summaryrefslogtreecommitdiff
path: root/packages/pasjpeg/src/jquant2.pas
blob: 1cfd87b61083ff3a0074aca40c31919e943df6dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
Unit JQuant2;


{ This file contains 2-pass color quantization (color mapping) routines.
  These routines provide selection of a custom color map for an image,
  followed by mapping of the image to that color map, with optional
  Floyd-Steinberg dithering.
  It is also possible to use just the second pass to map to an arbitrary
  externally-given color map.

  Note: ordered dithering is not supported, since there isn't any fast
  way to compute intercolor distances; it's unclear that ordered dither's
  fundamental assumptions even hold with an irregularly spaced color map. }

{ Original: jquant2.c; Copyright (C) 1991-1996, Thomas G. Lane. }

interface

{$I jconfig.inc}

uses
  jmorecfg,
  jdeferr,
  jerror,
  jutils,
  jpeglib;

{ Module initialization routine for 2-pass color quantization. }


{GLOBAL}
procedure jinit_2pass_quantizer (cinfo : j_decompress_ptr);

implementation

{ This module implements the well-known Heckbert paradigm for color
  quantization.  Most of the ideas used here can be traced back to
  Heckbert's seminal paper
    Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
    Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.

  In the first pass over the image, we accumulate a histogram showing the
  usage count of each possible color.  To keep the histogram to a reasonable
  size, we reduce the precision of the input; typical practice is to retain
  5 or 6 bits per color, so that 8 or 4 different input values are counted
  in the same histogram cell.

  Next, the color-selection step begins with a box representing the whole
  color space, and repeatedly splits the "largest" remaining box until we
  have as many boxes as desired colors.  Then the mean color in each
  remaining box becomes one of the possible output colors.

  The second pass over the image maps each input pixel to the closest output
  color (optionally after applying a Floyd-Steinberg dithering correction).
  This mapping is logically trivial, but making it go fast enough requires
  considerable care.

  Heckbert-style quantizers vary a good deal in their policies for choosing
  the "largest" box and deciding where to cut it.  The particular policies
  used here have proved out well in experimental comparisons, but better ones
  may yet be found.

  In earlier versions of the IJG code, this module quantized in YCbCr color
  space, processing the raw upsampled data without a color conversion step.
  This allowed the color conversion math to be done only once per colormap
  entry, not once per pixel.  However, that optimization precluded other
  useful optimizations (such as merging color conversion with upsampling)
  and it also interfered with desired capabilities such as quantizing to an
  externally-supplied colormap.  We have therefore abandoned that approach.
  The present code works in the post-conversion color space, typically RGB.

  To improve the visual quality of the results, we actually work in scaled
  RGB space, giving G distances more weight than R, and R in turn more than
  B.  To do everything in integer math, we must use integer scale factors.
  The 2/3/1 scale factors used here correspond loosely to the relative
  weights of the colors in the NTSC grayscale equation.
  If you want to use this code to quantize a non-RGB color space, you'll
  probably need to change these scale factors. }

const
  R_SCALE = 2;          { scale R distances by this much }
  G_SCALE = 3;          { scale G distances by this much }
  B_SCALE = 1;          { and B by this much }

{ Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
  in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
  and B,G,R orders.  If you define some other weird order in jmorecfg.h,
  you'll get compile errors until you extend this logic.  In that case
  you'll probably want to tweak the histogram sizes too. }

{$ifdef RGB_RED_IS_0}
const
  C0_SCALE = R_SCALE;
  C1_SCALE = G_SCALE;
  C2_SCALE = B_SCALE;
{$else}
const
  C0_SCALE = B_SCALE;
  C1_SCALE = G_SCALE;
  C2_SCALE = R_SCALE;
{$endif}


{ First we have the histogram data structure and routines for creating it.

  The number of bits of precision can be adjusted by changing these symbols.
  We recommend keeping 6 bits for G and 5 each for R and B.
  If you have plenty of memory and cycles, 6 bits all around gives marginally
  better results; if you are short of memory, 5 bits all around will save
  some space but degrade the results.
  To maintain a fully accurate histogram, we'd need to allocate a "long"
  (preferably unsigned long) for each cell.  In practice this is overkill;
  we can get by with 16 bits per cell.  Few of the cell counts will overflow,
  and clamping those that do overflow to the maximum value will give close-
  enough results.  This reduces the recommended histogram size from 256Kb
  to 128Kb, which is a useful savings on PC-class machines.
  (In the second pass the histogram space is re-used for pixel mapping data;
  in that capacity, each cell must be able to store zero to the number of
  desired colors.  16 bits/cell is plenty for that too.)
  Since the JPEG code is intended to run in small memory model on 80x86
  machines, we can't just allocate the histogram in one chunk.  Instead
  of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
  pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
  each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
  on 80x86 machines, the pointer row is in near memory but the actual
  arrays are in far memory (same arrangement as we use for image arrays). }


const
  MAXNUMCOLORS = (MAXJSAMPLE+1);        { maximum size of colormap }

{ These will do the right thing for either R,G,B or B,G,R color order,
  but you may not like the results for other color orders. }

const
  HIST_C0_BITS = 5;             { bits of precision in R/B histogram }
  HIST_C1_BITS = 6;             { bits of precision in G histogram }
  HIST_C2_BITS = 5;             { bits of precision in B/R histogram }

{ Number of elements along histogram axes. }
const
  HIST_C0_ELEMS = (1 shl HIST_C0_BITS);
  HIST_C1_ELEMS = (1 shl HIST_C1_BITS);
  HIST_C2_ELEMS = (1 shl HIST_C2_BITS);

{ These are the amounts to shift an input value to get a histogram index. }
const
  C0_SHIFT = (BITS_IN_JSAMPLE-HIST_C0_BITS);
  C1_SHIFT = (BITS_IN_JSAMPLE-HIST_C1_BITS);
  C2_SHIFT = (BITS_IN_JSAMPLE-HIST_C2_BITS);


type                            { Nomssi }
  RGBptr = ^RGBtype;
  RGBtype = packed record
    r,g,b : JSAMPLE;
  end;
type
  histcell = UINT16;            { histogram cell; prefer an unsigned type }

type
  histptr = ^histcell {FAR};       { for pointers to histogram cells }

type
  hist1d = array[0..HIST_C2_ELEMS-1] of histcell; { typedefs for the array }
  {hist1d_ptr = ^hist1d;}
  hist1d_field = array[0..HIST_C1_ELEMS-1] of hist1d;
                                  { type for the 2nd-level pointers }
  hist2d = ^hist1d_field;
  hist2d_field = array[0..HIST_C0_ELEMS-1] of hist2d;
  hist3d = ^hist2d_field;         { type for top-level pointer }


{ Declarations for Floyd-Steinberg dithering.

  Errors are accumulated into the array fserrors[], at a resolution of
  1/16th of a pixel count.  The error at a given pixel is propagated
  to its not-yet-processed neighbors using the standard F-S fractions,
                ...     (here)  7/16
                3/16    5/16    1/16
  We work left-to-right on even rows, right-to-left on odd rows.

  We can get away with a single array (holding one row's worth of errors)
  by using it to store the current row's errors at pixel columns not yet
  processed, but the next row's errors at columns already processed.  We
  need only a few extra variables to hold the errors immediately around the
  current column.  (If we are lucky, those variables are in registers, but
  even if not, they're probably cheaper to access than array elements are.)

