diff options
Diffstat (limited to 'packages/pasjpeg/src/jquant2.pas')
-rw-r--r-- | packages/pasjpeg/src/jquant2.pas | 1551 |
1 files changed, 1551 insertions, 0 deletions
diff --git a/packages/pasjpeg/src/jquant2.pas b/packages/pasjpeg/src/jquant2.pas new file mode 100644 index 0000000000..1cfd87b610 --- /dev/null +++ b/packages/pasjpeg/src/jquant2.pas @@ -0,0 +1,1551 @@ +Unit JQuant2; + + +{ This file contains 2-pass color quantization (color mapping) routines. + These routines provide selection of a custom color map for an image, + followed by mapping of the image to that color map, with optional + Floyd-Steinberg dithering. + It is also possible to use just the second pass to map to an arbitrary + externally-given color map. + + Note: ordered dithering is not supported, since there isn't any fast + way to compute intercolor distances; it's unclear that ordered dither's + fundamental assumptions even hold with an irregularly spaced color map. } + +{ Original: jquant2.c; Copyright (C) 1991-1996, Thomas G. Lane. } + +interface + +{$I jconfig.inc} + +uses + jmorecfg, + jdeferr, + jerror, + jutils, + jpeglib; + +{ Module initialization routine for 2-pass color quantization. } + + +{GLOBAL} +procedure jinit_2pass_quantizer (cinfo : j_decompress_ptr); + +implementation + +{ This module implements the well-known Heckbert paradigm for color + quantization. Most of the ideas used here can be traced back to + Heckbert's seminal paper + Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", + Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. + + In the first pass over the image, we accumulate a histogram showing the + usage count of each possible color. To keep the histogram to a reasonable + size, we reduce the precision of the input; typical practice is to retain + 5 or 6 bits per color, so that 8 or 4 different input values are counted + in the same histogram cell. + + Next, the color-selection step begins with a box representing the whole + color space, and repeatedly splits the "largest" remaining box until we + have as many boxes as desired colors. Then the mean color in each + remaining box becomes one of the possible output colors. + + The second pass over the image maps each input pixel to the closest output + color (optionally after applying a Floyd-Steinberg dithering correction). + This mapping is logically trivial, but making it go fast enough requires + considerable care. + + Heckbert-style quantizers vary a good deal in their policies for choosing + the "largest" box and deciding where to cut it. The particular policies + used here have proved out well in experimental comparisons, but better ones + may yet be found. + + In earlier versions of the IJG code, this module quantized in YCbCr color + space, processing the raw upsampled data without a color conversion step. + This allowed the color conversion math to be done only once per colormap + entry, not once per pixel. However, that optimization precluded other + useful optimizations (such as merging color conversion with upsampling) + and it also interfered with desired capabilities such as quantizing to an + externally-supplied colormap. We have therefore abandoned that approach. + The present code works in the post-conversion color space, typically RGB. + + To improve the visual quality of the results, we actually work in scaled + RGB space, giving G distances more weight than R, and R in turn more than + B. To do everything in integer math, we must use integer scale factors. + The 2/3/1 scale factors used here correspond loosely to the relative + weights of the colors in the NTSC grayscale equation. + If you want to use this code to quantize a non-RGB color space, you'll + probably need to change these scale factors. } + +const + R_SCALE = 2; { scale R distances by this much } + G_SCALE = 3; { scale G distances by this much } + B_SCALE = 1; { and B by this much } + +{ Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined + in jmorecfg.h. As the code stands, it will do the right thing for R,G,B + and B,G,R orders. If you define some other weird order in jmorecfg.h, + you'll get compile errors until you extend this logic. In that case + you'll probably want to tweak the histogram sizes too. } + +{$ifdef RGB_RED_IS_0} +const + C0_SCALE = R_SCALE; + C1_SCALE = G_SCALE; + C2_SCALE = B_SCALE; +{$else} +const + C0_SCALE = B_SCALE; + C1_SCALE = G_SCALE; + C2_SCALE = R_SCALE; +{$endif} + + +{ First we have the histogram data structure and routines for creating it. + + The number of bits of precision can be adjusted by changing these symbols. + We recommend keeping 6 bits for G and 5 each for R and B. + If you have plenty of memory and cycles, 6 bits all around gives marginally + better results; if you are short of memory, 5 bits all around will save + some space but degrade the results. + To maintain a fully accurate histogram, we'd need to allocate a "long" + (preferably unsigned long) for each cell. In practice this is overkill; + we can get by with 16 bits per cell. Few of the cell counts will overflow, + and clamping those that do overflow to the maximum value will give close- + enough results. This reduces the recommended histogram size from 256Kb + to 128Kb, which is a useful savings on PC-class machines. + (In the second pass the histogram space is re-used for pixel mapping data; + in that capacity, each cell must be able to store zero to the number of + desired colors. 16 bits/cell is plenty for that too.) + Since the JPEG code is intended to run in small memory model on 80x86 + machines, we can't just allocate the histogram in one chunk. Instead + of a true 3-D array, we use a row of pointers to 2-D arrays. Each + pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and + each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that + on 80x86 machines, the pointer row is in near memory but the actual + arrays are in far memory (same arrangement as we use for image arrays). } + + +const + MAXNUMCOLORS = (MAXJSAMPLE+1); { maximum size of colormap } + +{ These will do the right thing for either R,G,B or B,G,R color order, + but you may not like the results for other color orders. } + +const + HIST_C0_BITS = 5; { bits of precision in R/B histogram } + HIST_C1_BITS = 6; { bits of precision in G histogram } + HIST_C2_BITS = 5; { bits of precision in B/R histogram } + +{ Number of elements along histogram axes. } +const + HIST_C0_ELEMS = (1 