summaryrefslogtreecommitdiff
path: root/FreeRTOS/Demo/CORTEX_MPU_M33F_NXP_LPC55S69_MCUXpresso/NXP_Code/drivers/fsl_usart.c
blob: dd35da6b49c7584c80bd6b1b8be707cccfa23ba3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
/*
 * Copyright (c) 2016, Freescale Semiconductor, Inc.
 * Copyright 2016-2019 NXP
 * All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include "fsl_usart.h"
#include "fsl_device_registers.h"
#include "fsl_flexcomm.h"

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.flexcomm_usart"
#endif

/*!
 * @brief Used for conversion from `flexcomm_usart_irq_handler_t` to `flexcomm_irq_handler_t`
 */
typedef union usart_to_flexcomm
{
    flexcomm_usart_irq_handler_t usart_master_handler;
    flexcomm_irq_handler_t flexcomm_handler;
} usart_to_flexcomm_t;

enum
{
    kUSART_TxIdle, /* TX idle. */
    kUSART_TxBusy, /* TX busy. */
    kUSART_RxIdle, /* RX idle. */
    kUSART_RxBusy  /* RX busy. */
};

/*******************************************************************************
 * Variables
 ******************************************************************************/

/*! @brief IRQ name array */
static const IRQn_Type s_usartIRQ[] = USART_IRQS;

/*! @brief Array to map USART instance number to base address. */
static const uint32_t s_usartBaseAddrs[FSL_FEATURE_SOC_USART_COUNT] = USART_BASE_ADDRS;

/*******************************************************************************
 * Code
 ******************************************************************************/

/* Get the index corresponding to the USART */
/*! brief Returns instance number for USART peripheral base address. */
uint32_t USART_GetInstance(USART_Type *base)
{
    uint32_t i;

    for (i = 0; i < (uint32_t)FSL_FEATURE_SOC_USART_COUNT; i++)
    {
        if ((uint32_t)base == s_usartBaseAddrs[i])
        {
            break;
        }
    }

    assert(i < FSL_FEATURE_SOC_USART_COUNT);
    return i;
}

/*!
 * brief Get the length of received data in RX ring buffer.
 *
 * param handle USART handle pointer.
 * return Length of received data in RX ring buffer.
 */
size_t USART_TransferGetRxRingBufferLength(usart_handle_t *handle)
{
    size_t size;

    /* Check arguments */
    assert(NULL != handle);
    uint16_t rxRingBufferHead = handle->rxRingBufferHead;
    uint16_t rxRingBufferTail = handle->rxRingBufferTail;

    if (rxRingBufferTail > rxRingBufferHead)
    {
        size = (size_t)rxRingBufferHead + handle->rxRingBufferSize - (size_t)rxRingBufferTail;
    }
    else
    {
        size = (size_t)rxRingBufferHead - (size_t)rxRingBufferTail;
    }
    return size;
}

static bool USART_TransferIsRxRingBufferFull(usart_handle_t *handle)
{
    bool full;

    /* Check arguments */
    assert(NULL != handle);

    if (USART_TransferGetRxRingBufferLength(handle) == (handle->rxRingBufferSize - 1U))
    {
        full = true;
    }
    else
    {
        full = false;
    }
    return full;
}

/*!
 * brief Sets up the RX ring buffer.
 *
 * This function sets up the RX ring buffer to a specific USART handle.
 *
 * When the RX ring buffer is used, data received are stored into the ring buffer even when the
 * user doesn't call the USART_TransferReceiveNonBlocking() API. If there is already data received
 * in the ring buffer, the user can get the received data from the ring buffer directly.
 *
 * note When using the RX ring buffer, one byte is reserved for internal use. In other
 * words, if p ringBufferSize is 32, then only 31 bytes are used for saving data.
 *
 * param base USART peripheral base address.
 * param handle USART handle pointer.
 * param ringBuffer Start address of the ring buffer for background receiving. Pass NULL to disable the ring buffer.
 * param ringBufferSize size of the ring buffer.
 */
void USART_TransferStartRingBuffer(USART_Type *base, usart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize)
{
    /* Check arguments */
    assert(NULL != base);
    assert(NULL != handle);
    assert(NULL != ringBuffer);

