summaryrefslogtreecommitdiff
path: root/webrtc/rtc_base/time_utils.cc
blob: 11c9d5a47fc92b567205bcca9ecee114184ceab5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/*
 *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <stdint.h>

#if defined(WEBRTC_POSIX)
#include <sys/time.h>
#if defined(WEBRTC_MAC)
#include <mach/mach_time.h>
#endif
#endif

#if defined(WEBRTC_WIN)
// clang-format off
// clang formatting would put <windows.h> last,
// which leads to compilation failure.
#include <windows.h>
#include <mmsystem.h>
#include <sys/timeb.h>
// clang-format on
#endif

#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/time_utils.h"

namespace rtc {

ClockInterface* g_clock = nullptr;

ClockInterface* SetClockForTesting(ClockInterface* clock) {
  ClockInterface* prev = g_clock;
  g_clock = clock;
  return prev;
}

ClockInterface* GetClockForTesting() {
  return g_clock;
}

#if defined(WINUWP)

namespace {

class TimeHelper final {
 public:
  TimeHelper(const TimeHelper&) = delete;

  // Resets the clock based upon an NTP server. This routine must be called
  // prior to the main system start-up to ensure all clocks are based upon
  // an NTP server time if NTP synchronization is required. No critical
  // section is used thus this method must be called prior to any clock
  // routines being used.
  static void SyncWithNtp(int64_t ntp_server_time_ms) {
    auto& singleton = Singleton();
    TIME_ZONE_INFORMATION time_zone;
    GetTimeZoneInformation(&time_zone);
    int64_t time_zone_bias_ns =
        rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000;
    singleton.app_start_time_ns_ =
        (ntp_server_time_ms - kNTPTimeToUnixTimeEpochOffset) * 1000000 -
        time_zone_bias_ns;
    singleton.UpdateReferenceTime();
  }

  // Returns the number of nanoseconds that have passed since unix epoch.
  static int64_t TicksNs() {
    auto& singleton = Singleton();
    int64_t result = 0;
    LARGE_INTEGER qpcnt;
    QueryPerformanceCounter(&qpcnt);
    result = rtc::dchecked_cast<int64_t>(
        (rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 /
         rtc::dchecked_cast<uint64_t>(singleton.os_ticks_per_second_)) *
        10000);
    result = singleton.app_start_time_ns_ + result -
             singleton.time_since_os_start_ns_;
    return result;
  }

 private:
  TimeHelper() {
    TIME_ZONE_INFORMATION time_zone;
    GetTimeZoneInformation(&time_zone);
    int64_t time_zone_bias_ns =
        rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000;
    FILETIME ft;
    // This will give us system file in UTC format.
    GetSystemTimeAsFileTime(&ft);
    LARGE_INTEGER li;
    li.HighPart = ft.dwHighDateTime;
    li.LowPart = ft.dwLowDateTime;

    app_start_time_ns_ = (li.QuadPart - kFileTimeToUnixTimeEpochOffset) * 100 -
                         time_zone_bias_ns;

    UpdateReferenceTime();
  }

  static TimeHelper& Singleton() {
    static TimeHelper singleton;
    return singleton;
  }

  void UpdateReferenceTime() {
    LARGE_INTEGER qpfreq;
    QueryPerformanceFrequency(&qpfreq);
    os_ticks_per_second_ = rtc::dchecked_cast<int64_t>(qpfreq.QuadPart);

    LARGE_INTEGER qpcnt;
    QueryPerformanceCounter(&qpcnt);
    time_since_os_start_ns_ = rtc::dchecked_cast<int64_t>(
        (rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 /
         rtc::dchecked_cast<uint64_t>(os_ticks_per_second_)) *
        10000);
  }

 private:
  static constexpr uint64_t kFileTimeToUnixTimeEpochOffset =
      116444736000000000ULL;
  static constexpr uint64_t kNTPTimeToUnixTimeEpochOffset = 2208988800000L;

  // The number of nanoseconds since unix system epoch
  int64_t app_start_time_ns_;
  // The number of nanoseconds since the OS started
  int64_t time_since_os_start_ns_;
  // The OS calculated ticks per second
  int64_t os_ticks_per_second_;
};

}  // namespace

void SyncWithNtp(int64_t time_from_ntp_server_ms) {
  TimeHelper::SyncWithNtp(time_from_ntp_server_ms);
}

#endif  // defined(WINUWP)

