summaryrefslogtreecommitdiff
path: root/webrtc/modules/audio_processing/aec3/signal_dependent_erle_estimator.cc
blob: 5a3ba6c842f7628a8cd3dec9089323032bc77bc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
/*
 *  Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_processing/aec3/signal_dependent_erle_estimator.h"

#include <algorithm>
#include <functional>
#include <numeric>

#include "modules/audio_processing/aec3/spectrum_buffer.h"
#include "rtc_base/numerics/safe_minmax.h"

namespace webrtc {

namespace {

constexpr std::array<size_t, SignalDependentErleEstimator::kSubbands + 1>
    kBandBoundaries = {1, 8, 16, 24, 32, 48, kFftLengthBy2Plus1};

std::array<size_t, kFftLengthBy2Plus1> FormSubbandMap() {
  std::array<size_t, kFftLengthBy2Plus1> map_band_to_subband;
  size_t subband = 1;
  for (size_t k = 0; k < map_band_to_subband.size(); ++k) {
    RTC_DCHECK_LT(subband, kBandBoundaries.size());
    if (k >= kBandBoundaries[subband]) {
      subband++;
      RTC_DCHECK_LT(k, kBandBoundaries[subband]);
    }
    map_band_to_subband[k] = subband - 1;
  }
  return map_band_to_subband;
}

// Defines the size in blocks of the sections that are used for dividing the
// linear filter. The sections are split in a non-linear manner so that lower
// sections that typically represent the direct path have a larger resolution
// than the higher sections which typically represent more reverberant acoustic
// paths.
std::vector<size_t> DefineFilterSectionSizes(size_t delay_headroom_blocks,
                                             size_t num_blocks,
                                             size_t num_sections) {
  size_t filter_length_blocks = num_blocks - delay_headroom_blocks;
  std::vector<size_t> section_sizes(num_sections);
  size_t remaining_blocks = filter_length_blocks;
  size_t remaining_sections = num_sections;
  size_t estimator_size = 2;
  size_t idx = 0;
  while (remaining_sections > 1 &&
         remaining_blocks > estimator_size * remaining_sections) {
    RTC_DCHECK_LT(idx, section_sizes.size());
    section_sizes[idx] = estimator_size;
    remaining_blocks -= estimator_size;
    remaining_sections--;
    estimator_size *= 2;
    idx++;
  }

  size_t last_groups_size = remaining_blocks / remaining_sections;
  for (; idx < num_sections; idx++) {
    section_sizes[idx] = last_groups_size;
  }
  section_sizes[num_sections - 1] +=
      remaining_blocks - last_groups_size * remaining_sections;
  return section_sizes;
}

// Forms the limits in blocks for each filter section. Those sections
// are used for analyzing the echo estimates and investigating which
// linear filter sections contribute most to the echo estimate energy.
std::vector<size_t> SetSectionsBoundaries(size_t delay_headroom_blocks,
                                          size_t num_blocks,
                                          size_t num_sections) {
  std::vector<size_t> estimator_boundaries_blocks(num_sections + 1);
  if (estimator_boundaries_blocks.size() == 2) {
    estimator_boundaries_blocks[0] = 0;
    estimator_boundaries_blocks[1] = num_blocks;
    return estimator_boundaries_blocks;
  }
  RTC_DCHECK_GT(estimator_boundaries_blocks.size(), 2);
  const std::vector<size_t> section_sizes =
      DefineFilterSectionSizes(delay_headroom_blocks, num_blocks,
                               estimator_boundaries_blocks.size() - 1);

  size_t idx = 0;
  size_t current_size_block = 0;
  RTC_DCHECK_EQ(section_sizes.size() + 1, estimator_boundaries_blocks.size());
  estimator_boundaries_blocks[0] = delay_headroom_blocks;
  for (size_t k = delay_headroom_blocks; k < num_blocks; ++k) {
    current_size_block++;
    if (current_size_block >= section_sizes[idx]) {
      idx = idx + 1;
      if (idx == section_sizes.size()) {
        break;
      }
      estimator_boundaries_blocks[idx] = k + 1;
      current_size_block = 0;
    }
  }
  estimator_boundaries_blocks[section_sizes.size()] = num_blocks;
  return estimator_boundaries_blocks;
}

std::array<float, SignalDependentErleEstimator::kSubbands>
SetMaxErleSubbands(float max_erle_l, float max_erle_h, size_t limit_subband_l) {
  std::array<float, SignalDependentErleEstimator::kSubbands> max_erle;
  std::fill(max_erle.begin(), max_erle.begin() + limit_subband_l, max_erle_l);
  std::fill(max_erle.begin() + limit_subband_l, max_erle.end(), max_erle_h);
  return max_erle;
}