    /* Setup the ringbuffer address */
    handle->rxRingBuffer     = ringBuffer;
    handle->rxRingBufferSize = ringBufferSize;
    handle->rxRingBufferHead = 0U;
    handle->rxRingBufferTail = 0U;
    /* ring buffer is ready we can start receiving data */
    base->FIFOINTENSET |= USART_FIFOINTENSET_RXLVL_MASK | USART_FIFOINTENSET_RXERR_MASK;
}

/*!
 * brief Aborts the background transfer and uninstalls the ring buffer.
 *
 * This function aborts the background transfer and uninstalls the ring buffer.
 *
 * param base USART peripheral base address.
 * param handle USART handle pointer.
 */
void USART_TransferStopRingBuffer(USART_Type *base, usart_handle_t *handle)
{
    /* Check arguments */
    assert(NULL != base);
    assert(NULL != handle);

    if (handle->rxState == (uint8_t)kUSART_RxIdle)
    {
        base->FIFOINTENCLR = USART_FIFOINTENCLR_RXLVL_MASK | USART_FIFOINTENCLR_RXERR_MASK;
    }
    handle->rxRingBuffer     = NULL;
    handle->rxRingBufferSize = 0U;
    handle->rxRingBufferHead = 0U;
    handle->rxRingBufferTail = 0U;
}

/*!
 * brief Initializes a USART instance with user configuration structure and peripheral clock.
 *
 * This function configures the USART module with the user-defined settings. The user can configure the configuration
 * structure and also get the default configuration by using the USART_GetDefaultConfig() function.
 * Example below shows how to use this API to configure USART.
 * code
 *  usart_config_t usartConfig;
 *  usartConfig.baudRate_Bps = 115200U;
 *  usartConfig.parityMode = kUSART_ParityDisabled;
 *  usartConfig.stopBitCount = kUSART_OneStopBit;
 *  USART_Init(USART1, &usartConfig, 20000000U);
 * endcode
 *
 * param base USART peripheral base address.
 * param config Pointer to user-defined configuration structure.
 * param srcClock_Hz USART clock source frequency in HZ.
 * retval kStatus_USART_BaudrateNotSupport Baudrate is not support in current clock source.
 * retval kStatus_InvalidArgument USART base address is not valid
 * retval kStatus_Success Status USART initialize succeed
 */
status_t USART_Init(USART_Type *base, const usart_config_t *config, uint32_t srcClock_Hz)
{
    int result;

    /* check arguments */
    assert(!((NULL == base) || (NULL == config) || (0U == srcClock_Hz)));
    if ((NULL == base) || (NULL == config) || (0U == srcClock_Hz))
    {
        return kStatus_InvalidArgument;
    }

    /* initialize flexcomm to USART mode */
    result = FLEXCOMM_Init(base, FLEXCOMM_PERIPH_USART);
    if (kStatus_Success != result)
    {
        return result;
    }

    if (config->enableTx)
    {
        /* empty and enable txFIFO */
        base->FIFOCFG |= USART_FIFOCFG_EMPTYTX_MASK | USART_FIFOCFG_ENABLETX_MASK;
        /* setup trigger level */
        base->FIFOTRIG &= ~(USART_FIFOTRIG_TXLVL_MASK);
        base->FIFOTRIG |= USART_FIFOTRIG_TXLVL(config->txWatermark);
        /* enable trigger interrupt */
        base->FIFOTRIG |= USART_FIFOTRIG_TXLVLENA_MASK;
    }