  The fserrors[] array has (#columns + 2) entries; the extra entry at
  each end saves us from special-casing the first and last pixels.
  Each entry is three values long, one value for each color component.

  Note: on a wide image, we might not have enough room in a PC's near data
  segment to hold the error array; so it is allocated with alloc_large. }


{$ifdef BITS_IN_JSAMPLE_IS_8}
type
  FSERROR = INT16;              { 16 bits should be enough }
  LOCFSERROR = int;             { use 'int' for calculation temps }
{$else}
type
  FSERROR = INT32;              { may need more than 16 bits }
  LOCFSERROR = INT32;           { be sure calculation temps are big enough }
{$endif}
type                            { Nomssi }
  RGB_FSERROR_PTR = ^RGB_FSERROR;
  RGB_FSERROR = packed record
    r,g,b : FSERROR;
  end;
  LOCRGB_FSERROR = packed record
    r,g,b : LOCFSERROR;
  end;

type
  FSERROR_PTR = ^FSERROR;
  jFSError = 0..(MaxInt div SIZEOF(RGB_FSERROR))-1;
  FS_ERROR_FIELD = array[jFSError] of RGB_FSERROR;
  FS_ERROR_FIELD_PTR = ^FS_ERROR_FIELD;{far}
                                { pointer to error array (in FAR storage!) }

type
  error_limit_array = array[-MAXJSAMPLE..MAXJSAMPLE] of int;
  { table for clamping the applied error }
  error_limit_ptr = ^error_limit_array;

{ Private subobject }
type
  my_cquantize_ptr = ^my_cquantizer;
  my_cquantizer = record
    pub : jpeg_color_quantizer; { public fields }

    { Space for the eventually created colormap is stashed here }
    sv_colormap : JSAMPARRAY;   { colormap allocated at init time }
    desired : int;              { desired # of colors = size of colormap }

    { Variables for accumulating image statistics }
    histogram : hist3d;         { pointer to the histogram }

    needs_zeroed : boolean;     { TRUE if next pass must zero histogram }

    { Variables for Floyd-Steinberg dithering }
    fserrors : FS_ERROR_FIELD_PTR;        { accumulated errors }
    on_odd_row : boolean;       { flag to remember which row we are on }
    error_limiter : error_limit_ptr; { table for clamping the applied error }
  end;



{ Prescan some rows of pixels.
  In this module the prescan simply updates the histogram, which has been
  initialized to zeroes by start_pass.
  An output_buf parameter is required by the method signature, but no data
  is actually output (in fact the buffer controller is probably passing a
  NIL pointer). }

{METHODDEF}
procedure prescan_quantize (cinfo : j_decompress_ptr;
                            input_buf : JSAMPARRAY;
                            output_buf : JSAMPARRAY;
                            num_rows : int); far;
var
  cquantize : my_cquantize_ptr;
  {register} ptr : RGBptr;
  {register} histp : histptr;
  {register} histogram : hist3d;
  row : int;
  col : JDIMENSION;
  width : JDIMENSION;
begin
  cquantize := my_cquantize_ptr(cinfo^.cquantize);
  histogram := cquantize^.histogram;
  width := cinfo^.output_width;

  for row := 0 to pred(num_rows) do
  begin
    ptr := RGBptr(input_buf^[row]);
    for col := pred(width) downto 0 do
    begin
      { get pixel value and index into the histogram }
      histp := @(histogram^[GETJSAMPLE(ptr^.r) shr C0_SHIFT]^
                           [GETJSAMPLE(ptr^.g) shr C1_SHIFT]
                           [GETJSAMPLE(ptr^.b) shr C2_SHIFT]);
      { increment, check for overflow and undo increment if so. }
      Inc(histp^);
      if (histp^ <= 0) then
        Dec(histp^);
      Inc(ptr);
    end;
  end;
end;

{ Next we have the really interesting routines: selection of a colormap
  given the completed histogram.
  These routines work with a list of "boxes", each representing a rectangular
  subset of the input color space (to histogram precision). }

type
  box = record
  { The bounds of the box (inclusive); expressed as histogram indexes }
    c0min, c0max : int;
    c1min, c1max : int;
    c2min, c2max : int;
    { The volume (actually 2-norm) of the box }
    volume : INT32;
    { The number of nonzero histogram cells within this box }
    colorcount : long;
  end;

type
  jBoxList = 0..(MaxInt div SizeOf(box))-1;
  box_field = array[jBoxlist] of box;
  boxlistptr = ^box_field;
  boxptr = ^box;

{LOCAL}
function find_biggest_color_pop (boxlist : boxlistptr; numboxes : int) : boxptr;
{ Find the splittable box with the largest color population }
{ Returns NIL if no splittable boxes remain }
var
  boxp : boxptr ; {register}
  i : int;        {register}
  maxc : long;    {register}
  which : boxptr;
begin
  which := NIL;
  boxp := @(boxlist^[0]);
  maxc := 0;
  for i := 0 to pred(numboxes) do
  begin
    if (boxp^.colorcount > maxc) and (boxp^.volume > 0) then
    begin
      which := boxp;
      maxc := boxp^.colorcount;
    end;
    Inc(boxp);
  end;
  find_biggest_color_pop := which;
end;


{LOCAL}
function find_biggest_volume (boxlist : boxlistptr; numboxes : int) : boxptr;
{ Find the splittable box with the largest (scaled) volume }
{ Returns NULL if no splittable boxes remain }
var
  {register} boxp : boxptr;
  {register} i : int;
  {register} maxv : INT32;
  which : boxptr;
begin
  maxv := 0;
  which := NIL;
  boxp := @(boxlist^[0]);
  for i := 0 to pred(numboxes) do
  begin
    if (boxp^.volume > maxv) then
    begin
      which := boxp;
      maxv := boxp^.volume;
    end;
    Inc(boxp);
  end;
  find_biggest_volume := which;
end;


{LOCAL}
procedure update_box (cinfo : j_decompress_ptr; var boxp : box);
label
  have_c0min, have_c0max,
  have_c1min, have_c1max,
  have_c2min, have_c2max;
{ Shrink the min/max bounds of a box to enclose only nonzero elements, }
{ and recompute its volume and population }
var
  cquantize : my_cquantize_ptr;
  histogram : hist3d;
  histp : histptr;
  c0,c1,c2 : int;
  c0min,c0max,c1min,c1max,c2min,c2max : int;
  dist0,dist1,dist2 : INT32;
  ccount : long;
begin
  cquantize := my_cquantize_ptr(cinfo^.cquantize);
  histogram := cquantize^.histogram;

  c0min := boxp.c0min;  c0max := boxp.c0max;
  c1min := boxp.c1min;  c1max := boxp.c1max;
  c2min := boxp.c2min;  c2max := boxp.c2max;