int64_t SystemTimeNanos() {
  int64_t ticks;
#if defined(WEBRTC_MAC)
  static mach_timebase_info_data_t timebase;
  if (timebase.denom == 0) {
    // Get the timebase if this is the first time we run.
    // Recommended by Apple's QA1398.
    if (mach_timebase_info(&timebase) != KERN_SUCCESS) {
      RTC_NOTREACHED();
    }
  }
  // Use timebase to convert absolute time tick units into nanoseconds.
  const auto mul = [](uint64_t a, uint32_t b) -> int64_t {
    RTC_DCHECK_NE(b, 0);
    RTC_DCHECK_LE(a, std::numeric_limits<int64_t>::max() / b)
        << "The multiplication " << a << " * " << b << " overflows";
    return rtc::dchecked_cast<int64_t>(a * b);
  };
  ticks = mul(mach_absolute_time(), timebase.numer) / timebase.denom;
#elif defined(WEBRTC_POSIX)
  struct timespec ts;
  // TODO(deadbeef): Do we need to handle the case when CLOCK_MONOTONIC is not
  // supported?
  clock_gettime(CLOCK_MONOTONIC, &ts);
  ticks = kNumNanosecsPerSec * static_cast<int64_t>(ts.tv_sec) +
          static_cast<int64_t>(ts.tv_nsec);
#elif defined(WINUWP)
  ticks = TimeHelper::TicksNs();
#elif defined(WEBRTC_WIN)
  static volatile LONG last_timegettime = 0;
  static volatile int64_t num_wrap_timegettime = 0;
  volatile LONG* last_timegettime_ptr = &last_timegettime;
  DWORD now = timeGetTime();
  // Atomically update the last gotten time
  DWORD old = InterlockedExchange(last_timegettime_ptr, now);
  if (now < old) {
    // If now is earlier than old, there may have been a race between threads.
    // 0x0fffffff ~3.1 days, the code will not take that long to execute
    // so it must have been a wrap around.
    if (old > 0xf0000000 && now < 0x0fffffff) {
      num_wrap_timegettime++;
    }
  }
  ticks = now + (num_wrap_timegettime << 32);
  // TODO(deadbeef): Calculate with nanosecond precision. Otherwise, we're
  // just wasting a multiply and divide when doing Time() on Windows.
  ticks = ticks * kNumNanosecsPerMillisec;
#else
#error Unsupported platform.
#endif
  return ticks;
}

int64_t SystemTimeMillis() {
  return static_cast<int64_t>(SystemTimeNanos() / kNumNanosecsPerMillisec);
}

int64_t TimeNanos() {
  if (g_clock) {
    return g_clock->TimeNanos();
  }
  return SystemTimeNanos();
}

uint32_t Time32() {
  return static_cast<uint32_t>(TimeNanos() / kNumNanosecsPerMillisec);
}

int64_t TimeMillis() {
  return TimeNanos() / kNumNanosecsPerMillisec;
}

int64_t TimeMicros() {
  return TimeNanos() / kNumNanosecsPerMicrosec;
}

int64_t TimeAfter(int64_t elapsed) {
  RTC_DCHECK_GE(elapsed, 0);
  return TimeMillis() + elapsed;
}

int32_t TimeDiff32(uint32_t later, uint32_t earlier) {
  return later - earlier;
}

int64_t TimeDiff(int64_t later, int64_t earlier) {
  return later - earlier;
}

TimestampWrapAroundHandler::TimestampWrapAroundHandler()
    : last_ts_(0), num_wrap_(-1) {}

int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) {
  if (num_wrap_ == -1) {
    last_ts_ = ts;
    num_wrap_ = 0;
    return ts;
  }

  if (ts < last_ts_) {
    if (last_ts_ >= 0xf0000000 && ts < 0x0fffffff)
      ++num_wrap_;
  } else if ((ts - last_ts_) > 0xf0000000) {
    // Backwards wrap. Unwrap with last wrap count and don't update last_ts_.
    return ts + (num_wrap_ - 1) * (int64_t{1} << 32);
  }

  last_ts_ = ts;
  return ts + (num_wrap_ << 32);
}

int64_t TmToSeconds(const tm& tm) {
  static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
  static short int cumul_mdays[12] = {0,   31,  59,  90,  120, 151,
                                      181, 212, 243, 273, 304, 334};
  int year = tm.tm_year + 1900;
  int month = tm.tm_mon;
  int day = tm.tm_mday - 1;  // Make 0-based like the rest.
  int hour = tm.tm_hour;
  int min = tm.tm_min;
  int sec = tm.tm_sec;

  bool expiry_in_leap_year =
      (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0));

  if (year < 1970)
    return -1;
  if (month < 0 || month > 11)
    return -1;
  if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1))
    return -1;
  if (hour < 0 || hour > 23)
    return -1;
  if (min < 0 || min > 59)
    return -1;
  if (sec < 0 || sec > 59)
    return -1;

  day += cumul_mdays[month];

  // Add number of leap days between 1970 and the expiration year, inclusive.
  day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) +
          (year / 400 - 1970 / 400));

  // We will have added one day too much above if expiration is during a leap
  // year, and expiration is in January or February.
  if (expiry_in_leap_year && month <= 2 - 1)  // |month| is zero based.
    day -= 1;

  // Combine all variables into seconds from 1970-01-01 00:00 (except |month|
  // which was accumulated into |day| above).
  return (((static_cast<int64_t>(year - 1970) * 365 + day) * 24 + hour) * 60 +
          min) *
             60 +
         sec;
}

int64_t TimeUTCMicros() {
  if (g_clock) {
    return g_clock->TimeNanos() / kNumNanosecsPerMicrosec;
  }
#if defined(WEBRTC_POSIX)
  struct timeval time;
  gettimeofday(&time, nullptr);
  // Convert from second (1.0) and microsecond (1e-6).
  return (static_cast<int64_t>(time.tv_sec) * rtc::kNumMicrosecsPerSec +
          time.tv_usec);

#elif defined(WEBRTC_WIN)
  struct _timeb time;
  _ftime(&time);
  // Convert from second (1.0) and milliseconds (1e-3).
  return (static_cast<int64_t>(time.time) * rtc::kNumMicrosecsPerSec +
          static_cast<int64_t>(time.millitm) * rtc::kNumMicrosecsPerMillisec);
#endif
}

int64_t TimeUTCMillis() {
  return TimeUTCMicros() / kNumMicrosecsPerMillisec;
}

}  // namespace rtc