    /* empty and enable rxFIFO */
    if (config->enableRx)
    {
        base->FIFOCFG |= USART_FIFOCFG_EMPTYRX_MASK | USART_FIFOCFG_ENABLERX_MASK;
        /* setup trigger level */
        base->FIFOTRIG &= ~(USART_FIFOTRIG_RXLVL_MASK);
        base->FIFOTRIG |= USART_FIFOTRIG_RXLVL(config->rxWatermark);
        /* enable trigger interrupt */
        base->FIFOTRIG |= USART_FIFOTRIG_RXLVLENA_MASK;
    }
    /* setup configuration and enable USART */
    base->CFG = USART_CFG_PARITYSEL(config->parityMode) | USART_CFG_STOPLEN(config->stopBitCount) |
                USART_CFG_DATALEN(config->bitCountPerChar) | USART_CFG_LOOP(config->loopback) |
                USART_CFG_SYNCEN((uint32_t)config->syncMode >> 1) | USART_CFG_SYNCMST((uint8_t)config->syncMode) |
                USART_CFG_CLKPOL(config->clockPolarity) | USART_CFG_ENABLE_MASK;

    /* Setup baudrate */
    result = USART_SetBaudRate(base, config->baudRate_Bps, srcClock_Hz);
    if (kStatus_Success != result)
    {
        return result;
    }
    /* Setting continuous Clock configuration. used for synchronous mode. */
    USART_EnableContinuousSCLK(base, config->enableContinuousSCLK);

    return kStatus_Success;
}

/*!
 * brief Deinitializes a USART instance.
 *
 * This function waits for TX complete, disables TX and RX, and disables the USART clock.
 *
 * param base USART peripheral base address.
 */
void USART_Deinit(USART_Type *base)
{
    /* Check arguments */
    assert(NULL != base);
    while (0U == (base->STAT & USART_STAT_TXIDLE_MASK))
    {
    }
    /* Disable interrupts, disable dma requests, disable peripheral */
    base->FIFOINTENCLR = USART_FIFOINTENCLR_TXERR_MASK | USART_FIFOINTENCLR_RXERR_MASK | USART_FIFOINTENCLR_TXLVL_MASK |
                         USART_FIFOINTENCLR_RXLVL_MASK;
    base->FIFOCFG &= ~(USART_FIFOCFG_DMATX_MASK | USART_FIFOCFG_DMARX_MASK);
    base->CFG &= ~(USART_CFG_ENABLE_MASK);
}

/*!
 * brief Gets the default configuration structure.
 *
 * This function initializes the USART configuration structure to a default value. The default
 * values are:
 *   usartConfig->baudRate_Bps = 115200U;
 *   usartConfig->parityMode = kUSART_ParityDisabled;
 *   usartConfig->stopBitCount = kUSART_OneStopBit;
 *   usartConfig->bitCountPerChar = kUSART_8BitsPerChar;
 *   usartConfig->loopback = false;
 *   usartConfig->enableTx = false;
 *   usartConfig->enableRx = false;
 *
 * param config Pointer to configuration structure.
 */
void USART_GetDefaultConfig(usart_config_t *config)
{
    /* Check arguments */
    assert(NULL != config);

    /* Initializes the configure structure to zero. */
    (void)memset(config, 0, sizeof(*config));

    /* Set always all members ! */
    config->baudRate_Bps         = 115200U;
    config->parityMode           = kUSART_ParityDisabled;
    config->stopBitCount         = kUSART_OneStopBit;
    config->bitCountPerChar      = kUSART_8BitsPerChar;
    config->loopback             = false;
    config->enableRx             = false;
    config->enableTx             = false;
    config->txWatermark          = kUSART_TxFifo0;
    config->rxWatermark          = kUSART_RxFifo1;
    config->syncMode             = kUSART_SyncModeDisabled;
    config->enableContinuousSCLK = false;
    config->clockPolarity        = kUSART_RxSampleOnFallingEdge;
}

/*!
 * brief Sets the USART instance baud rate.
 *
 * This function configures the USART module baud rate. This function is used to update
 * the USART module baud rate after the USART module is initialized by the USART_Init.
 * code
 *  USART_SetBaudRate(USART1, 115200U, 20000000U);
 * endcode
 *
 * param base USART peripheral base address.
 * param baudrate_Bps USART baudrate to be set.
 * param srcClock_Hz USART clock source frequency in HZ.
 * retval kStatus_USART_BaudrateNotSupport Baudrate is not support in current clock source.
 * retval kStatus_Success Set baudrate succeed.
 * retval kStatus_InvalidArgument One or more arguments are invalid.
 */
status_t USART_SetBaudRate(USART_Type *base, uint32_t baudrate_Bps, uint32_t srcClock_Hz)
{
    uint32_t best_diff = (uint32_t)-1, best_osrval = 0xf, best_brgval = (uint32_t)-1;
    uint32_t osrval, brgval, diff, baudrate;