  if (c0max > c0min) then
    for c0 := c0min to c0max do
      for c1 := c1min to c1max do
      begin
        histp := @(histogram^[c0]^[c1][c2min]);
        for c2 := c2min to c2max do
        begin
          if (histp^ <> 0) then
          begin
            c0min := c0;
            boxp.c0min := c0min;
            goto have_c0min;
          end;
          Inc(histp);
        end;
      end;
 have_c0min:
  if (c0max > c0min) then
    for c0 := c0max downto c0min do
      for c1 := c1min to c1max do
      begin
        histp := @(histogram^[c0]^[c1][c2min]);
        for c2 := c2min to c2max do
        begin
          if ( histp^ <> 0) then
          begin
            c0max := c0;
            boxp.c0max := c0;
            goto have_c0max;
          end;
          Inc(histp);
        end;
      end;
 have_c0max:
  if (c1max > c1min) then
    for c1 := c1min to c1max do
      for c0 := c0min to c0max do
      begin
        histp := @(histogram^[c0]^[c1][c2min]);
        for c2 := c2min to c2max do
        begin
          if (histp^ <> 0) then
          begin
            c1min := c1;
            boxp.c1min := c1;
            goto have_c1min;
          end;
          Inc(histp);
        end;
      end;
 have_c1min:
  if (c1max > c1min) then
    for c1 := c1max downto c1min do
      for c0 := c0min to c0max do
      begin
        histp := @(histogram^[c0]^[c1][c2min]);
        for c2 := c2min to c2max do
        begin
          if (histp^ <> 0) then
          begin
            c1max := c1;
            boxp.c1max := c1;
            goto have_c1max;
          end;
          Inc(histp);
        end;
      end;
 have_c1max:
  if (c2max > c2min) then
    for c2 := c2min to c2max do
      for c0 := c0min to c0max do
      begin
        histp := @(histogram^[c0]^[c1min][c2]);
        for c1 := c1min to c1max do
        begin
          if (histp^ <> 0) then
          begin
            c2min := c2;
            boxp.c2min := c2min;
            goto have_c2min;
          end;
          Inc(histp, HIST_C2_ELEMS);
        end;
      end;
 have_c2min:
  if (c2max > c2min) then
    for c2 := c2max downto c2min do
      for c0 := c0min to c0max do
      begin
        histp := @(histogram^[c0]^[c1min][c2]);
        for c1 := c1min to c1max do
        begin
          if (histp^ <> 0) then
          begin
            c2max := c2;
            boxp.c2max := c2max;
            goto have_c2max;
          end;
          Inc(histp, HIST_C2_ELEMS);
        end;
      end;
 have_c2max:

  { Update box volume.
    We use 2-norm rather than real volume here; this biases the method
    against making long narrow boxes, and it has the side benefit that
    a box is splittable iff norm > 0.
    Since the differences are expressed in histogram-cell units,
    we have to shift back to JSAMPLE units to get consistent distances;
    after which, we scale according to the selected distance scale factors.}

  dist0 := ((c0max - c0min) shl C0_SHIFT) * C0_SCALE;
  dist1 := ((c1max - c1min) shl C1_SHIFT) * C1_SCALE;
  dist2 := ((c2max - c2min) shl C2_SHIFT) * C2_SCALE;
  boxp.volume := dist0*dist0 + dist1*dist1 + dist2*dist2;

  { Now scan remaining volume of box and compute population }
  ccount := 0;
  for c0 := c0min to c0max do
    for c1 := c1min to c1max do
    begin
      histp := @(histogram^[c0]^[c1][c2min]);
      for c2 := c2min to c2max do
      begin
        if (histp^ <> 0) then
          Inc(ccount);
        Inc(histp);
      end;
    end;
  boxp.colorcount := ccount;
end;


{LOCAL}
function median_cut (cinfo : j_decompress_ptr; boxlist : boxlistptr;
                     numboxes : int; desired_colors : int) : int;
{ Repeatedly select and split the largest box until we have enough boxes }
var
  n,lb : int;
  c0,c1,c2,cmax : int;
  {register} b1,b2 : boxptr;
begin
  while (numboxes < desired_colors) do
  begin
    { Select box to split.
      Current algorithm: by population for first half, then by volume. }

    if (numboxes*2 <= desired_colors) then
      b1 := find_biggest_color_pop(boxlist, numboxes)
    else
      b1 := find_biggest_volume(boxlist, numboxes);

    if (b1 = NIL) then          { no splittable boxes left! }
      break;
    b2 := @(boxlist^[numboxes]);        { where new box will go }
    { Copy the color bounds to the new box. }
    b2^.c0max := b1^.c0max; b2^.c1max := b1^.c1max; b2^.c2max := b1^.c2max;
    b2^.c0min := b1^.c0min; b2^.c1min := b1^.c1min; b2^.c2min := b1^.c2min;
    { Choose which axis to split the box on.
      Current algorithm: longest scaled axis.
      See notes in update_box about scaling distances. }

    c0 := ((b1^.c0max - b1^.c0min) shl C0_SHIFT) * C0_SCALE;
    c1 := ((b1^.c1max - b1^.c1min) shl C1_SHIFT) * C1_SCALE;
    c2 := ((b1^.c2max - b1^.c2min) shl C2_SHIFT) * C2_SCALE;
    { We want to break any ties in favor of green, then red, blue last.
      This code does the right thing for R,G,B or B,G,R color orders only. }

{$ifdef RGB_RED_IS_0}
    cmax := c1; n := 1;
    if (c0 > cmax) then
    begin
      cmax := c0;
      n := 0;
    end;
    if (c2 > cmax) then
      n := 2;
{$else}
    cmax := c1;
    n := 1;
    if (c2 > cmax) then
    begin
      cmax := c2;
      n := 2;
    end;
    if (c0 > cmax) then
      n := 0;
{$endif}
    { Choose split point along selected axis, and update box bounds.
      Current algorithm: split at halfway point.
      (Since the box has been shrunk to minimum volume,
      any split will produce two nonempty subboxes.)
      Note that lb value is max for lower box, so must be < old max. }

    case n of
    0:begin
        lb := (b1^.c0max + b1^.c0min) div 2;
        b1^.c0max := lb;
        b2^.c0min := lb+1;
      end;
    1:begin
        lb := (b1^.c1max + b1^.c1min) div 2;
        b1^.c1max := lb;
        b2^.c1min := lb+1;
      end;
    2:begin
        lb := (b1^.c2max + b1^.c2min) div 2;
        b1^.c2max := lb;
        b2^.c2min := lb+1;
      end;
    end;
    { Update stats for boxes }
    update_box(cinfo, b1^);
    update_box(cinfo, b2^);
    Inc(numboxes);
  end;
  median_cut := numboxes;
end;


{LOCAL}
procedure compute_color (cinfo : j_decompress_ptr;
                         const boxp : box; icolor : int);
{ Compute representative color for a box, put it in colormap[icolor] }
var
  { Current algorithm: mean weighted by pixels (not colors) }
  { Note it is important to get the rounding correct! }
  cquantize : my_cquantize_ptr;
  histogram : hist3d;
  histp : histptr;
  c0,c1,c2 : int;
  c0min,c0max,c1min,c1max,c2min,c2max : int;
  count : long;
  total : long;
  c0total : long;
  c1total : long;
  c2total : long;
begin
  cquantize := my_cquantize_ptr(cinfo^.cquantize);
  histogram := cquantize^.histogram;
  total := 0;
  c0total := 0;
  c1total := 0;
  c2total := 0;

  c0min := boxp.c0min;  c0max := boxp.c0max;
  c1min := boxp.c1min;  c1max := boxp.c1max;
  c2min := boxp.c2min;  c2max := boxp.c2max;

  for c0 := c0min to c0max do
    for c1 := c1min to c1max do
    begin
      histp := @(histogram^[c0]^[c1][c2min]);
      for c2 := c2min to c2max do
      begin
        count := histp^;
        Inc(histp);
        if (count <> 0) then
        begin
          Inc(total, count);
          Inc(c0total, ((c0 shl C0_SHIFT) + ((1 shl C0_SHIFT) shr 1)) * count);
          Inc(c1total, ((c1 shl C1_SHIFT) + ((1 shl C1_SHIFT) shr 1)) * count);
          Inc(c2total, ((c2 shl C2_SHIFT) + ((1 shl C2_SHIFT) shr 1)) * count);
        end;
      end;
    end;

  cinfo^.colormap^[0]^[icolor] := JSAMPLE ((c0total + (total shr 1)) div total);
  cinfo^.colormap^[1]^[icolor] := JSAMPLE ((c1total + (total shr 1)) div total);
  cinfo^.colormap^[2]^[icolor] := JSAMPLE ((c2total + (total shr 1)) div total);
end;