shl HIST_C0_BITS); + HIST_C1_ELEMS = (1 shl HIST_C1_BITS); + HIST_C2_ELEMS = (1 shl HIST_C2_BITS); + +{ These are the amounts to shift an input value to get a histogram index. } +const + C0_SHIFT = (BITS_IN_JSAMPLE-HIST_C0_BITS); + C1_SHIFT = (BITS_IN_JSAMPLE-HIST_C1_BITS); + C2_SHIFT = (BITS_IN_JSAMPLE-HIST_C2_BITS); + + +type { Nomssi } + RGBptr = ^RGBtype; + RGBtype = packed record + r,g,b : JSAMPLE; + end; +type + histcell = UINT16; { histogram cell; prefer an unsigned type } + +type + histptr = ^histcell {FAR}; { for pointers to histogram cells } + +type + hist1d = array[0..HIST_C2_ELEMS-1] of histcell; { typedefs for the array } + {hist1d_ptr = ^hist1d;} + hist1d_field = array[0..HIST_C1_ELEMS-1] of hist1d; + { type for the 2nd-level pointers } + hist2d = ^hist1d_field; + hist2d_field = array[0..HIST_C0_ELEMS-1] of hist2d; + hist3d = ^hist2d_field; { type for top-level pointer } + + +{ Declarations for Floyd-Steinberg dithering. + + Errors are accumulated into the array fserrors[], at a resolution of + 1/16th of a pixel count. The error at a given pixel is propagated + to its not-yet-processed neighbors using the standard F-S fractions, + ... (here) 7/16 + 3/16 5/16 1/16 + We work left-to-right on even rows, right-to-left on odd rows. + + We can get away with a single array (holding one row's worth of errors) + by using it to store the current row's errors at pixel columns not yet + processed, but the next row's errors at columns already processed. We + need only a few extra variables to hold the errors immediately around the + current column. (If we are lucky, those variables are in registers, but + even if not, they're probably cheaper to access than array elements are.) + + The fserrors[] array has (#columns + 2) entries; the extra entry at + each end saves us from special-casing the first and last pixels. + Each entry is three values long, one value for each color component. + + Note: on a wide image, we might not have enough room in a PC's near data + segment to hold the error array; so it is allocated with alloc_large. } + + +{$ifdef BITS_IN_JSAMPLE_IS_8} +type + FSERROR = INT16; { 16 bits should be enough } + LOCFSERROR = int; { use 'int' for calculation temps } +{$else} +type + FSERROR = INT32; { may need more than 16 bits } + LOCFSERROR = INT32; { be sure calculation temps are big enough } +{$endif} +type { Nomssi } + RGB_FSERROR_PTR = ^RGB_FSERROR; + RGB_FSERROR = packed record + r,g,b : FSERROR; + end; + LOCRGB_FSERROR = packed record + r,g,b : LOCFSERROR; + end; + +type + FSERROR_PTR = ^FSERROR; + jFSError = 0..(MaxInt div SIZEOF(RGB_FSERROR))-1; + FS_ERROR_FIELD = array[jFSError] of RGB_FSERROR; + FS_ERROR_FIELD_PTR = ^FS_ERROR_FIELD;{far} + { pointer to error array (in FAR storage!) } + +type + error_limit_array = array[-MAXJSAMPLE..MAXJSAMPLE] of int; + { table for clamping the applied error } + error_limit_ptr = ^error_limit_array; + +{ Private subobject } +type + my_cquantize_ptr = ^my_cquantizer; + my_cquantizer = record + pub : jpeg_color_quantizer; { public fields } + + { Space for the eventually created colormap is stashed here } + sv_colormap : JSAMPARRAY; { colormap allocated at init time } + desired : int; { desired # of colors = size of colormap } + + { Variables for accumulating image statistics } + histogram : hist3d; { pointer to the histogram } + + needs_zeroed : boolean; { TRUE if next pass must zero histogram } + + { Variables for Floyd-Steinberg dithering } + fserrors : FS_ERROR_FIELD_PTR; { accumulated errors } + on_odd_row : boolean; { flag to remember which row we are on } + error_limiter : error_limit_ptr; { table for clamping the applied error } + end; + + + +{ Prescan some rows of pixels. + In this module the prescan simply updates the histogram, which has been + initialized to zeroes by start_pass. + An output_buf parameter is required by the method signature, but no data + is actually output (in fact the buffer controller is probably passing a + NIL pointer). } + +{METHODDEF} +procedure prescan_quantize (cinfo : j_decompress_ptr; + input_buf : JSAMPARRAY; + output_buf : JSAMPARRAY; + num_rows : int); far; +var + cquantize : my_cquantize_ptr; + {register} ptr : RGBptr; + {register} histp : histptr; + {register} histogram : hist3d; + row : int; + col : JDIMENSION; + width : JDIMENSION; +begin + cquantize := my_cquantize_ptr(cinfo^.cquantize); + histogram := cquantize^.histogram; + width := cinfo^.output_width; + + for row := 0 to pred(num_rows) do + begin + ptr := RGBptr(input_buf^[row]); + for col := pred(width) downto 0 do + begin + { get pixel value and index into the histogram } + histp := @(histogram^[GETJSAMPLE(ptr^.r) shr C0_SHIFT]^ + [GETJSAMPLE(ptr^.g) shr C1_SHIFT] + [GETJSAMPLE(ptr^.b) shr C2_SHIFT]); + { increment, check for overflow and undo increment if so. } + Inc(histp^); + if (histp^ <= 0) then + Dec(histp^); + Inc(ptr); + end; + end; +end; + +{ Next we have the really interesting routines: selection of a colormap + given the completed histogram. + These routines work with a list of "boxes", each representing a rectangular + subset of the input color space (to histogram precision). } + +type + box = record + { The bounds of the box (inclusive); expressed as histogram indexes } + c0min, c0max : int; + c1min, c1max : int; + c2min, c2max : int; + { The volume (actually 2-norm) of the box } + volume : INT32; + { The number of nonzero histogram cells within this box } + colorcount : long; + end; + +type + jBoxList = 0..