    /* check arguments */
    assert(!((NULL == base) || (0 == baudrate_Bps) || (0 == srcClock_Hz)));
    if ((NULL == base) || (0U == baudrate_Bps) || (0U == srcClock_Hz))
    {
        return kStatus_InvalidArgument;
    }

    /* If synchronous master mode is enabled, only configure the BRG value. */
    if ((base->CFG & USART_CFG_SYNCEN_MASK) != 0U)
    {
        if ((base->CFG & USART_CFG_SYNCMST_MASK) != 0U)
        {
            brgval    = srcClock_Hz / baudrate_Bps;
            base->BRG = brgval - 1U;
        }
    }
    else
    {
        /*
         * Smaller values of OSR can make the sampling position within a data bit less accurate and may
         * potentially cause more noise errors or incorrect data.
         */
        for (osrval = best_osrval; osrval >= 8U; osrval--)
        {
            brgval = (((srcClock_Hz * 10U) / ((osrval + 1U) * baudrate_Bps)) - 5U) / 10U;
            if (brgval > 0xFFFFU)
            {
                continue;
            }
            baudrate = srcClock_Hz / ((osrval + 1U) * (brgval + 1U));
            diff     = baudrate_Bps < baudrate ? baudrate - baudrate_Bps : baudrate_Bps - baudrate;
            if (diff < best_diff)
            {
                best_diff   = diff;
                best_osrval = osrval;
                best_brgval = brgval;
            }
        }

        /* value over range */
        if (best_brgval > 0xFFFFU)
        {
            return kStatus_USART_BaudrateNotSupport;
        }

        base->OSR = best_osrval;
        base->BRG = best_brgval;
    }

    return kStatus_Success;
}

/*!
 * brief Writes to the TX register using a blocking method.
 *
 * This function polls the TX register, waits for the TX register to be empty or for the TX FIFO
 * to have room and writes data to the TX buffer.
 *
 * param base USART peripheral base address.
 * param data Start address of the data to write.
 * param length Size of the data to write.
 */
void USART_WriteBlocking(USART_Type *base, const uint8_t *data, size_t length)
{
    /* Check arguments */
    assert(!((NULL == base) || (NULL == data)));
    if ((NULL == base) || (NULL == data))
    {
        return;
    }
    /* Check whether txFIFO is enabled */
    if (0U == (base->FIFOCFG & USART_FIFOCFG_ENABLETX_MASK))
    {
        return;
    }
    for (; length > 0U; length--)
    {
        /* Loop until txFIFO get some space for new data */
        while (0U == (base->FIFOSTAT & USART_FIFOSTAT_TXNOTFULL_MASK))
        {
        }
        base->FIFOWR = *data;
        data++;
    }
    /* Wait to finish transfer */
    while (0U == (base->STAT & USART_STAT_TXIDLE_MASK))
    {
    }
}

/*!
 * brief Read RX data register using a blocking method.
 *
 * This function polls the RX register, waits for the RX register to be full or for RX FIFO to
 * have data and read data from the TX register.
 *
 * param base USART peripheral base address.
 * param data Start address of the buffer to store the received data.
 * param length Size of the buffer.
 * retval kStatus_USART_FramingError Receiver overrun happened while receiving data.
 * retval kStatus_USART_ParityError Noise error happened while receiving data.
 * retval kStatus_USART_NoiseError Framing error happened while receiving data.
 * retval kStatus_USART_RxError Overflow or underflow rxFIFO happened.
 * retval kStatus_Success Successfully received all data.
 */
status_t USART_ReadBlocking(USART_Type *base, uint8_t *data, size_t length)
{
    uint32_t statusFlag;
    status_t status = kStatus_Success;

    /* check arguments */
    assert(!((NULL == base) || (NULL == data)));
    if ((NULL == base) || (NULL == data))
    {
        return kStatus_InvalidArgument;
    }