{LOCAL}
procedure select_colors (cinfo : j_decompress_ptr; desired_colors : int);
{ Master routine for color selection }
var
  boxlist : boxlistptr;
  numboxes : int;
  i : int;
begin
  { Allocate workspace for box list }
  boxlist := boxlistptr(cinfo^.mem^.alloc_small(
    j_common_ptr(cinfo), JPOOL_IMAGE, desired_colors * SIZEOF(box)));
  { Initialize one box containing whole space }
  numboxes := 1;
  boxlist^[0].c0min := 0;
  boxlist^[0].c0max := MAXJSAMPLE shr C0_SHIFT;
  boxlist^[0].c1min := 0;
  boxlist^[0].c1max := MAXJSAMPLE shr C1_SHIFT;
  boxlist^[0].c2min := 0;
  boxlist^[0].c2max := MAXJSAMPLE shr C2_SHIFT;
  { Shrink it to actually-used volume and set its statistics }
  update_box(cinfo, boxlist^[0]);
  { Perform median-cut to produce final box list }
  numboxes := median_cut(cinfo, boxlist, numboxes, desired_colors);
  { Compute the representative color for each box, fill colormap }
  for i := 0 to pred(numboxes) do
    compute_color(cinfo, boxlist^[i], i);
  cinfo^.actual_number_of_colors := numboxes;
  {$IFDEF DEBUG}
  TRACEMS1(j_common_ptr(cinfo), 1, JTRC_QUANT_SELECTED, numboxes);
  {$ENDIF}
end;


{ These routines are concerned with the time-critical task of mapping input
  colors to the nearest color in the selected colormap.

  We re-use the histogram space as an "inverse color map", essentially a
  cache for the results of nearest-color searches.  All colors within a
  histogram cell will be mapped to the same colormap entry, namely the one
  closest to the cell's center.  This may not be quite the closest entry to
  the actual input color, but it's almost as good.  A zero in the cache
  indicates we haven't found the nearest color for that cell yet; the array
  is cleared to zeroes before starting the mapping pass.  When we find the
  nearest color for a cell, its colormap index plus one is recorded in the
  cache for future use.  The pass2 scanning routines call fill_inverse_cmap
  when they need to use an unfilled entry in the cache.

  Our method of efficiently finding nearest colors is based on the "locally
  sorted search" idea described by Heckbert and on the incremental distance
  calculation described by Spencer W. Thomas in chapter III.1 of Graphics
  Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
  the distances from a given colormap entry to each cell of the histogram can
  be computed quickly using an incremental method: the differences between
  distances to adjacent cells themselves differ by a constant.  This allows a
  fairly fast implementation of the "brute force" approach of computing the
  distance from every colormap entry to every histogram cell.  Unfortunately,
  it needs a work array to hold the best-distance-so-far for each histogram
  cell (because the inner loop has to be over cells, not colormap entries).
  The work array elements have to be INT32s, so the work array would need
  256Kb at our recommended precision.  This is not feasible in DOS machines.

  To get around these problems, we apply Thomas' method to compute the
  nearest colors for only the cells within a small subbox of the histogram.
  The work array need be only as big as the subbox, so the memory usage
  problem is solved.  Furthermore, we need not fill subboxes that are never
  referenced in pass2; many images use only part of the color gamut, so a
  fair amount of work is saved.  An additional advantage of this
  approach is that we can apply Heckbert's locality criterion to quickly
  eliminate colormap entries that are far away from the subbox; typically
  three-fourths of the colormap entries are rejected by Heckbert's criterion,
  and we need not compute their distances to individual cells in the subbox.
  The speed of this approach is heavily influenced by the subbox size: too
  small means too much overhead, too big loses because Heckbert's criterion
  can't eliminate as many colormap entries.  Empirically the best subbox
  size seems to be about 1/512th of the histogram (1/8th in each direction).

  Thomas' article also describes a refined method which is asymptotically
  faster than the brute-force method, but it is also far more complex and
  cannot efficiently be applied to small subboxes.  It is therefore not
  useful for programs intended to be portable to DOS machines.  On machines
  with plenty of memory, filling the whole histogram in one shot with Thomas'
  refined method might be faster than the present code --- but then again,
  it might not be any faster, and it's certainly more complicated. }



{ log2(histogram cells in update box) for each axis; this can be adjusted }
const
  BOX_C0_LOG = (HIST_C0_BITS-3);
  BOX_C1_LOG = (HIST_C1_BITS-3);
  BOX_C2_LOG = (HIST_C2_BITS-3);

  BOX_C0_ELEMS = (1 shl BOX_C0_LOG); { # of hist cells in update box }
  BOX_C1_ELEMS = (1 shl BOX_C1_LOG);
  BOX_C2_ELEMS = (1 shl BOX_C2_LOG);

  BOX_C0_SHIFT = (C0_SHIFT + BOX_C0_LOG);
  BOX_C1_SHIFT = (C1_SHIFT + BOX_C1_LOG);
  BOX_C2_SHIFT = (C2_SHIFT + BOX_C2_LOG);


{ The next three routines implement inverse colormap filling.  They could
  all be folded into one big routine, but splitting them up this way saves
  some stack space (the mindist[] and bestdist[] arrays need not coexist)
  and may allow some compilers to produce better code by registerizing more
  inner-loop variables. }

{LOCAL}
function find_nearby_colors (cinfo : j_decompress_ptr;
                             minc0 : int; minc1 : int; minc2 : int;
                             var colorlist : array of JSAMPLE) : int;
{ Locate the colormap entries close enough to an update box to be candidates
  for the nearest entry to some cell(s) in the update box.  The update box
  is specified by the center coordinates of its first cell.  The number of
  candidate colormap entries is returned, and their colormap indexes are
  placed in colorlist[].
  This routine uses Heckbert's "locally sorted search" criterion to select
  the colors that need further consideration. }

var
  numcolors : int;
  maxc0, maxc1, maxc2 : int;
  centerc0, centerc1, centerc2 : int;
  i, x, ncolors : int;
  minmaxdist, min_dist, max_dist, tdist : INT32;
  mindist : array[0..MAXNUMCOLORS-1] of INT32;
        { min distance to colormap entry i }
begin
  numcolors := cinfo^.actual_number_of_colors;