(MaxInt div SizeOf(box))-1; + box_field = array[jBoxlist] of box; + boxlistptr = ^box_field; + boxptr = ^box; + +{LOCAL} +function find_biggest_color_pop (boxlist : boxlistptr; numboxes : int) : boxptr; +{ Find the splittable box with the largest color population } +{ Returns NIL if no splittable boxes remain } +var + boxp : boxptr ; {register} + i : int; {register} + maxc : long; {register} + which : boxptr; +begin + which := NIL; + boxp := @(boxlist^[0]); + maxc := 0; + for i := 0 to pred(numboxes) do + begin + if (boxp^.colorcount > maxc) and (boxp^.volume > 0) then + begin + which := boxp; + maxc := boxp^.colorcount; + end; + Inc(boxp); + end; + find_biggest_color_pop := which; +end; + + +{LOCAL} +function find_biggest_volume (boxlist : boxlistptr; numboxes : int) : boxptr; +{ Find the splittable box with the largest (scaled) volume } +{ Returns NULL if no splittable boxes remain } +var + {register} boxp : boxptr; + {register} i : int; + {register} maxv : INT32; + which : boxptr; +begin + maxv := 0; + which := NIL; + boxp := @(boxlist^[0]); + for i := 0 to pred(numboxes) do + begin + if (boxp^.volume > maxv) then + begin + which := boxp; + maxv := boxp^.volume; + end; + Inc(boxp); + end; + find_biggest_volume := which; +end; + + +{LOCAL} +procedure update_box (cinfo : j_decompress_ptr; var boxp : box); +label + have_c0min, have_c0max, + have_c1min, have_c1max, + have_c2min, have_c2max; +{ Shrink the min/max bounds of a box to enclose only nonzero elements, } +{ and recompute its volume and population } +var + cquantize : my_cquantize_ptr; + histogram : hist3d; + histp : histptr; + c0,c1,c2 : int; + c0min,c0max,c1min,c1max,c2min,c2max : int; + dist0,dist1,dist2 : INT32; + ccount : long; +begin + cquantize := my_cquantize_ptr(cinfo^.cquantize); + histogram := cquantize^.histogram; + + c0min := boxp.c0min; c0max := boxp.c0max; + c1min := boxp.c1min; c1max := boxp.c1max; + c2min := boxp.c2min; c2max := boxp.c2max; + + if (c0max > c0min) then + for c0 := c0min to c0max do + for c1 := c1min to c1max do + begin + histp := @(histogram^[c0]^[c1][c2min]); + for c2 := c2min to c2max do + begin + if (histp^ <> 0) then + begin + c0min := c0; + boxp.c0min := c0min; + goto have_c0min; + end; + Inc(histp); + end; + end; + have_c0min: + if (c0max > c0min) then + for c0 := c0max downto c0min do + for c1 := c1min to c1max do + begin + histp := @(histogram^[c0]^[c1][c2min]); + for c2 := c2min to c2max do + begin + if ( histp^ <> 0) then + begin + c0max := c0; + boxp.c0max := c0; + goto have_c0max; + end; + Inc(histp); + end; + end; + have_c0max: + if (c1max > c1min) then + for c1 := c1min to c1max do + for c0 := c0min to c0max do + begin + histp := @(histogram^[c0]^[c1][c2min]); + for c2 := c2min to c2max do + begin + if (histp^ <> 0) then + begin + c1min := c1; + boxp.c1min := c1; + goto have_c1min; + end; + Inc(histp); + end; + end; + have_c1min: + if (c1max > c1min) then + for c1 := c1max downto c1min do + for c0 := c0min to c0max do + begin + histp := @(histogram^[c0]^[c1][c2min]); + for c2 := c2min to c2max do + begin + if (histp^ <> 0) then + begin + c1max := c1; + boxp.c1max := c1; + goto have_c1max; + end; + Inc(histp); + end; + end; + have_c1max: + if (c2max > c2min) then + for c2 := c2min to c2max do + for c0 := c0min to c0max do + begin + histp := @(histogram^[c0]^[c1min][c2]); + for c1 := c1min to c1max do + begin + if (histp^ <> 0) then + begin + c2min := c2; + boxp.c2min := c2min; + goto have_c2min; + end; + Inc(histp, HIST_C2_ELEMS); + end; + end; + have_c2min: + if (c2max > c2min) then + for c2 := c2max downto c2min do + for c0 := c0min to c0max do + begin + histp := @(histogram^[c0]^[c1min][c2]); + for c1 := c1min to c1max do + begin + if (histp^ <> 0) then + begin + c2max := c2; + boxp.c2max := c2max; + goto have_c2max; + end; + Inc(histp, HIST_C2_ELEMS); + end; + end; + have_c2max: + + { Update box volume. + We use 2-norm rather than real volume here; this biases the method + against making long narrow boxes, and it has the side benefit that + a box is splittable iff norm > 0. + Since the differences are expressed in histogram-cell units, + we have to shift back to JSAMPLE units to get consistent distances; + after which, we scale according to the selected distance scale factors.} + + dist0 := ((c0max - c0min) shl C0_SHIFT) * C0_SCALE; + dist1 := ((c1max - c1min) shl C1_SHIFT) * C1_SCALE; + dist2 := ((c2max - c2min) shl C2_SHIFT) * C2_SCALE; + boxp.volume := dist0*dist0 + dist1*dist1 + dist2*dist2; + + { Now scan remaining volume of box and compute population } + ccount := 0; + for c0 := c0min to c0max do + for c1 := c1min to c1max do + begin + histp := @(histogram^[c0]^[c1][c2min]); + for c2 := c2min to c2max do + begin + if (histp^ <> 0) then + Inc(ccount); + Inc(histp); + end; + end; + boxp.colorcount := ccount; +end; + + +{LOCAL} +function median_cut (cinfo : j_decompress_ptr; boxlist : boxlistptr; + numboxes : int; desired_colors : int) : int; +{ Repeatedly select and split the largest box until we have enough boxes } +var + n,lb : int; + c0,c1,c2,cmax : int; + {register} b1,b2 : boxptr; +begin + while (numboxes < desired_colors) do + begin + { Select box to split. + Current algorithm: by population for first half, then by volume. } + + if (numboxes*2 <= desired_colors) then + b1 := find_biggest_color_pop(boxlist, numboxes) + else + b1 := find_biggest_volume(boxlist, numboxes); + + if (b1 = NIL) then { no splittable boxes left! } + break; + b2 := @(boxlist^[numboxes]); { where new box will go } + { Copy the color bounds to the new box. } + b2^.c0max := b1^.c0max; b2^.c1max := b1^.c1max; b2^.c2max := b1^.c2max; + b2^.c0min := b1^.c0min; b2^.c1min := b1^.c1min; b2^.c2min := b1^.c2min; + { Choose which axis to split the box on. + Current algorithm: longest scaled axis. + See notes in update_box about scaling distances. } + + c0 := ((b1^.c0max - b1^.c0min) shl C0_SHIFT) * C0_SCALE; + c1 := ((b1^.c1max - b1^.c1min) shl C1_SHIFT) * C1_SCALE; + c2 := ((b1^.c2max - b1^.c2min) shl C2_SHIFT) * C2_SCALE; + { We want to break any ties in favor of green, then red, blue last. + This code does the right thing for R,G,B or B,G,R color orders only. } + +{$ifdef RGB_RED_IS_0} + cmax := c1; n := 1; + if (c0 > cmax) then + begin + cmax := c0; + n := 0; + end; + if (c2 > cmax) then + n := 2; +{$else} + cmax := c1; + n := 1; + if (c2 > cmax) then + begin + cmax := c2; + n := 2; + end; + if (c0 > cmax) then + n := 0; +{$endif} + { Choose split point along selected axis, and update box bounds. + Current algorithm: split at halfway point. + (Since the box has been shrunk to minimum volume, + any split will produce two nonempty subboxes.) + Note that lb value is max for lower box, so must be < old max. } + + case n of + 0:begin + lb := (b1^.c0max + b1^.c0min) div 2; + b1^.c0max := lb; + b2^.c0min := lb+1; + end; + 1:begin + lb := (b1^.c1max + b1^.c1min) div 2; + b1^.c1max := lb; + b2^.c1min := lb+1; + end; + 2:begin + lb := (b1^.c2max + b1^.c2min) div 2; + b1^.c2max := lb; + b2^.c2min := lb+1; + end; + end; + { Update stats for boxes } + update_box(cinfo, b1^); + update_box(cinfo, b2^); + Inc(numboxes); + end; + median_cut := numboxes; +end; + + +{LOCAL} +procedure compute_color (cinfo : j_decompress_ptr; + const boxp : box; icolor : int); +{ Compute representative color for a box, put it in colormap[icolor] } +var + { Current algorithm: mean weighted