2).
  // This is not the case for the speech signal where the input is overlapping
  // (strong correlation).
  N_low->re[0] = N_low->re[kFftLengthBy2] = N_high->re[0] =
      N_high->re[kFftLengthBy2] = 0.f;
  for (size_t k = 1; k < kFftLengthBy2; k++) {
    constexpr int kIndexMask = 32 - 1;
    // Generate a random 31-bit integer.
    seed[0] = (seed[0] * 69069 + 1) & (0x80000000 - 1);
    // Convert to a 5-bit index.
    int i = seed[0] >> 26;

    // y = sqrt(2) * sin(a)
    const float x = kSqrt2Sin[i];
    // x = sqrt(2) * cos(a) = sqrt(2) * sin(a + pi/2)
    const float y = kSqrt2Sin[(i + 8) & kIndexMask];

    // Form low-frequency noise via spectral shaping.
    N_low->re[k] = N[k] * x;
    N_low->im[k] = N[k] * y;

    // Form the high-frequency noise via simple levelling.
    N_high->re[k] = high_band_noise_level * x;
    N_high->im[k] = high_band_noise_level * y;
  }
}

}  // namespace

ComfortNoiseGenerator::ComfortNoiseGenerator(const EchoCanceller3Config& config,
                                             Aec3Optimization optimization,
                                             size_t num_capture_channels)
    : optimization_(optimization),
      seed_(42),
      num_capture_channels_(num_capture_channels),
      noise_floor_(GetNoiseFloorFactor(config.comfort_noise.noise_floor_dbfs)),
      N2_initial_(
          std::make_unique<std::vector<std::array<float, kFftLengthBy2Plus1>>>(
              num_capture_channels_)),
      Y2_smoothed_(num_capture_channels_),
      N2_(num_capture_channels_) {
  for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
    (*N2_initial_)[ch].fill(0.f);
    Y2_smoothed_[ch].fill(0.f);
    N2_[ch].fill(1.0e6f);
  }
}

ComfortNoiseGenerator::~ComfortNoiseGenerator() = default;

void ComfortNoiseGenerator::Compute(
    bool saturated_capture,
    rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
        capture_spectrum,
    rtc::ArrayView<FftData> lower_band_noise,
    rtc::ArrayView<FftData> upper_band_noise) {
  const auto& Y2 = capture_spectrum;

  if (!saturated_capture) {
    // Smooth Y2.
    for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
      std::transform(Y2_smoothed_[ch].begin(), Y2_smoothed_[ch].end(),
                     Y2[ch].begin(), Y2_smoothed_[ch].begin(),
                     [](float a, float b) { return a + 0.1f * (b - a); });
    }

    if (N2_counter_ > 50) {
      // Update N2 from Y2_smoothed.
      for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
        std::transform(N2_[ch].begin(), N2_[ch].end(), Y2_smoothed_[ch].begin(),
                       N2_[ch].begin(), [](float a, float b) {
                         return b < a ? (0.9f * b + 0.1f * a) * 1.0002f
                                      : a * 1.0002f;
                       });
      }
    }

    if (N2_initial_) {
      if (++N2_counter_ == 1000) {
        N2_initial_.reset();
      } else {
        // Compute the N2_initial from N2.
        for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
          std::transform(N2_[ch].begin(), N2_[ch].end(),
                         (*N2_initial_)[ch].begin(), (*N2_initial_)[ch].begin(),
                         [](float a, float b) {
                           return a > b ? b + 0.001f * (a - b) : a;
                         });
        }
      }
    }

    for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
      for (auto& n : N2_[ch]) {
        n = std::max(n, noise_floor_);
      }
      if (N2_initial_) {
        for (auto& n : (*N2_initial_)[ch]) {
          n = std::max(n, noise_floor_);
        }
      }
    }
  }

  // Choose N2 estimate to use.
  const auto& N2 = N2_initial_ ? (*N2_initial_) : N2_;

  for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
    GenerateComfortNoise(optimization_, N2[ch], &seed_, &lower_band_noise[ch],
                         &upper_band_noise[ch]);
  }
}

}  // namespace webrtc