  { Compute true coordinates of update box's upper corner and center.
    Actually we compute the coordinates of the center of the upper-corner
    histogram cell, which are the upper bounds of the volume we care about.
    Note that since ">>" rounds down, the "center" values may be closer to
    min than to max; hence comparisons to them must be "<=", not "<". }

  maxc0 := minc0 + ((1 shl BOX_C0_SHIFT) - (1 shl C0_SHIFT));
  centerc0 := (minc0 + maxc0) shr 1;
  maxc1 := minc1 + ((1 shl BOX_C1_SHIFT) - (1 shl C1_SHIFT));
  centerc1 := (minc1 + maxc1) shr 1;
  maxc2 := minc2 + ((1 shl BOX_C2_SHIFT) - (1 shl C2_SHIFT));
  centerc2 := (minc2 + maxc2) shr 1;

  { For each color in colormap, find:
     1. its minimum squared-distance to any point in the update box
        (zero if color is within update box);
     2. its maximum squared-distance to any point in the update box.
    Both of these can be found by considering only the corners of the box.
    We save the minimum distance for each color in mindist[];
    only the smallest maximum distance is of interest. }

  minmaxdist := long($7FFFFFFF);

  for i := 0 to pred(numcolors) do
  begin
    { We compute the squared-c0-distance term, then add in the other two. }
    x := GETJSAMPLE(cinfo^.colormap^[0]^[i]);
    if (x < minc0) then
    begin
      tdist := (x - minc0) * C0_SCALE;
      min_dist := tdist*tdist;
      tdist := (x - maxc0) * C0_SCALE;
      max_dist := tdist*tdist;
    end
    else
      if (x > maxc0) then
      begin
        tdist := (x - maxc0) * C0_SCALE;
        min_dist := tdist*tdist;
        tdist := (x - minc0) * C0_SCALE;
        max_dist := tdist*tdist;
      end
      else
      begin
        { within cell range so no contribution to min_dist }
        min_dist := 0;
        if (x <= centerc0) then
        begin
          tdist := (x - maxc0) * C0_SCALE;
          max_dist := tdist*tdist;
        end
        else
        begin
          tdist := (x - minc0) * C0_SCALE;
          max_dist := tdist*tdist;
        end;
      end;

    x := GETJSAMPLE(cinfo^.colormap^[1]^[i]);
    if (x < minc1) then
    begin
      tdist := (x - minc1) * C1_SCALE;
      Inc(min_dist, tdist*tdist);
      tdist := (x - maxc1) * C1_SCALE;
      Inc(max_dist, tdist*tdist);
    end
    else
      if (x > maxc1) then
      begin
        tdist := (x - maxc1) * C1_SCALE;
        Inc(min_dist, tdist*tdist);
        tdist := (x - minc1) * C1_SCALE;
        Inc(max_dist, tdist*tdist);
      end
      else
      begin
        { within cell range so no contribution to min_dist }
        if (x <= centerc1) then
        begin
          tdist := (x - maxc1) * C1_SCALE;
          Inc(max_dist, tdist*tdist);
        end
        else
        begin
          tdist := (x - minc1) * C1_SCALE;
          Inc(max_dist, tdist*tdist);
        end
      end;

    x := GETJSAMPLE(cinfo^.colormap^[2]^[i]);
    if (x < minc2) then
    begin
      tdist := (x - minc2) * C2_SCALE;
      Inc(min_dist, tdist*tdist);
      tdist := (x - maxc2) * C2_SCALE;
      Inc(max_dist, tdist*tdist);
    end
    else
      if (x > maxc2) then
      begin
        tdist := (x - maxc2) * C2_SCALE;
        Inc(min_dist, tdist*tdist);
        tdist := (x - minc2) * C2_SCALE;
        Inc(max_dist, tdist*tdist);
      end
      else
      begin
        { within cell range so no contribution to min_dist }
        if (x <= centerc2) then
        begin
          tdist := (x - maxc2) * C2_SCALE;
          Inc(max_dist, tdist*tdist);
        end
        else
        begin
          tdist := (x - minc2) * C2_SCALE;
          Inc(max_dist, tdist*tdist);
        end;
      end;

    mindist[i] := min_dist;     { save away the results }
    if (max_dist < minmaxdist) then
      minmaxdist := max_dist;
  end;

  { Now we know that no cell in the update box is more than minmaxdist
    away from some colormap entry.  Therefore, only colors that are
    within minmaxdist of some part of the box need be considered. }

  ncolors := 0;
  for i := 0 to pred(numcolors) do
  begin
    if (mindist[i] <= minmaxdist) then
    begin
      colorlist[ncolors] := JSAMPLE(i);
      Inc(ncolors);
    end;
  end;
  find_nearby_colors := ncolors;
end;


{LOCAL}
procedure find_best_colors (cinfo : j_decompress_ptr;
                            minc0 : int; minc1 : int; minc2 : int;
                            numcolors : int;
                            var colorlist : array of JSAMPLE;
                            var bestcolor : array of JSAMPLE);
{ Find the closest colormap entry for each cell in the update box,
  given the list of candidate colors prepared by find_nearby_colors.
  Return the indexes of the closest entries in the bestcolor[] array.
  This routine uses Thomas' incremental distance calculation method to
  find the distance from a colormap entry to successive cells in the box. }
const
  { Nominal steps between cell centers ("x" in Thomas article) }
  STEP_C0 = ((1 shl C0_SHIFT) * C0_SCALE);
  STEP_C1 = ((1 shl C1_SHIFT) * C1_SCALE);
  STEP_C2 = ((1 shl C2_SHIFT) * C2_SCALE);
var
  ic0, ic1, ic2 : int;
  i, icolor : int;
  {register} bptr : INT32PTR;     { pointer into bestdist[] array }
  cptr : JSAMPLE_PTR;              { pointer into bestcolor[] array }
  dist0, dist1 : INT32;         { initial distance values }
  {register} dist2 : INT32;     { current distance in inner loop }
  xx0, xx1 : INT32;             { distance increments }
  {register} xx2 : INT32;
  inc0, inc1, inc2 : INT32;     { initial values for increments }
  { This array holds the distance to the nearest-so-far color for each cell }
  bestdist : array[0..BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS-1] of INT32;
begin
  { Initialize best-distance for each cell of the update box }
  for i := BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1 downto 0 do
    bestdist[i] := $7FFFFFFF;

  { For each color selected by find_nearby_colors,
    compute its distance to the center of each cell in the box.
    If that's less than best-so-far, update best distance and color number. }



  for i := 0 to pred(numcolors) do
  begin
    icolor := GETJSAMPLE(colorlist[i]);
    { Compute (square of) distance from minc0/c1/c2 to this color }
    inc0 := (minc0 - GETJSAMPLE(cinfo^.colormap^[0]^[icolor])) * C0_SCALE;
    dist0 := inc0*inc0;
    inc1 := (minc1 - GETJSAMPLE(cinfo^.colormap^[1]^[icolor])) * C1_SCALE;
    Inc(dist0, inc1*inc1);
    inc2 := (minc2 - GETJSAMPLE(cinfo^.colormap^[2]^[icolor])) * C2_SCALE;
    Inc(dist0, inc2*inc2);
    { Form the initial difference increments }
    inc0 := inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
    inc1 := inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
    inc2 := inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
    { Now loop over all cells in box, updating distance per Thomas method }
    bptr := @bestdist[0];
    cptr := @bestcolor[0];
    xx0 := inc0;
    for ic0 := BOX_C0_ELEMS-1 downto 0 do
    begin
      dist1 := dist0;
      xx1 := inc1;
      for ic1 := BOX_C1_ELEMS-1 downto 0 do
      begin
        dist2 := dist1;
        xx2 := inc2;
        for ic2 := BOX_C2_ELEMS-1 downto 0 do
        begin
          if (dist2 < bptr^) then
          begin
            bptr^ := dist2;
            cptr^ := JSAMPLE (icolor);
          end;
          Inc(dist2, xx2);
          Inc(xx2, 2 * STEP_C2 * STEP_C2);
          Inc(bptr);
          Inc(cptr);
        end;
        Inc(dist1, xx1);
        Inc(xx1, 2 * STEP_C1 * STEP_C1);
      end;
      Inc(dist0, xx0);
      Inc(xx0, 2 * STEP_C0 * STEP_C0);
    end;
  end;
end;