}  // namespace

SignalDependentErleEstimator::SignalDependentErleEstimator(
    const EchoCanceller3Config& config,
    size_t num_capture_channels)
    : min_erle_(config.erle.min),
      num_sections_(config.erle.num_sections),
      num_blocks_(config.filter.refined.length_blocks),
      delay_headroom_blocks_(config.delay.delay_headroom_samples / kBlockSize),
      band_to_subband_(FormSubbandMap()),
      max_erle_(SetMaxErleSubbands(config.erle.max_l,
                                   config.erle.max_h,
                                   band_to_subband_[kFftLengthBy2 / 2])),
      section_boundaries_blocks_(SetSectionsBoundaries(delay_headroom_blocks_,
                                                       num_blocks_,
                                                       num_sections_)),
      erle_(num_capture_channels),
      S2_section_accum_(
          num_capture_channels,
          std::vector<std::array<float, kFftLengthBy2Plus1>>(num_sections_)),
      erle_estimators_(
          num_capture_channels,
          std::vector<std::array<float, kSubbands>>(num_sections_)),
      erle_ref_(num_capture_channels),
      correction_factors_(
          num_capture_channels,
          std::vector<std::array<float, kSubbands>>(num_sections_)),
      num_updates_(num_capture_channels),
      n_active_sections_(num_capture_channels) {
  RTC_DCHECK_LE(num_sections_, num_blocks_);
  RTC_DCHECK_GE(num_sections_, 1);
  Reset();
}

SignalDependentErleEstimator::~SignalDependentErleEstimator() = default;

void SignalDependentErleEstimator::Reset() {
  for (size_t ch = 0; ch < erle_.size(); ++ch) {
    erle_[ch].fill(min_erle_);
    for (auto& erle_estimator : erle_estimators_[ch]) {
      erle_estimator.fill(min_erle_);
    }
    erle_ref_[ch].fill(min_erle_);
    for (auto& factor : correction_factors_[ch]) {
      factor.fill(1.0f);
    }
    num_updates_[ch].fill(0);
    n_active_sections_[ch].fill(0);
  }
}

// Updates the Erle estimate by analyzing the current input signals. It takes
// the render buffer and the filter frequency response in order to do an
// estimation of the number of sections of the linear filter that are needed
// for getting the majority of the energy in the echo estimate. Based on that
// number of sections, it updates the erle estimation by introducing a
// correction factor to the erle that is given as an input to this method.
void SignalDependentErleEstimator::Update(
    const RenderBuffer& render_buffer,
    rtc::ArrayView<const std::vector<std::array<float, kFftLengthBy2Plus1>>>
        filter_frequency_responses,
    rtc::ArrayView<const float, kFftLengthBy2Plus1> X2,
    rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> Y2,
    rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> E2,
    rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> average_erle,
    const std::vector<bool>& converged_filters) {
  RTC_DCHECK_GT(num_sections_, 1);

  // Gets the number of filter sections that are needed for achieving 90 %
  // of the power spectrum energy of the echo estimate.
  ComputeNumberOfActiveFilterSections(render_buffer,
                                      filter_frequency_responses);

  // Updates the correction factors that is used for correcting the erle and
  // adapt it to the particular characteristics of the input signal.
  UpdateCorrectionFactors(X2, Y2, E2, converged_filters);

  // Applies the correction factor to the input erle for getting a more refined
  // erle estimation for the current input signal.
  for (size_t ch = 0; ch < erle_.size(); ++ch) {
    for (size_t k = 0; k < kFftLengthBy2; ++k) {
      RTC_DCHECK_GT(correction_factors_[ch].size(), n_active_sections_[ch][k]);
      float correction_factor =
          correction_factors_[ch][n_active_sections_[ch][k]]
                             [band_to_subband_[k]];
      erle_[ch][k] = rtc::SafeClamp(average_erle[ch][k] * correction_factor,
                                    min_erle_, max_erle_[band_to_subband_[k]]);
    }
  }
}

void SignalDependentErleEstimator::Dump(
    const std::unique_ptr<ApmDataDumper>& data_dumper) const {
  for (auto& erle : erle_estimators_[0]) {
    data_dumper->DumpRaw("aec3_all_erle", erle);
  }
  data_dumper->DumpRaw("aec3_ref_erle", erle_ref_[0]);
  for (auto& factor : correction_factors_[0]) {
    data_dumper->DumpRaw("aec3_erle_correction_factor", factor);
  }
}