by pixels (not colors) } + { Note it is important to get the rounding correct! } + cquantize : my_cquantize_ptr; + histogram : hist3d; + histp : histptr; + c0,c1,c2 : int; + c0min,c0max,c1min,c1max,c2min,c2max : int; + count : long; + total : long; + c0total : long; + c1total : long; + c2total : long; +begin + cquantize := my_cquantize_ptr(cinfo^.cquantize); + histogram := cquantize^.histogram; + total := 0; + c0total := 0; + c1total := 0; + c2total := 0; + + c0min := boxp.c0min; c0max := boxp.c0max; + c1min := boxp.c1min; c1max := boxp.c1max; + c2min := boxp.c2min; c2max := boxp.c2max; + + for c0 := c0min to c0max do + for c1 := c1min to c1max do + begin + histp := @(histogram^[c0]^[c1][c2min]); + for c2 := c2min to c2max do + begin + count := histp^; + Inc(histp); + if (count <> 0) then + begin + Inc(total, count); + Inc(c0total, ((c0 shl C0_SHIFT) + ((1 shl C0_SHIFT) shr 1)) * count); + Inc(c1total, ((c1 shl C1_SHIFT) + ((1 shl C1_SHIFT) shr 1)) * count); + Inc(c2total, ((c2 shl C2_SHIFT) + ((1 shl C2_SHIFT) shr 1)) * count); + end; + end; + end; + + cinfo^.colormap^[0]^[icolor] := JSAMPLE ((c0total + (total shr 1)) div total); + cinfo^.colormap^[1]^[icolor] := JSAMPLE ((c1total + (total shr 1)) div total); + cinfo^.colormap^[2]^[icolor] := JSAMPLE ((c2total + (total shr 1)) div total); +end; + + +{LOCAL} +procedure select_colors (cinfo : j_decompress_ptr; desired_colors : int); +{ Master routine for color selection } +var + boxlist : boxlistptr; + numboxes : int; + i : int; +begin + { Allocate workspace for box list } + boxlist := boxlistptr(cinfo^.mem^.alloc_small( + j_common_ptr(cinfo), JPOOL_IMAGE, desired_colors * SIZEOF(box))); + { Initialize one box containing whole space } + numboxes := 1; + boxlist^[0].c0min := 0; + boxlist^[0].c0max := MAXJSAMPLE shr C0_SHIFT; + boxlist^[0].c1min := 0; + boxlist^[0].c1max := MAXJSAMPLE shr C1_SHIFT; + boxlist^[0].c2min := 0; + boxlist^[0].c2max := MAXJSAMPLE shr C2_SHIFT; + { Shrink it to actually-used volume and set its statistics } + update_box(cinfo, boxlist^[0]); + { Perform median-cut to produce final box list } + numboxes := median_cut(cinfo, boxlist, numboxes, desired_colors); + { Compute the representative color for each box, fill colormap } + for i := 0 to pred(numboxes) do + compute_color(cinfo, boxlist^[i], i); + cinfo^.actual_number_of_colors := numboxes; + {$IFDEF DEBUG} + TRACEMS1(j_common_ptr(cinfo), 1, JTRC_QUANT_SELECTED, numboxes); + {$ENDIF} +end; + + +{ These routines are concerned with the time-critical task of mapping input + colors to the nearest color in the selected colormap. + + We re-use the histogram space as an "inverse color map", essentially a + cache for the results of nearest-color searches. All colors within a + histogram cell will be mapped to the same colormap entry, namely the one + closest to the cell's center. This may not be quite the closest entry to + the actual input color, but it's almost as good. A zero in the cache + indicates we haven't found the nearest color for that cell yet; the array + is cleared to zeroes before starting the mapping pass. When we find the + nearest color for a cell, its colormap index plus one is recorded in the + cache for future use. The pass2 scanning routines call fill_inverse_cmap + when they need to use an unfilled entry in the cache. + + Our method of efficiently finding nearest colors is based on the "locally + sorted search" idea described by Heckbert and on the incremental distance + calculation described by Spencer W. Thomas in chapter III.1 of Graphics + Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that + the distances from a given colormap entry to each cell of the histogram can + be computed quickly using an incremental method: the differences between + distances to adjacent cells themselves differ by a constant. This allows a + fairly fast implementation of the "brute force" approach of computing the + distance from every colormap entry to every histogram cell. Unfortunately, + it needs a work array to hold the best-distance-so-far for each histogram + cell (because the inner loop has to be over cells, not colormap entries). + The work array elements have to be INT32s, so the work array would need + 256Kb at our recommended precision. This is not feasible in DOS machines. + + To get around these problems, we apply Thomas' method to compute the + nearest colors for only the cells within a small subbox of the histogram. + The work array need be only as big as the subbox, so the memory usage + problem is solved. Furthermore, we need not fill subboxes that are never + referenced in pass2; many images use only part of the color gamut, so a + fair amount of work is saved. An additional advantage of this + approach is that we can apply Heckbert's locality criterion to quickly + eliminate colormap entries that are far away from the subbox; typically + three-fourths of the colormap entries are rejected by Heckbert's criterion, + and we need not compute their distances to individual cells in the subbox. + The speed of this approach is heavily influenced by the subbox size: too + small means too much overhead, too big loses because Heckbert's criterion + can't eliminate as many colormap entries. Empirically the best subbox + size seems to be about 1/512th of the histogram (1/8th in each direction). + + Thomas' article also describes a refined method which is asymptotically + faster than the brute-force method, but it is also far more complex and + cannot efficiently be applied to small subboxes. It is therefore not + useful for programs intended to be portable to DOS machines. On machines + with plenty of memory, filling the whole histogram in one shot with Thomas' + refined method might be faster than the present code --- but then again, + it might not be any faster, and it's certainly more complicated. } + + + +{ log2(histogram cells in update box) for each axis; this can be adjusted } +const + BOX_C0_LOG = (HIST_C0_BITS-3); + BOX_C1_LOG = (HIST_C1_BITS-3); + BOX_C2_LOG = (HIST_C2_BITS-3); + + BOX_C0_ELEMS = (1 shl BOX_C0_LOG); { # of hist cells in update box } + BOX_C1_ELEMS = (1 shl BOX_C1_LOG); + BOX_C2_ELEMS = (1 shl BOX_C2_LOG); + + BOX_C0_SHIFT = (C0_SHIFT + BOX_C0_LOG); + BOX_C1_SHIFT = (C1_SHIFT + BOX_C1_LOG); + BOX_C2_SHIFT = (C2_SHIFT + BOX_C2_LOG); + + +{ The next three routines implement inverse colormap filling. They could + all be folded into one big routine, but