{LOCAL}
procedure fill_inverse_cmap (cinfo : j_decompress_ptr;
                             c0 : int; c1 : int; c2 : int);
{ Fill the inverse-colormap entries in the update box that contains }
{ histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but }
{ we can fill as many others as we wish.) }
var
  cquantize : my_cquantize_ptr;
  histogram : hist3d;
  minc0, minc1, minc2 : int;    { lower left corner of update box }
  ic0, ic1, ic2 : int;
  {register} cptr : JSAMPLE_PTR;        { pointer into bestcolor[] array }
  {register} cachep : histptr;  { pointer into main cache array }
  { This array lists the candidate colormap indexes. }
  colorlist : array[0..MAXNUMCOLORS-1] of JSAMPLE;
  numcolors : int;              { number of candidate colors }
  { This array holds the actually closest colormap index for each cell. }
  bestcolor : array[0..BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS-1] of JSAMPLE;
begin
  cquantize := my_cquantize_ptr (cinfo^.cquantize);
  histogram := cquantize^.histogram;

  { Convert cell coordinates to update box ID }
  c0 := c0 shr BOX_C0_LOG;
  c1 := c1 shr BOX_C1_LOG;
  c2 := c2 shr BOX_C2_LOG;

  { Compute true coordinates of update box's origin corner.
    Actually we compute the coordinates of the center of the corner
    histogram cell, which are the lower bounds of the volume we care about.}

  minc0 := (c0 shl BOX_C0_SHIFT) + ((1 shl C0_SHIFT) shr 1);
  minc1 := (c1 shl BOX_C1_SHIFT) + ((1 shl C1_SHIFT) shr 1);
  minc2 := (c2 shl BOX_C2_SHIFT) + ((1 shl C2_SHIFT) shr 1);

  { Determine which colormap entries are close enough to be candidates
    for the nearest entry to some cell in the update box. }

  numcolors := find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);

  { Determine the actually nearest colors. }
  find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
                   bestcolor);

  { Save the best color numbers (plus 1) in the main cache array }
  c0 := c0 shl BOX_C0_LOG;              { convert ID back to base cell indexes }
  c1 := c1 shl BOX_C1_LOG;
  c2 := c2 shl BOX_C2_LOG;
  cptr := @(bestcolor[0]);
  for ic0 := 0 to pred(BOX_C0_ELEMS) do
    for ic1 := 0 to pred(BOX_C1_ELEMS) do
    begin
      cachep := @(histogram^[c0+ic0]^[c1+ic1][c2]);
      for ic2 := 0 to pred(BOX_C2_ELEMS) do
      begin
        cachep^ := histcell (GETJSAMPLE(cptr^) + 1);
        Inc(cachep);
        Inc(cptr);
      end;
    end;
end;


{ Map some rows of pixels to the output colormapped representation. }

{METHODDEF}
procedure pass2_no_dither (cinfo : j_decompress_ptr;
                           input_buf : JSAMPARRAY;
                           output_buf : JSAMPARRAY;
                           num_rows : int); far;
{ This version performs no dithering }
var
  cquantize : my_cquantize_ptr;
  histogram : hist3d;
  {register} inptr : RGBptr;
             outptr : JSAMPLE_PTR;
  {register} cachep : histptr;
  {register} c0, c1, c2 : int;
  row : int;
  col : JDIMENSION;
  width : JDIMENSION;
begin
  cquantize := my_cquantize_ptr (cinfo^.cquantize);
  histogram := cquantize^.histogram;
  width := cinfo^.output_width;

  for row := 0 to pred(num_rows) do
  begin
    inptr := RGBptr(input_buf^[row]);
    outptr := JSAMPLE_PTR(output_buf^[row]);
    for col := pred(width) downto 0 do
    begin
      { get pixel value and index into the cache }
      c0 := GETJSAMPLE(inptr^.r) shr C0_SHIFT;
      c1 := GETJSAMPLE(inptr^.g) shr C1_SHIFT;
      c2 := GETJSAMPLE(inptr^.b) shr C2_SHIFT;
      Inc(inptr);
      cachep := @(histogram^[c0]^[c1][c2]);
      { If we have not seen this color before, find nearest colormap entry }
      { and update the cache }
      if (cachep^ = 0) then
        fill_inverse_cmap(cinfo, c0,c1,c2);
      { Now emit the colormap index for this cell }
      outptr^ := JSAMPLE (cachep^ - 1);
      Inc(outptr);
    end;
  end;
end;


{METHODDEF}
procedure pass2_fs_dither (cinfo : j_decompress_ptr;
                           input_buf : JSAMPARRAY;
                           output_buf : JSAMPARRAY;
                           num_rows : int); far;
{ This version performs Floyd-Steinberg dithering }
var
  cquantize : my_cquantize_ptr;
  histogram : hist3d;
  {register} cur : LOCRGB_FSERROR;      { current error or pixel value }
  belowerr : LOCRGB_FSERROR; { error for pixel below cur }
  bpreverr : LOCRGB_FSERROR; { error for below/prev col }
  prev_errorptr,
  {register} errorptr : RGB_FSERROR_PTR;        { => fserrors[] at column before current }
  inptr : RGBptr;               { => current input pixel }
  outptr : JSAMPLE_PTR;         { => current output pixel }
  cachep : histptr;
  dir : int;                    { +1 or -1 depending on direction }
  row : int;
  col : JDIMENSION;
  width : JDIMENSION;
  range_limit : range_limit_table_ptr;
  error_limit : error_limit_ptr;
  colormap0 : JSAMPROW;
  colormap1 : JSAMPROW;
  colormap2 : JSAMPROW;
  {register} pixcode : int;
  {register} bnexterr, delta : LOCFSERROR;
begin
  cquantize := my_cquantize_ptr (cinfo^.cquantize);
  histogram := cquantize^.histogram;
  width := cinfo^.output_width;
  range_limit := cinfo^.sample_range_limit;
  error_limit := cquantize^.error_limiter;
  colormap0 := cinfo^.colormap^[0];
  colormap1 := cinfo^.colormap^[1];
  colormap2 := cinfo^.colormap^[2];

  for row := 0 to pred(num_rows) do
  begin
    inptr := RGBptr(input_buf^[row]);
    outptr := JSAMPLE_PTR(output_buf^[row]);
    errorptr := RGB_FSERROR_PTR(cquantize^.fserrors); { => entry before first real column }
    if (cquantize^.on_odd_row) then
    begin
      { work right to left in this row }
      Inc(inptr, (width-1));     { so point to rightmost pixel }
      Inc(outptr, width-1);
      dir := -1;
      Inc(errorptr, (width+1)); { => entry after last column }
      cquantize^.on_odd_row := FALSE; { flip for next time }
    end
    else
    begin
      { work left to right in this row }
      dir := 1;
      cquantize^.on_odd_row := TRUE; { flip for next time }
    end;