    /* Check whether rxFIFO is enabled */
    if ((base->FIFOCFG & USART_FIFOCFG_ENABLERX_MASK) == 0U)
    {
        return kStatus_Fail;
    }
    for (; length > 0U; length--)
    {
        /* loop until rxFIFO have some data to read */
        while ((base->FIFOSTAT & USART_FIFOSTAT_RXNOTEMPTY_MASK) == 0U)
        {
        }
        /* check rxFIFO statusFlag */
        if ((base->FIFOSTAT & USART_FIFOSTAT_RXERR_MASK) != 0U)
        {
            base->FIFOCFG |= USART_FIFOCFG_EMPTYRX_MASK;
            base->FIFOSTAT |= USART_FIFOSTAT_RXERR_MASK;
            status = kStatus_USART_RxError;
            break;
        }
        /* check receive statusFlag */
        statusFlag = base->STAT;
        /* Clear all status flags */
        base->STAT |= statusFlag;
        if ((statusFlag & USART_STAT_PARITYERRINT_MASK) != 0U)
        {
            status = kStatus_USART_ParityError;
        }
        if ((statusFlag & USART_STAT_FRAMERRINT_MASK) != 0U)
        {
            status = kStatus_USART_FramingError;
        }
        if ((statusFlag & USART_STAT_RXNOISEINT_MASK) != 0U)
        {
            status = kStatus_USART_NoiseError;
        }

        if (kStatus_Success == status)
        {
            *data = (uint8_t)base->FIFORD;
            data++;
        }
        else
        {
            break;
        }
    }
    return status;
}

/*!
 * brief Initializes the USART handle.
 *
 * This function initializes the USART handle which can be used for other USART
 * transactional APIs. Usually, for a specified USART instance,
 * call this API once to get the initialized handle.
 *
 * param base USART peripheral base address.
 * param handle USART handle pointer.
 * param callback The callback function.
 * param userData The parameter of the callback function.
 */
status_t USART_TransferCreateHandle(USART_Type *base,
                                    usart_handle_t *handle,
                                    usart_transfer_callback_t callback,
                                    void *userData)
{
    /* Check 'base' */
    assert(!((NULL == base) || (NULL == handle)));

    uint32_t instance = 0;
    usart_to_flexcomm_t handler;
    handler.usart_master_handler = USART_TransferHandleIRQ;

    if ((NULL == base) || (NULL == handle))
    {
        return kStatus_InvalidArgument;
    }

    instance = USART_GetInstance(base);

    (void)memset(handle, 0, sizeof(*handle));
    /* Set the TX/RX state. */
    handle->rxState = (uint8_t)kUSART_RxIdle;
    handle->txState = (uint8_t)kUSART_TxIdle;
    /* Set the callback and user data. */
    handle->callback    = callback;
    handle->userData    = userData;
    handle->rxWatermark = (uint8_t)USART_FIFOTRIG_RXLVL_GET(base);
    handle->txWatermark = (uint8_t)USART_FIFOTRIG_TXLVL_GET(base);

    FLEXCOMM_SetIRQHandler(base, handler.flexcomm_handler, handle);

    /* Enable interrupt in NVIC. */
    (void)EnableIRQ(s_usartIRQ[instance]);