splitting them up this way saves + some stack space (the mindist[] and bestdist[] arrays need not coexist) + and may allow some compilers to produce better code by registerizing more + inner-loop variables. } + +{LOCAL} +function find_nearby_colors (cinfo : j_decompress_ptr; + minc0 : int; minc1 : int; minc2 : int; + var colorlist : array of JSAMPLE) : int; +{ Locate the colormap entries close enough to an update box to be candidates + for the nearest entry to some cell(s) in the update box. The update box + is specified by the center coordinates of its first cell. The number of + candidate colormap entries is returned, and their colormap indexes are + placed in colorlist[]. + This routine uses Heckbert's "locally sorted search" criterion to select + the colors that need further consideration. } + +var + numcolors : int; + maxc0, maxc1, maxc2 : int; + centerc0, centerc1, centerc2 : int; + i, x, ncolors : int; + minmaxdist, min_dist, max_dist, tdist : INT32; + mindist : array[0..MAXNUMCOLORS-1] of INT32; + { min distance to colormap entry i } +begin + numcolors := cinfo^.actual_number_of_colors; + + { Compute true coordinates of update box's upper corner and center. + Actually we compute the coordinates of the center of the upper-corner + histogram cell, which are the upper bounds of the volume we care about. + Note that since ">>" rounds down, the "center" values may be closer to + min than to max; hence comparisons to them must be "<=", not "<". } + + maxc0 := minc0 + ((1 shl BOX_C0_SHIFT) - (1 shl C0_SHIFT)); + centerc0 := (minc0 + maxc0) shr 1; + maxc1 := minc1 + ((1 shl BOX_C1_SHIFT) - (1 shl C1_SHIFT)); + centerc1 := (minc1 + maxc1) shr 1; + maxc2 := minc2 + ((1 shl BOX_C2_SHIFT) - (1 shl C2_SHIFT)); + centerc2 := (minc2 + maxc2) shr 1; + + { For each color in colormap, find: + 1. its minimum squared-distance to any point in the update box + (zero if color is within update box); + 2. its maximum squared-distance to any point in the update box. + Both of these can be found by considering only the corners of the box. + We save the minimum distance for each color in mindist[]; + only the smallest maximum distance is of interest. } + + minmaxdist := long($7FFFFFFF); + + for i := 0 to pred(numcolors) do + begin + { We compute the squared-c0-distance term, then add in the other two. } + x := GETJSAMPLE(cinfo^.colormap^[0]^[i]); + if (x < minc0) then + begin + tdist := (x - minc0) * C0_SCALE; + min_dist := tdist*tdist; + tdist := (x - maxc0) * C0_SCALE; + max_dist := tdist*tdist; + end + else + if (x > maxc0) then + begin + tdist := (x - maxc0) * C0_SCALE; + min_dist := tdist*tdist; + tdist := (x - minc0) * C0_SCALE; + max_dist := tdist*tdist; + end + else + begin + { within cell range so no contribution to min_dist } + min_dist := 0; + if (x <= centerc0) then + begin + tdist := (x - maxc0) * C0_SCALE; + max_dist := tdist*tdist; + end + else + begin + tdist := (x - minc0) * C0_SCALE; + max_dist := tdist*tdist; + end; + end; + + x := GETJSAMPLE(cinfo^.colormap^[1]^[i]); + if (x < minc1) then + begin + tdist := (x - minc1) * C1_SCALE; + Inc(min_dist, tdist*tdist); + tdist := (x - maxc1) * C1_SCALE; + Inc(max_dist, tdist*tdist); + end + else + if (x > maxc1) then + begin + tdist := (x - maxc1) * C1_SCALE; + Inc(min_dist, tdist*tdist); + tdist := (x - minc1) * C1_SCALE; + Inc(max_dist, tdist*tdist); + end + else + begin + { within cell range so no contribution to min_dist } + if (x <= centerc1) then + begin + tdist := (x - maxc1) * C1_SCALE; + Inc(max_dist, tdist*tdist); + end + else + begin + tdist := (x - minc1) * C1_SCALE; + Inc(max_dist, tdist*tdist); + end + end; + + x := GETJSAMPLE(cinfo^.colormap^[2]^[i]); + if (x < minc2) then + begin + tdist := (x - minc2) * C2_SCALE; + Inc(min_dist, tdist*tdist); + tdist := (x - maxc2) * C2_SCALE; + Inc(max_dist, tdist*tdist); + end + else + if (x > maxc2) then + begin + tdist := (x - maxc2) * C2_SCALE; + Inc(min_dist, tdist*tdist); + tdist := (x - minc2) * C2_SCALE; + Inc(max_dist, tdist*tdist); + end + else + begin + { within cell range so no contribution to min_dist } + if (x <= centerc2) then + begin + tdist := (x - maxc2) * C2_SCALE; + Inc(max_dist, tdist*tdist); + end + else + begin + tdist := (x - minc2) * C2_SCALE; + Inc(max_dist, tdist*tdist); + end; + end; + + mindist[i] := min_dist; { save away the results } + if (max_dist < minmaxdist) then + minmaxdist := max_dist; + end; + + { Now we know that no cell in the update box is more than minmaxdist + away from some colormap entry. Therefore, only colors that are + within minmaxdist of some part of the box need be considered. } + + ncolors := 0; + for i := 0 to pred(numcolors) do + begin + if (mindist[i] <= minmaxdist) then + begin + colorlist[ncolors] := JSAMPLE(i); + Inc(ncolors); + end; + end; + find_nearby_colors := ncolors; +end; + + +{LOCAL} +procedure find_best_colors (cinfo : j_decompress_ptr; + minc0 : int; minc1 : int; minc2 : int; + numcolors : int; + var colorlist : array of JSAMPLE; + var bestcolor : array of JSAMPLE); +{ Find the closest colormap entry for each cell in the update box, + given the list of candidate colors prepared by find_nearby_colors. + Return the indexes of the closest entries in the bestcolor[] array. + This routine uses Thomas' incremental distance calculation method to + find the distance from a colormap entry to successive cells in the box. } +const + { Nominal steps between cell centers ("x" in Thomas article) } + STEP_C0 = ((1 shl C0_SHIFT) * C0_SCALE); + STEP_C1 = ((1 shl C1_SHIFT) * C1_SCALE); + STEP_C2 = ((1 shl C2_SHIFT) * C2_SCALE); +var + ic0, ic1, ic2 : int; + i, icolor : int; + {register} bptr : INT32PTR; { pointer into bestdist[] array } + cptr : JSAMPLE_PTR; { pointer into bestcolor[] array } + dist0, dist1 : INT32; { initial distance values } + {register} dist2 : INT32; { current distance in inner loop } + xx0, xx1 : INT32; { distance increments } + {register} xx2 : INT32; + inc0, inc1, inc2 : INT32; { initial values for increments } + { This array holds the distance to the nearest-so-far color for each cell } + bestdist : array[0..BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS-1] of INT32; +begin + { Initialize best-distance for each cell of the update box } + for i := BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1 downto 0 do + bestdist[i] := $7FFFFFFF; + + { For each color selected by find_nearby_colors, + compute its distance to the