// Estimates for each band the smallest number of sections in the filter that
// together constitute 90% of the estimated echo energy.
void SignalDependentErleEstimator::ComputeNumberOfActiveFilterSections(
    const RenderBuffer& render_buffer,
    rtc::ArrayView<const std::vector<std::array<float, kFftLengthBy2Plus1>>>
        filter_frequency_responses) {
  RTC_DCHECK_GT(num_sections_, 1);
  // Computes an approximation of the power spectrum if the filter would have
  // been limited to a certain number of filter sections.
  ComputeEchoEstimatePerFilterSection(render_buffer,
                                      filter_frequency_responses);
  // For each band, computes the number of filter sections that are needed for
  // achieving the 90 % energy in the echo estimate.
  ComputeActiveFilterSections();
}

void SignalDependentErleEstimator::UpdateCorrectionFactors(
    rtc::ArrayView<const float, kFftLengthBy2Plus1> X2,
    rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> Y2,
    rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> E2,
    const std::vector<bool>& converged_filters) {
  for (size_t ch = 0; ch < converged_filters.size(); ++ch) {
    if (converged_filters[ch]) {
      constexpr float kX2BandEnergyThreshold = 44015068.0f;
      constexpr float kSmthConstantDecreases = 0.1f;
      constexpr float kSmthConstantIncreases = kSmthConstantDecreases / 2.f;
      auto subband_powers = [](rtc::ArrayView<const float> power_spectrum,
                               rtc::ArrayView<float> power_spectrum_subbands) {
        for (size_t subband = 0; subband < kSubbands; ++subband) {
          RTC_DCHECK_LE(kBandBoundaries[subband + 1], power_spectrum.size());
          power_spectrum_subbands[subband] = std::accumulate(
              power_spectrum.begin() + kBandBoundaries[subband],
              power_spectrum.begin() + kBandBoundaries[subband + 1], 0.f);
        }
      };

      std::array<float, kSubbands> X2_subbands, E2_subbands, Y2_subbands;
      subband_powers(X2, X2_subbands);
      subband_powers(E2[ch], E2_subbands);
      subband_powers(Y2[ch], Y2_subbands);
      std::array<size_t, kSubbands> idx_subbands;
      for (size_t subband = 0; subband < kSubbands; ++subband) {
        // When aggregating the number of active sections in the filter for
        // different bands we choose to take the minimum of all of them. As an
        // example, if for one of the bands it is the direct path its refined
        // contributor to the final echo estimate, we consider the direct path
        // is as well the refined contributor for the subband that contains that
        // particular band. That aggregate number of sections will be later used
        // as the identifier of the erle estimator that needs to be updated.
        RTC_DCHECK_LE(kBandBoundaries[subband + 1],
                      n_active_sections_[ch].size());
        idx_subbands[subband] = *std::min_element(
            n_active_sections_[ch].begin() + kBandBoundaries[subband],
            n_active_sections_[ch].begin() + kBandBoundaries[subband + 1]);
      }

      std::array<float, kSubbands> new_erle;
      std::array<bool, kSubbands> is_erle_updated;
      is_erle_updated.fill(false);
      new_erle.fill(0.f);
      for (size_t subband = 0; subband < kSubbands; ++subband) {
        if (X2_subbands[subband] > kX2BandEnergyThreshold &&
            E2_subbands[subband] > 0) {
          new_erle[subband] = Y2_subbands[subband] / E2_subbands[subband];
          RTC_DCHECK_GT(new_erle[subband], 0);
          is_erle_updated[subband] = true;
          ++num_updates_[ch][subband];
        }
      }

      for (size_t subband = 0; subband < kSubbands; ++subband) {
        const size_t idx = idx_subbands[subband];
        RTC_DCHECK_LT(idx, erle_estimators_[ch].size());
        float alpha = new_erle[subband] > erle_estimators_[ch][idx][subband]
                          ? kSmthConstantIncreases
                          : kSmthConstantDecreases;
        alpha = static_cast<float>(is_erle_updated[subband]) * alpha;
        erle_estimators_[ch][idx][subband] +=
            alpha * (new_erle[subband] - erle_estimators_[ch][idx][subband]);
        erle_estimators_[ch][idx][subband] = rtc::SafeClamp(
            erle_estimators_[ch][idx][subband], min_erle_, max_erle_[subband]);
      }