    return kStatus_Success;
}

/*!
 * brief Transmits a buffer of data using the interrupt method.
 *
 * This function sends data using an interrupt method. This is a non-blocking function, which
 * returns directly without waiting for all data to be written to the TX register. When
 * all data is written to the TX register in the IRQ handler, the USART driver calls the callback
 * function and passes the ref kStatus_USART_TxIdle as status parameter.
 *
 * note The kStatus_USART_TxIdle is passed to the upper layer when all data is written
 * to the TX register. However it does not ensure that all data are sent out. Before disabling the TX,
 * check the kUSART_TransmissionCompleteFlag to ensure that the TX is finished.
 *
 * param base USART peripheral base address.
 * param handle USART handle pointer.
 * param xfer USART transfer structure. See  #usart_transfer_t.
 * retval kStatus_Success Successfully start the data transmission.
 * retval kStatus_USART_TxBusy Previous transmission still not finished, data not all written to TX register yet.
 * retval kStatus_InvalidArgument Invalid argument.
 */
status_t USART_TransferSendNonBlocking(USART_Type *base, usart_handle_t *handle, usart_transfer_t *xfer)
{
    /* Check arguments */
    assert(!((NULL == base) || (NULL == handle) || (NULL == xfer)));
    if ((NULL == base) || (NULL == handle) || (NULL == xfer))
    {
        return kStatus_InvalidArgument;
    }
    /* Check xfer members */
    assert(!((0 == xfer->dataSize) || (NULL == xfer->data)));
    if ((0U == xfer->dataSize) || (NULL == xfer->data))
    {
        return kStatus_InvalidArgument;
    }

    /* Return error if current TX busy. */
    if ((uint8_t)kUSART_TxBusy == handle->txState)
    {
        return kStatus_USART_TxBusy;
    }
    else
    {
        handle->txData        = xfer->data;
        handle->txDataSize    = xfer->dataSize;
        handle->txDataSizeAll = xfer->dataSize;
        handle->txState       = (uint8_t)kUSART_TxBusy;
        /* Enable transmiter interrupt. */
        base->FIFOINTENSET |= USART_FIFOINTENSET_TXLVL_MASK;
    }
    return kStatus_Success;
}

/*!
 * brief Aborts the interrupt-driven data transmit.
 *
 * This function aborts the interrupt driven data sending. The user can get the remainBtyes to find out
 * how many bytes are still not sent out.
 *
 * param base USART peripheral base address.
 * param handle USART handle pointer.
 */
void USART_TransferAbortSend(USART_Type *base, usart_handle_t *handle)
{
    assert(NULL != handle);

    /* Disable interrupts */
    USART_DisableInterrupts(base, (uint32_t)kUSART_TxLevelInterruptEnable);
    /* Empty txFIFO */
    base->FIFOCFG |= USART_FIFOCFG_EMPTYTX_MASK;

    handle->txDataSize = 0U;
    handle->txState    = (uint8_t)kUSART_TxIdle;
}

/*!
 * brief Get the number of bytes that have been written to USART TX register.
 *
 * This function gets the number of bytes that have been written to USART TX
 * register by interrupt method.
 *
 * param base USART peripheral base address.
 * param handle USART handle pointer.
 * param count Send bytes count.
 * retval kStatus_NoTransferInProgress No send in progress.
 * retval kStatus_InvalidArgument Parameter is invalid.
 * retval kStatus_Success Get successfully through the parameter \p count;
 */
status_t USART_TransferGetSendCount(USART_Type *base, usart_handle_t *handle, uint32_t *count)
{
    assert(NULL != handle);
    assert(NULL != count);

    if ((uint8_t)kUSART_TxIdle == handle->txState)
    {
        return kStatus_NoTransferInProgress;
    }

    *count = handle->txDataSizeAll - handle->txDataSize;

    return kStatus_Success;
}

/*!
 * brief Receives a buffer of data using an interrupt method.
 *
 * This function receives data using an interrupt method. This is a non-blocking function, which
 *  returns without waiting for all data to be received.
 * If the RX ring buffer is used and not empty, the data in the ring buffer is copied and
 * the parameter p receivedBytes shows how many bytes are copied from the ring buffer.
 * After copying, if the data in the ring buffer is not enough to read, the receive
 * request is saved by the USART driver. When the new data arrives, the receive request
 * is serviced first. When all data is received, the USART driver notifies the upper layer
 * through a callback function and passes the status parameter ref kStatus_USART_RxIdle.
 * For example, the upper layer needs 10 bytes but there are only 5 bytes in the ring buffer.
 * The 5 bytes are copied to the xfer->data and this function returns with the
 * parameter p receivedBytes set to 5. For the left 5 bytes, newly arrived data is
 * saved from the xfer->data[5]. When 5 bytes are received, the USART driver notifies the upper layer.
 * If the RX ring buffer is not enabled, this function enables the RX and RX interrupt
 * to receive data to the xfer->data. When all data is received, the upper layer is notified.
 *
 * param base USART peripheral base address.
 * param handle USART handle pointer.
 * param xfer USART transfer structure, see #usart_transfer_t.
 * param receivedBytes Bytes received from the ring buffer directly.
 * retval kStatus_Success Successfully queue the transfer into transmit queue.
 * retval kStatus_USART_RxBusy Previous receive request is not finished.
 * retval kStatus_InvalidArgument Invalid argument.
 */
status_t USART_TransferReceiveNonBlocking(USART_Type *base,
                                          usart_handle_t *handle,
                                          usart_transfer_t *xfer,
                                          size_t *receivedBytes)
{
    uint32_t i;
    /* How many bytes to copy from ring buffer to user memory. */
    size_t bytesToCopy = 0U;
    /* How many bytes to receive. */
    size_t bytesToReceive;
    /* How many bytes currently have received. */
    size_t bytesCurrentReceived;
    uint32_t regPrimask = 0U;