center of each cell in the box. + If that's less than best-so-far, update best distance and color number. } + + + + for i := 0 to pred(numcolors) do + begin + icolor := GETJSAMPLE(colorlist[i]); + { Compute (square of) distance from minc0/c1/c2 to this color } + inc0 := (minc0 - GETJSAMPLE(cinfo^.colormap^[0]^[icolor])) * C0_SCALE; + dist0 := inc0*inc0; + inc1 := (minc1 - GETJSAMPLE(cinfo^.colormap^[1]^[icolor])) * C1_SCALE; + Inc(dist0, inc1*inc1); + inc2 := (minc2 - GETJSAMPLE(cinfo^.colormap^[2]^[icolor])) * C2_SCALE; + Inc(dist0, inc2*inc2); + { Form the initial difference increments } + inc0 := inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; + inc1 := inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; + inc2 := inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; + { Now loop over all cells in box, updating distance per Thomas method } + bptr := @bestdist[0]; + cptr := @bestcolor[0]; + xx0 := inc0; + for ic0 := BOX_C0_ELEMS-1 downto 0 do + begin + dist1 := dist0; + xx1 := inc1; + for ic1 := BOX_C1_ELEMS-1 downto 0 do + begin + dist2 := dist1; + xx2 := inc2; + for ic2 := BOX_C2_ELEMS-1 downto 0 do + begin + if (dist2 < bptr^) then + begin + bptr^ := dist2; + cptr^ := JSAMPLE (icolor); + end; + Inc(dist2, xx2); + Inc(xx2, 2 * STEP_C2 * STEP_C2); + Inc(bptr); + Inc(cptr); + end; + Inc(dist1, xx1); + Inc(xx1, 2 * STEP_C1 * STEP_C1); + end; + Inc(dist0, xx0); + Inc(xx0, 2 * STEP_C0 * STEP_C0); + end; + end; +end; + + +{LOCAL} +procedure fill_inverse_cmap (cinfo : j_decompress_ptr; + c0 : int; c1 : int; c2 : int); +{ Fill the inverse-colormap entries in the update box that contains } +{ histogram cell c0/c1/c2. (Only that one cell MUST be filled, but } +{ we can fill as many others as we wish.) } +var + cquantize : my_cquantize_ptr; + histogram : hist3d; + minc0, minc1, minc2 : int; { lower left corner of update box } + ic0, ic1, ic2 : int; + {register} cptr : JSAMPLE_PTR; { pointer into bestcolor[] array } + {register} cachep : histptr; { pointer into main cache array } + { This array lists the candidate colormap indexes. } + colorlist : array[0..MAXNUMCOLORS-1] of JSAMPLE; + numcolors : int; { number of candidate colors } + { This array holds the actually closest colormap index for each cell. } + bestcolor : array[0..BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS-1] of JSAMPLE; +begin + cquantize := my_cquantize_ptr (cinfo^.cquantize); + histogram := cquantize^.histogram; + + { Convert cell coordinates to update box ID } + c0 := c0 shr BOX_C0_LOG; + c1 := c1 shr BOX_C1_LOG; + c2 := c2 shr BOX_C2_LOG; + + { Compute true coordinates of update box's origin corner. + Actually we compute the coordinates of the center of the corner + histogram cell, which are the lower bounds of the volume we care about.} + + minc0 := (c0 shl BOX_C0_SHIFT) + ((1 shl C0_SHIFT) shr 1); + minc1 := (c1 shl BOX_C1_SHIFT) + ((1 shl C1_SHIFT) shr 1); + minc2 := (c2 shl BOX_C2_SHIFT) + ((1 shl C2_SHIFT) shr 1); + + { Determine which colormap entries are close enough to be candidates + for the nearest entry to some cell in the update box. } + + numcolors := find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); + + { Determine the actually nearest colors. } + find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, + bestcolor); + + { Save the best color numbers (plus 1) in the main cache array } + c0 := c0 shl BOX_C0_LOG; { convert ID back to base cell indexes } + c1 := c1 shl BOX_C1_LOG; + c2 := c2 shl BOX_C2_LOG; + cptr := @(bestcolor[0]); + for ic0 := 0 to pred(BOX_C0_ELEMS) do + for ic1 := 0 to pred(BOX_C1_ELEMS) do + begin + cachep := @(histogram^[c0+ic0]^[c1+ic1][c2]); + for ic2 := 0 to pred(BOX_C2_ELEMS) do + begin + cachep^ := histcell (GETJSAMPLE(cptr^) + 1); + Inc(cachep); + Inc(cptr); + end; + end; +end; + + +{ Map some rows of pixels to the output colormapped representation. } + +{METHODDEF} +procedure pass2_no_dither (cinfo : j_decompress_ptr; + input_buf : JSAMPARRAY; + output_buf : JSAMPARRAY; + num_rows : int); far; +{ This version performs no dithering } +var + cquantize : my_cquantize_ptr; + histogram : hist3d; + {register} inptr : RGBptr; + outptr : JSAMPLE_PTR; + {register} cachep : histptr; + {register} c0, c1, c2 : int; + row : int; + col : JDIMENSION; + width : JDIMENSION; +begin + cquantize := my_cquantize_ptr (cinfo^.cquantize); + histogram := cquantize^.histogram; + width := cinfo^.output_width; + + for row := 0 to pred(num_rows) do + begin + inptr := RGBptr(input_buf^[row]); + outptr := JSAMPLE_PTR(output_buf^[row]); + for col := pred(width) downto 0 do + begin + { get pixel value and index into the cache } + c0 := GETJSAMPLE(inptr^.r) shr C0_SHIFT; + c1 := GETJSAMPLE(inptr^.g) shr C1_SHIFT; + c2 := GETJSAMPLE(inptr^.b) shr C2_SHIFT; + Inc(inptr); + cachep := @(histogram^[c0]^[c1][c2]); + { If we have not seen this color before, find nearest colormap entry } + { and update the cache } + if (cachep^ = 0) then + fill_inverse_cmap(cinfo, c0,c1,c2); + { Now emit the colormap index for this cell } + outptr^ := JSAMPLE (cachep^ - 1); + Inc(outptr); + end; + end; +end; + + +{METHODDEF} +procedure pass2_fs_dither (cinfo : j_decompress_ptr; + input_buf : JSAMPARRAY; + output_buf : JSAMPARRAY; + num_rows : int); far; +{ This version performs Floyd-Steinberg dithering } +var + cquantize : my_cquantize_ptr; + histogram : hist3d; + {register} cur : LOCRGB_FSERROR; { current error or pixel value } + belowerr : LOCRGB_FSERROR; { error for pixel below cur } + bpreverr : LOCRGB_FSERROR; { error for below/prev col } + prev_errorptr, + {register} errorptr : RGB_FSERROR_PTR; { => fserrors[] at column before current } + inptr : RGBptr; { => current input pixel } + outptr : JSAMPLE_PTR; { => current output pixel } + cachep : histptr; + dir : int; { +1 or -1 depending on direction } + row : int; + col : JDIMENSION; + width : JDIMENSION; + range_limit : range_limit_table_ptr; + error_limit : error_limit_ptr; + colormap0 : JSAMPROW; + colormap1 : JSAMPROW; + colormap2 : JSAMPROW; + {register} pixcode : int; + {register} bnexterr, delta : LOCFSERROR; +begin + cquantize := my_cquantize_ptr (cinfo^.cquantize); + histogram := cquantize^.histogram; + width := cinfo^.output_width; + range_limit := cinfo^.sample_range_limit; + error_limit := cquantize^.error_limiter; + colormap0 := cinfo^.colormap^[0]; + colormap1 := cinfo^.colormap^[1]; + colormap2 := cinfo^.colormap^[2]; + + for row := 0 to pred(num_rows) do + begin + inptr := RGBptr(input_buf^[row]); + outptr := JSAMPLE_PTR(output_buf^[row]); + errorptr := RGB_FSERROR_PTR(cquantize^.fserrors); { => entry before first real column } + if (cquantize^.on_odd_row) then + begin + { work right to left in this row } + Inc(inptr, (width-1)); { so point to rightmost pixel } + Inc(outptr, width-1); + dir := -1; + Inc(errorptr, (width+1)); { => entry after last column } + cquantize^.on_odd_row := FALSE; { flip for next time } + end + else + begin + { work left to right in this row } + dir := 1; + cquantize^.on_odd_row := TRUE; { flip for next time } + end; + + { Preset error values: no error propagated to first pixel from left } + cur.r := 0; + cur.g := 0; + cur.b := 0; + { and no error propagated to row below yet } + belowerr.r := 0; + belowerr.g := 0; + belowerr.b := 0; + bpreverr.r := 0; + bpreverr.g := 0; + bpreverr.b := 0; + + for col := pred(width) downto 0 do + begin + prev_errorptr := errorptr; + Inc(errorptr, dir); { advance errorptr to current column } + + { curN holds the error propagated from the previous pixel on the + current line. Add the error propagated from the previous line + to form the complete error correction term for this pixel, and + round the error term (which is expressed * 16) to an integer. + RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct + for either sign of the error value. + Note: prev_errorptr points to *previous* column's array entry. } + + { Nomssi Note: Borland Pascal SHR is unsigned } + cur.r := (cur.r + errorptr^.r + 8) div 16; + cur.g := (cur.g + errorptr^.g + 8) div 16; + cur.b := (cur.b + errorptr^.b + 8) div 16; + { Limit the error using transfer function set by init_error_limit. + See comments with init_error_limit for rationale. } + + cur.r := error_limit^[cur.r]; + cur.g := error_limit^[cur.g]; + cur.b := error_limit^[cur.b]; + { Form pixel value + error, and range-limit to 0..MAXJSAMPLE. + The maximum error is +- MAXJSAMPLE (or less with error limiting); + this sets the required size of the range_limit array. } + + Inc(cur.r, GETJSAMPLE(inptr^.r)); + Inc(cur.g, GETJSAMPLE(inptr^.g)); + Inc(cur.b, GETJSAMPLE(inptr^.b)); + + cur.r := GETJSAMPLE(range_limit^[cur.r]); + cur.g := GETJSAMPLE(range_limit^[cur.g]); + cur.b := GETJSAMPLE(range_limit^[cur.b]); + { Index into the cache with adjusted pixel value } + cachep := @(histogram^[cur.r shr C0_SHIFT]^ + [cur.g shr C1_SHIFT][cur.b shr C2_SHIFT]); + { If we have not seen this color before, find nearest colormap } + { entry and update the cache } + if (cachep^ = 0) then + fill_inverse_cmap(cinfo, cur.r shr C0_SHIFT, + cur.g shr C1_SHIFT, + cur.b shr C2_SHIFT); + { Now emit the colormap index for this cell } + + pixcode := cachep^ - 1; + outptr^ := JSAMPLE (pixcode); + + { Compute representation error for this pixel } + Dec(cur.r, GETJSAMPLE(colormap0^[pixcode])); + Dec(cur.g, GETJSAMPLE(colormap1^[pixcode])); + Dec(cur.b, GETJSAMPLE(colormap2^[pixcode])); + + { Compute error fractions to be propagated to adjacent pixels. + Add these into the running sums, and simultaneously shift the + next-line error sums left by 1 column. } + + bnexterr := cur.r; { Process component 0 } + delta := cur.r * 2; + Inc(cur.r, delta); { form error * 3 } + prev_errorptr^.r := FSERROR (bpreverr.r + cur.r); + Inc(cur.r, delta); { form error * 5 } + bpreverr.r := belowerr.r + cur.r; + belowerr.r := bnexterr; + Inc(cur.r, delta); { form error * 7 } + bnexterr := cur.g; { Process component 1 } + delta := cur.g * 2; + Inc(cur.g, delta); { form error * 3 } + prev_errorptr^.g := FSERROR (bpreverr.g + cur.g); + Inc(cur.g, delta); { form error * 5 } + bpreverr.g := belowerr.g + cur.g; + belowerr.g := bnexterr; + Inc(cur.g, delta); { form error * 7 } + bnexterr := cur.b; { Process component 2 } + delta := cur.b * 2; + Inc(cur.b, delta); { form error * 3 } + prev_errorptr^.b := FSERROR (bpreverr.b + cur.b); + Inc(cur.b, delta); { form error * 5 } + bpreverr.b := belowerr.b + cur.b; + belowerr.b := bnexterr; + Inc(cur.b, delta); { form error * 7 } + + { At this point curN contains the 7/16 error value to be propagated + to the next pixel on the current line, and all the errors for the + next line have been shifted over. We are therefore ready to move on.} + + Inc(inptr, dir); { Advance pixel pointers to next column } + Inc(outptr, dir); + end; + { Post-loop cleanup: we must unload the final error values into the + final fserrors[] entry. Note we need not unload belowerrN because + it is for the dummy column before or after the actual array. } + + errorptr^.r := FSERROR (bpreverr.r); { unload prev errs into array } + errorptr^.g := FSERROR (bpreverr.g); + errorptr^.b := FSERROR (bpreverr.b); + end; +end; + + +{ Initialize the error-limiting transfer function (lookup table). + The raw F-S error computation can potentially compute error values of up to + +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be + much less, otherwise obviously wrong pixels will be created. (Typical + effects include weird fringes at color-area boundaries, isolated bright + pixels in a dark area, etc.) The standard advice for avoiding this problem + is to ensure that the "corners" of the color cube are allocated as output + colors; then repeated errors in the same direction cannot cause cascading + error buildup. However, that only prevents the error from getting + completely out of hand; Aaron Giles reports that error limiting improves + the results even with corner colors allocated. + A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty + well, but the smoother transfer function used below is even better. Thanks + to Aaron Giles for this idea. } + +{LOCAL} +procedure init_error_limit (cinfo : j_decompress_ptr); +const + STEPSIZE = ((MAXJSAMPLE+1) div 16); +{ Allocate and fill in the error_limiter table } +var + cquantize : my_cquantize_ptr; + table : error_limit_ptr; + inp, out : int; +begin + cquantize := my_cquantize_ptr (cinfo^.cquantize); + table := error_limit_ptr (cinfo^.mem^.alloc_small + (j_common_ptr (cinfo), JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int))); + { not needed: Inc(table, MAXJSAMPLE); + so can index -MAXJSAMPLE .. +MAXJSAMPLE } + cquantize^.error_limiter := table; + { Map errors 1:1 up to +- MAXJSAMPLE/16 } + out := 0; + for inp := 0 to pred(STEPSIZE) do + begin + table^[inp] := out; + table^[-inp] := -out; + Inc(out); + end; + { Map errors 1:2 up to +- 3*MAXJSAMPLE/16 } + inp := STEPSIZE; { Nomssi: avoid problems with Delphi2 optimizer } + while (inp < STEPSIZE*3) do + begin + table^[inp] := out; + table^[-inp] := -out; + Inc(inp); + if Odd(inp) then + Inc(out); + end; + { Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) } + inp := STEPSIZE*3; { Nomssi: avoid problems with Delphi 2 optimizer } + while inp <= MAXJSAMPLE do + begin + table^[inp] := out; + table^[-inp] := -out; + Inc(inp); + end; +end; + +{ Finish up at the end of each pass. } + +{METHODDEF} +procedure finish_pass1 (cinfo : j_decompress_ptr); far; +var + cquantize : my_cquantize_ptr; +begin + cquantize := my_cquantize_ptr (cinfo^.cquantize); + + { Select the representative colors and fill in cinfo^.colormap } + cinfo^.colormap := cquantize^.sv_colormap; + select_colors(cinfo, cquantize^.desired); + { Force next pass to zero the color index table } + cquantize^.needs_zeroed := TRUE; +end; + + +{METHODDEF} +procedure finish_pass2 (cinfo : j_decompress_ptr); far; +begin + { no work } +end; + + +{ Initialize for each processing pass. } + +{METHODDEF} +procedure start_pass_2_quant (cinfo : j_decompress_ptr; + is_pre_scan : boolean); far; +var + cquantize : my_cquantize_ptr; + histogram : hist3d; + i : int; +var + arraysize : size_t; +begin + cquantize := my_cquantize_ptr (cinfo^.cquantize); + histogram := cquantize^.histogram; + { Only F-S dithering or no dithering is supported. } + { If user asks for ordered dither, give him F-S. } + if (cinfo^.dither_mode <> JDITHER_NONE) then + cinfo^.dither_mode := JDITHER_FS; + + if (is_pre_scan) then + begin + { Set up method pointers } + cquantize^.pub.color_quantize := prescan_quantize; + cquantize^.pub.finish_pass := finish_pass1; + cquantize^.needs_zeroed := TRUE; { Always zero histogram } + end + else + begin + { Set up method pointers } + if (cinfo^.dither_mode = JDITHER_FS) then + cquantize^.pub.color_quantize := pass2_fs_dither + else + cquantize^.pub.color_quantize := pass2_no_dither; + cquantize^.pub.finish_pass := finish_pass2; + + { Make sure color count is acceptable } + i := cinfo^.actual_number_of_colors; + if (i < 1) then + ERREXIT1(j_common_ptr(cinfo), JERR_QUANT_FEW_COLORS, 1); + if (i > MAXNUMCOLORS) then + ERREXIT1(j_common_ptr(cinfo), JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); + + if (cinfo^.dither_mode = JDITHER_FS) then + begin + arraysize := size_t ((cinfo^.output_width + 2) * + (3 * SIZEOF(FSERROR))); + { Allocate Floyd-Steinberg workspace if we didn't already. } + if (cquantize^.fserrors = NIL) then + cquantize^.fserrors := FS_ERROR_FIELD_PTR (cinfo^.mem^.alloc_large + (j_common_ptr(cinfo), JPOOL_IMAGE, arraysize)); + { Initialize the propagated errors to zero. } + jzero_far(cquantize^.fserrors, arraysize); + { Make the error-limit table if we didn't already. } + if (cquantize^.error_limiter = NIL) then + init_error_limit(cinfo); + cquantize^.on_odd_row := FALSE; + end; + + end; + { Zero the histogram or inverse color map, if necessary } + if (cquantize^.needs_zeroed) then + begin + for i := 0 to pred(HIST_C0_ELEMS) do + begin + jzero_far( histogram^[i], + HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); + end; + cquantize^.needs_zeroed := FALSE; + end; +end; + + +{ Switch to a new external colormap between output passes. } + +{METHODDEF} +procedure new_color_map_2_quant (cinfo : j_decompress_ptr); far; +var + cquantize : my_cquantize_ptr; +begin + cquantize := my_cquantize_ptr (cinfo^.cquantize); + + { Reset the inverse color map } + cquantize^.needs_zeroed := TRUE; +end; + + +{ Module initialization routine for 2-pass color quantization. } + + +{GLOBAL} +procedure jinit_2pass_quantizer (cinfo : j_decompress_ptr); +var + cquantize : my_cquantize_ptr; + i : int; +var + desired : int; +begin + cquantize := my_cquantize_ptr( + cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE, + SIZEOF(my_cquantizer))); + cinfo^.cquantize := jpeg_color_quantizer_ptr(cquantize); + cquantize^.pub.start_pass := start_pass_2_quant; + cquantize^.pub.new_color_map := new_color_map_2_quant; + cquantize^.fserrors := NIL; { flag optional arrays not allocated } + cquantize^.error_limiter := NIL; + + { Make sure jdmaster didn't give me a case I can't handle } + if (cinfo^.out_color_components <> 3) then + ERREXIT(j_common_ptr(cinfo), JERR_NOTIMPL); + + { Allocate the histogram/inverse colormap storage } + cquantize^.histogram := hist3d (cinfo^.mem^.alloc_small + (j_common_ptr (cinfo), JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d))); + for i := 0 to pred(HIST_C0_ELEMS) do + begin + cquantize^.histogram^[i] := hist2d (cinfo^.mem^.alloc_large + (j_common_ptr (cinfo), JPOOL_IMAGE, + HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell))); + end; + cquantize^.needs_zeroed := TRUE; { histogram is garbage now } + + { Allocate storage for the completed colormap, if required. + We do this now since it is FAR storage and may affect + the memory manager's space calculations. } + + if (cinfo^.enable_2pass_quant) then + begin + { Make sure color count is acceptable } + desired := cinfo^.desired_number_of_colors; + { Lower bound on # of colors ... somewhat arbitrary as long as > 0 } + if (desired < 8) then + ERREXIT1(j_common_ptr (cinfo), JERR_QUANT_FEW_COLORS, 8); + { Make sure colormap indexes can be represented by JSAMPLEs } + if (desired > MAXNUMCOLORS) then + ERREXIT1(j_common_ptr (cinfo), JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); + cquantize^.sv_colormap := cinfo^.mem^.alloc_sarray + (j_common_ptr (cinfo),JPOOL_IMAGE, JDIMENSION(desired), JDIMENSION(3)); + cquantize^.desired := desired; + end + else + cquantize^.sv_colormap := NIL; + + { Only F-S dithering or no dithering is supported. } + { If user asks for ordered dither, give him F-S. } + if (cinfo^.dither_mode <> JDITHER_NONE) then + cinfo^.dither_mode := JDITHER_FS; + + { Allocate Floyd-Steinberg workspace if necessary. + This isn't really needed until pass 2, but again it is FAR storage. + Although we will cope with a later change in dither_mode, + we do not promise to honor max_memory_to_use if dither_mode changes. } + + if (cinfo^.dither_mode = JDITHER_FS) then + begin + cquantize^.fserrors := FS_ERROR_FIELD_PTR (cinfo^.mem^.alloc_large + (j_common_ptr(cinfo), JPOOL_IMAGE, + size_t ((cinfo^.output_width + 2) * (3 * SIZEOF(FSERROR))) ) ); + { Might as well create the error-limiting table too. } + init_error_limit(cinfo); + end; +end; + +end. { QUANT_2PASS_SUPPORTED } |