    { Preset error values: no error propagated to first pixel from left }
    cur.r := 0;
    cur.g := 0;
    cur.b := 0;
    { and no error propagated to row below yet }
    belowerr.r := 0;
    belowerr.g := 0;
    belowerr.b := 0;
    bpreverr.r := 0;
    bpreverr.g := 0;
    bpreverr.b := 0;

    for col := pred(width) downto 0 do
    begin
      prev_errorptr := errorptr;
      Inc(errorptr, dir);       { advance errorptr to current column }

      { curN holds the error propagated from the previous pixel on the
        current line.  Add the error propagated from the previous line
        to form the complete error correction term for this pixel, and
        round the error term (which is expressed * 16) to an integer.
        RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
        for either sign of the error value.
        Note: prev_errorptr points to *previous* column's array entry. }

      { Nomssi Note: Borland Pascal SHR is unsigned }
      cur.r := (cur.r + errorptr^.r + 8) div 16;
      cur.g := (cur.g + errorptr^.g + 8) div 16;
      cur.b := (cur.b + errorptr^.b + 8) div 16;
      { Limit the error using transfer function set by init_error_limit.
        See comments with init_error_limit for rationale. }

      cur.r := error_limit^[cur.r];
      cur.g := error_limit^[cur.g];
      cur.b := error_limit^[cur.b];
      { Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
        The maximum error is +- MAXJSAMPLE (or less with error limiting);
        this sets the required size of the range_limit array. }

      Inc(cur.r, GETJSAMPLE(inptr^.r));
      Inc(cur.g, GETJSAMPLE(inptr^.g));
      Inc(cur.b, GETJSAMPLE(inptr^.b));

      cur.r := GETJSAMPLE(range_limit^[cur.r]);
      cur.g := GETJSAMPLE(range_limit^[cur.g]);
      cur.b := GETJSAMPLE(range_limit^[cur.b]);
      { Index into the cache with adjusted pixel value }
      cachep := @(histogram^[cur.r shr C0_SHIFT]^
                            [cur.g shr C1_SHIFT][cur.b shr C2_SHIFT]);
      { If we have not seen this color before, find nearest colormap }
      { entry and update the cache }
      if (cachep^ = 0) then
        fill_inverse_cmap(cinfo, cur.r shr C0_SHIFT,
                                 cur.g shr C1_SHIFT,
                                 cur.b shr C2_SHIFT);
      { Now emit the colormap index for this cell }

      pixcode := cachep^ - 1;
      outptr^ := JSAMPLE (pixcode);

      { Compute representation error for this pixel }
      Dec(cur.r, GETJSAMPLE(colormap0^[pixcode]));
      Dec(cur.g, GETJSAMPLE(colormap1^[pixcode]));
      Dec(cur.b, GETJSAMPLE(colormap2^[pixcode]));

      { Compute error fractions to be propagated to adjacent pixels.
        Add these into the running sums, and simultaneously shift the
        next-line error sums left by 1 column. }

      bnexterr := cur.r;        { Process component 0 }
      delta := cur.r * 2;
      Inc(cur.r, delta);                { form error * 3 }
      prev_errorptr^.r := FSERROR (bpreverr.r + cur.r);
      Inc(cur.r, delta);                { form error * 5 }
      bpreverr.r := belowerr.r + cur.r;
      belowerr.r := bnexterr;
      Inc(cur.r, delta);                { form error * 7 }
      bnexterr := cur.g;        { Process component 1 }
      delta := cur.g * 2;
      Inc(cur.g, delta);                { form error * 3 }
      prev_errorptr^.g := FSERROR (bpreverr.g + cur.g);
      Inc(cur.g, delta);                { form error * 5 }
      bpreverr.g := belowerr.g + cur.g;
      belowerr.g := bnexterr;
      Inc(cur.g, delta);                { form error * 7 }
      bnexterr := cur.b;        { Process component 2 }
      delta := cur.b * 2;
      Inc(cur.b, delta);                { form error * 3 }
      prev_errorptr^.b := FSERROR (bpreverr.b + cur.b);
      Inc(cur.b, delta);                { form error * 5 }
      bpreverr.b := belowerr.b + cur.b;
      belowerr.b := bnexterr;
      Inc(cur.b, delta);                { form error * 7 }

      { At this point curN contains the 7/16 error value to be propagated
        to the next pixel on the current line, and all the errors for the
        next line have been shifted over.  We are therefore ready to move on.}

      Inc(inptr, dir);          { Advance pixel pointers to next column }
      Inc(outptr, dir);
    end;
    { Post-loop cleanup: we must unload the final error values into the
      final fserrors[] entry.  Note we need not unload belowerrN because
      it is for the dummy column before or after the actual array. }

    errorptr^.r := FSERROR (bpreverr.r); { unload prev errs into array }
    errorptr^.g := FSERROR (bpreverr.g);
    errorptr^.b := FSERROR (bpreverr.b);
  end;
end;


{ Initialize the error-limiting transfer function (lookup table).
  The raw F-S error computation can potentially compute error values of up to
  +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
  much less, otherwise obviously wrong pixels will be created.  (Typical
  effects include weird fringes at color-area boundaries, isolated bright
  pixels in a dark area, etc.)  The standard advice for avoiding this problem
  is to ensure that the "corners" of the color cube are allocated as output
  colors; then repeated errors in the same direction cannot cause cascading
  error buildup.  However, that only prevents the error from getting
  completely out of hand; Aaron Giles reports that error limiting improves
  the results even with corner colors allocated.
  A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
  well, but the smoother transfer function used below is even better.  Thanks
  to Aaron Giles for this idea. }

{LOCAL}
procedure init_error_limit (cinfo : j_decompress_ptr);
const
  STEPSIZE = ((MAXJSAMPLE+1) div 16);
{ Allocate and fill in the error_limiter table }
var
  cquantize : my_cquantize_ptr;
  table : error_limit_ptr;
  inp, out : int;
begin
  cquantize := my_cquantize_ptr (cinfo^.cquantize);
  table := error_limit_ptr (cinfo^.mem^.alloc_small
    (j_common_ptr (cinfo), JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)));
  { not needed: Inc(table, MAXJSAMPLE);
                so can index -MAXJSAMPLE .. +MAXJSAMPLE }
  cquantize^.error_limiter := table;
  { Map errors 1:1 up to +- MAXJSAMPLE/16 }
  out := 0;
  for inp := 0 to pred(STEPSIZE) do
  begin
    table^[inp] := out;
    table^[-inp] := -out;
    Inc(out);
  end;
  { Map errors 1:2 up to +- 3*MAXJSAMPLE/16 }
  inp := STEPSIZE;       { Nomssi: avoid problems with Delphi2 optimizer }
  while (inp < STEPSIZE*3) do
  begin
    table^[inp] := out;
    table^[-inp] := -out;
    Inc(inp);
    if Odd(inp) then
      Inc(out);
  end;
  { Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) }
  inp := STEPSIZE*3;     { Nomssi: avoid problems with Delphi 2 optimizer }
  while inp <= MAXJSAMPLE do
  begin
    table^[inp] := out;
    table^[-inp] := -out;
    Inc(inp);
  end;
end;