    /* Check arguments */
    assert(!((NULL == base) || (NULL == handle) || (NULL == xfer)));
    if ((NULL == base) || (NULL == handle) || (NULL == xfer))
    {
        return kStatus_InvalidArgument;
    }
    /* Check xfer members */
    assert(!((0 == xfer->dataSize) || (NULL == xfer->data)));
    if ((0U == xfer->dataSize) || (NULL == xfer->data))
    {
        return kStatus_InvalidArgument;
    }

    /* How to get data:
       1. If RX ring buffer is not enabled, then save xfer->data and xfer->dataSize
          to uart handle, enable interrupt to store received data to xfer->data. When
          all data received, trigger callback.
       2. If RX ring buffer is enabled and not empty, get data from ring buffer first.
          If there are enough data in ring buffer, copy them to xfer->data and return.
          If there are not enough data in ring buffer, copy all of them to xfer->data,
          save the xfer->data remained empty space to uart handle, receive data
          to this empty space and trigger callback when finished. */
    if ((uint8_t)kUSART_RxBusy == handle->rxState)
    {
        return kStatus_USART_RxBusy;
    }
    else
    {
        bytesToReceive       = xfer->dataSize;
        bytesCurrentReceived = 0U;
        /* If RX ring buffer is used. */
        if (handle->rxRingBuffer != NULL)
        {
            /* Disable IRQ, protect ring buffer. */
            regPrimask = DisableGlobalIRQ();
            /* How many bytes in RX ring buffer currently. */
            bytesToCopy = USART_TransferGetRxRingBufferLength(handle);
            if (bytesToCopy != 0U)
            {
                bytesToCopy = MIN(bytesToReceive, bytesToCopy);
                bytesToReceive -= bytesToCopy;
                /* Copy data from ring buffer to user memory. */
                for (i = 0U; i < bytesToCopy; i++)
                {
                    xfer->data[bytesCurrentReceived++] = handle->rxRingBuffer[handle->rxRingBufferTail];
                    /* Wrap to 0. Not use modulo (%) because it might be large and slow. */
                    if ((size_t)handle->rxRingBufferTail + 1U == handle->rxRingBufferSize)
                    {
                        handle->rxRingBufferTail = 0U;
                    }
                    else
                    {
                        handle->rxRingBufferTail++;
                    }
                }
            }
            /* If ring buffer does not have enough data, still need to read more data. */
            if (bytesToReceive != 0U)
            {
                /* No data in ring buffer, save the request to UART handle. */
                handle->rxData        = xfer->data + bytesCurrentReceived;
                handle->rxDataSize    = bytesToReceive;
                handle->rxDataSizeAll = bytesToReceive;
                handle->rxState       = (uint8_t)kUSART_RxBusy;
            }
            /* Enable IRQ if previously enabled. */
            EnableGlobalIRQ(regPrimask);
            /* Call user callback since all data are received. */
            if (0U == bytesToReceive)
            {
                if (handle->callback != NULL)
                {
                    handle->callback(base, handle, kStatus_USART_RxIdle, handle->userData);
                }
            }
        }
        /* Ring buffer not used. */
        else
        {
            handle->rxData        = xfer->data + bytesCurrentReceived;
            handle->rxDataSize    = bytesToReceive;
            handle->rxDataSizeAll = bytesToReceive;
            handle->rxState       = (uint8_t)kUSART_RxBusy;