      for (size_t subband = 0; subband < kSubbands; ++subband) {
        float alpha = new_erle[subband] > erle_ref_[ch][subband]
                          ? kSmthConstantIncreases
                          : kSmthConstantDecreases;
        alpha = static_cast<float>(is_erle_updated[subband]) * alpha;
        erle_ref_[ch][subband] +=
            alpha * (new_erle[subband] - erle_ref_[ch][subband]);
        erle_ref_[ch][subband] = rtc::SafeClamp(erle_ref_[ch][subband],
                                                min_erle_, max_erle_[subband]);
      }

      for (size_t subband = 0; subband < kSubbands; ++subband) {
        constexpr int kNumUpdateThr = 50;
        if (is_erle_updated[subband] &&
            num_updates_[ch][subband] > kNumUpdateThr) {
          const size_t idx = idx_subbands[subband];
          RTC_DCHECK_GT(erle_ref_[ch][subband], 0.f);
          // Computes the ratio between the erle that is updated using all the
          // points and the erle that is updated only on signals that share the
          // same number of active filter sections.
          float new_correction_factor =
              erle_estimators_[ch][idx][subband] / erle_ref_[ch][subband];

          correction_factors_[ch][idx][subband] +=
              0.1f *
              (new_correction_factor - correction_factors_[ch][idx][subband]);
        }
      }
    }
  }
}

void SignalDependentErleEstimator::ComputeEchoEstimatePerFilterSection(
    const RenderBuffer& render_buffer,
    rtc::ArrayView<const std::vector<std::array<float, kFftLengthBy2Plus1>>>
        filter_frequency_responses) {
  const SpectrumBuffer& spectrum_render_buffer =
      render_buffer.GetSpectrumBuffer();
  const size_t num_render_channels = spectrum_render_buffer.buffer[0].size();
  const size_t num_capture_channels = S2_section_accum_.size();
  const float one_by_num_render_channels = 1.f / num_render_channels;

  RTC_DCHECK_EQ(S2_section_accum_.size(), filter_frequency_responses.size());

  for (size_t capture_ch = 0; capture_ch < num_capture_channels; ++capture_ch) {
    RTC_DCHECK_EQ(S2_section_accum_[capture_ch].size() + 1,
                  section_boundaries_blocks_.size());
    size_t idx_render = render_buffer.Position();
    idx_render = spectrum_render_buffer.OffsetIndex(
        idx_render, section_boundaries_blocks_[0]);

    for (size_t section = 0; section < num_sections_; ++section) {
      std::array<float, kFftLengthBy2Plus1> X2_section;
      std::array<float, kFftLengthBy2Plus1> H2_section;
      X2_section.fill(0.f);
      H2_section.fill(0.f);
      const size_t block_limit =
          std::min(section_boundaries_blocks_[section + 1],
                   filter_frequency_responses[capture_ch].size());
      for (size_t block = section_boundaries_blocks_[section];
           block < block_limit; ++block) {
        for (size_t render_ch = 0;
             render_ch < spectrum_render_buffer.buffer[idx_render].size();
             ++render_ch) {
          for (size_t k = 0; k < X2_section.size(); ++k) {
            X2_section[k] +=
                spectrum_render_buffer.buffer[idx_render][render_ch][k] *
                one_by_num_render_channels;
          }
        }
        std::transform(H2_section.begin(), H2_section.end(),
                       filter_frequency_responses[capture_ch][block].begin(),
                       H2_section.begin(), std::plus<float>());
        idx_render = spectrum_render_buffer.IncIndex(idx_render);
      }

      std::transform(X2_section.begin(), X2_section.end(), H2_section.begin(),
                     S2_section_accum_[capture_ch][section].begin(),
                     std::multiplies<float>());
    }

    for (size_t section = 1; section < num_sections_; ++section) {
      std::transform(S2_section_accum_[capture_ch][section - 1].begin(),
                     S2_section_accum_[capture_ch][section - 1].end(),
                     S2_section_accum_[capture_ch][section].begin(),
                     S2_section_accum_[capture_ch][section].begin(),
                     std::plus<float>());
    }
  }
}

void SignalDependentErleEstimator::ComputeActiveFilterSections() {
  for (size_t ch = 0; ch < n_active_sections_.size(); ++ch) {
    std::fill(n_active_sections_[ch].begin(), n_active_sections_[ch].end(), 0);
    for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
      size_t section = num_sections_;
      float target = 0.9f * S2_section_accum_[ch][num_sections_ - 1][k];
      while (section > 0 && S2_section_accum_[ch][section - 1][k] >= target) {
        n_active_sections_[ch][k] = --section;
      }
    }
  }
}
}  // namespace webrtc