{ Finish up at the end of each pass. }

{METHODDEF}
procedure finish_pass1 (cinfo : j_decompress_ptr); far;
var
  cquantize : my_cquantize_ptr;
begin
  cquantize := my_cquantize_ptr (cinfo^.cquantize);

  { Select the representative colors and fill in cinfo^.colormap }
  cinfo^.colormap := cquantize^.sv_colormap;
  select_colors(cinfo, cquantize^.desired);
  { Force next pass to zero the color index table }
  cquantize^.needs_zeroed := TRUE;
end;


{METHODDEF}
procedure finish_pass2 (cinfo : j_decompress_ptr); far;
begin
  { no work }
end;


{ Initialize for each processing pass. }

{METHODDEF}
procedure start_pass_2_quant (cinfo : j_decompress_ptr;
                              is_pre_scan : boolean); far;
var
  cquantize : my_cquantize_ptr;
  histogram : hist3d;
  i : int;
var
  arraysize : size_t;
begin
  cquantize := my_cquantize_ptr (cinfo^.cquantize);
  histogram := cquantize^.histogram;
  { Only F-S dithering or no dithering is supported. }
  { If user asks for ordered dither, give him F-S. }
  if (cinfo^.dither_mode <> JDITHER_NONE) then
    cinfo^.dither_mode := JDITHER_FS;

  if (is_pre_scan) then
  begin
    { Set up method pointers }
    cquantize^.pub.color_quantize := prescan_quantize;
    cquantize^.pub.finish_pass := finish_pass1;
    cquantize^.needs_zeroed := TRUE; { Always zero histogram }
  end
  else
  begin
    { Set up method pointers }
    if (cinfo^.dither_mode = JDITHER_FS) then
      cquantize^.pub.color_quantize := pass2_fs_dither
    else
      cquantize^.pub.color_quantize := pass2_no_dither;
    cquantize^.pub.finish_pass := finish_pass2;

    { Make sure color count is acceptable }
    i := cinfo^.actual_number_of_colors;
    if (i < 1) then
      ERREXIT1(j_common_ptr(cinfo), JERR_QUANT_FEW_COLORS, 1);
    if (i > MAXNUMCOLORS) then
      ERREXIT1(j_common_ptr(cinfo), JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);

    if (cinfo^.dither_mode = JDITHER_FS) then
    begin
      arraysize := size_t ((cinfo^.output_width + 2) *
                                   (3 * SIZEOF(FSERROR)));
      { Allocate Floyd-Steinberg workspace if we didn't already. }
      if (cquantize^.fserrors = NIL) then
        cquantize^.fserrors := FS_ERROR_FIELD_PTR (cinfo^.mem^.alloc_large
          (j_common_ptr(cinfo), JPOOL_IMAGE, arraysize));
      { Initialize the propagated errors to zero. }
      jzero_far(cquantize^.fserrors, arraysize);
      { Make the error-limit table if we didn't already. }
      if (cquantize^.error_limiter = NIL) then
        init_error_limit(cinfo);
      cquantize^.on_odd_row := FALSE;
    end;

  end;
  { Zero the histogram or inverse color map, if necessary }
  if (cquantize^.needs_zeroed) then
  begin
    for i := 0 to pred(HIST_C0_ELEMS) do
    begin
      jzero_far( histogram^[i],
                HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
    end;
    cquantize^.needs_zeroed := FALSE;
  end;
end;


{ Switch to a new external colormap between output passes. }

{METHODDEF}
procedure new_color_map_2_quant (cinfo : j_decompress_ptr); far;
var
  cquantize : my_cquantize_ptr;
begin
  cquantize := my_cquantize_ptr (cinfo^.cquantize);

  { Reset the inverse color map }
  cquantize^.needs_zeroed := TRUE;
end;


{ Module initialization routine for 2-pass color quantization. }


{GLOBAL}
procedure jinit_2pass_quantizer (cinfo : j_decompress_ptr);
var
  cquantize : my_cquantize_ptr;
  i : int;
var
  desired : int;
begin
  cquantize := my_cquantize_ptr(
    cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
                                SIZEOF(my_cquantizer)));
  cinfo^.cquantize := jpeg_color_quantizer_ptr(cquantize);
  cquantize^.pub.start_pass := start_pass_2_quant;
  cquantize^.pub.new_color_map := new_color_map_2_quant;
  cquantize^.fserrors := NIL;   { flag optional arrays not allocated }
  cquantize^.error_limiter := NIL;

  { Make sure jdmaster didn't give me a case I can't handle }
  if (cinfo^.out_color_components <> 3) then
    ERREXIT(j_common_ptr(cinfo), JERR_NOTIMPL);

  { Allocate the histogram/inverse colormap storage }
  cquantize^.histogram := hist3d (cinfo^.mem^.alloc_small
    (j_common_ptr (cinfo), JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)));
  for i := 0 to pred(HIST_C0_ELEMS) do
  begin
    cquantize^.histogram^[i] := hist2d (cinfo^.mem^.alloc_large
      (j_common_ptr (cinfo), JPOOL_IMAGE,
       HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)));
  end;
  cquantize^.needs_zeroed := TRUE; { histogram is garbage now }

  { Allocate storage for the completed colormap, if required.
    We do this now since it is FAR storage and may affect
    the memory manager's space calculations. }

  if (cinfo^.enable_2pass_quant) then
  begin
    { Make sure color count is acceptable }
    desired := cinfo^.desired_number_of_colors;
    { Lower bound on # of colors ... somewhat arbitrary as long as > 0 }
    if (desired < 8) then
      ERREXIT1(j_common_ptr (cinfo), JERR_QUANT_FEW_COLORS, 8);
    { Make sure colormap indexes can be represented by JSAMPLEs }
    if (desired > MAXNUMCOLORS) then
      ERREXIT1(j_common_ptr (cinfo), JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
    cquantize^.sv_colormap := cinfo^.mem^.alloc_sarray
      (j_common_ptr (cinfo),JPOOL_IMAGE, JDIMENSION(desired), JDIMENSION(3));
    cquantize^.desired := desired;
  end
  else
    cquantize^.sv_colormap := NIL;

  { Only F-S dithering or no dithering is supported. }
  { If user asks for ordered dither, give him F-S. }
  if (cinfo^.dither_mode <> JDITHER_NONE) then
    cinfo^.dither_mode := JDITHER_FS;

  { Allocate Floyd-Steinberg workspace if necessary.
    This isn't really needed until pass 2, but again it is FAR storage.
    Although we will cope with a later change in dither_mode,
    we do not promise to honor max_memory_to_use if dither_mode changes. }

  if (cinfo^.dither_mode = JDITHER_FS) then
  begin
    cquantize^.fserrors := FS_ERROR_FIELD_PTR (cinfo^.mem^.alloc_large
      (j_common_ptr(cinfo), JPOOL_IMAGE,
       size_t ((cinfo^.output_width + 2) * (3 * SIZEOF(FSERROR))) ) );
    { Might as well create the error-limiting table too. }
    init_error_limit(cinfo);
  end;
end;

end. { QUANT_2PASS_SUPPORTED }