            /* Enable RX interrupt. */
            base->FIFOINTENSET |= USART_FIFOINTENSET_RXLVL_MASK;
        }
        /* Return the how many bytes have read. */
        if (receivedBytes != NULL)
        {
            *receivedBytes = bytesCurrentReceived;
        }
    }
    return kStatus_Success;
}

/*!
 * brief Aborts the interrupt-driven data receiving.
 *
 * This function aborts the interrupt-driven data receiving. The user can get the remainBytes to find out
 * how many bytes not received yet.
 *
 * param base USART peripheral base address.
 * param handle USART handle pointer.
 */
void USART_TransferAbortReceive(USART_Type *base, usart_handle_t *handle)
{
    assert(NULL != handle);

    /* Only abort the receive to handle->rxData, the RX ring buffer is still working. */
    if (NULL == handle->rxRingBuffer)
    {
        /* Disable interrupts */
        USART_DisableInterrupts(base, (uint32_t)kUSART_RxLevelInterruptEnable);
        /* Empty rxFIFO */
        base->FIFOCFG |= USART_FIFOCFG_EMPTYRX_MASK;
    }

    handle->rxDataSize = 0U;
    handle->rxState    = (uint8_t)kUSART_RxIdle;
}

/*!
 * brief Get the number of bytes that have been received.
 *
 * This function gets the number of bytes that have been received.
 *
 * param base USART peripheral base address.
 * param handle USART handle pointer.
 * param count Receive bytes count.
 * retval kStatus_NoTransferInProgress No receive in progress.
 * retval kStatus_InvalidArgument Parameter is invalid.
 * retval kStatus_Success Get successfully through the parameter \p count;
 */
status_t USART_TransferGetReceiveCount(USART_Type *base, usart_handle_t *handle, uint32_t *count)
{
    assert(NULL != handle);
    assert(NULL != count);

    if ((uint8_t)kUSART_RxIdle == handle->rxState)
    {
        return kStatus_NoTransferInProgress;
    }

    *count = handle->rxDataSizeAll - handle->rxDataSize;

    return kStatus_Success;
}

/*!
 * brief USART IRQ handle function.
 *
 * This function handles the USART transmit and receive IRQ request.
 *
 * param base USART peripheral base address.
 * param handle USART handle pointer.
 */
void USART_TransferHandleIRQ(USART_Type *base, usart_handle_t *handle)
{
    /* Check arguments */
    assert((NULL != base) && (NULL != handle));

    bool receiveEnabled = ((handle->rxDataSize != 0U) || (handle->rxRingBuffer != NULL));
    bool sendEnabled    = (handle->txDataSize != 0U);
    uint8_t rxdata;
    size_t tmpsize;

    /* If RX overrun. */
    if ((base->FIFOSTAT & USART_FIFOSTAT_RXERR_MASK) != 0U)
    {
        /* Clear rx error state. */
        base->FIFOSTAT |= USART_FIFOSTAT_RXERR_MASK;
        /* clear rxFIFO */
        base->FIFOCFG |= USART_FIFOCFG_EMPTYRX_MASK;
        /* Trigger callback. */
        if (handle->callback != NULL)
        {
            handle->callback(base, handle, kStatus_USART_RxError, handle->userData);
        }
    }
    while ((receiveEnabled && ((base->FIFOSTAT & USART_FIFOSTAT_RXNOTEMPTY_MASK) != 0U)) ||
           (sendEnabled && ((base->FIFOSTAT & USART_FIFOSTAT_TXNOTFULL_MASK) != 0U)))
    {
        /* Receive data */
        if (receiveEnabled && ((base->FIFOSTAT & USART_FIFOSTAT_RXNOTEMPTY_MASK) != 0U))
        {
            /* Receive to app bufffer if app buffer is present */
            if (handle->rxDataSize != 0U)
            {
                rxdata          = (uint8_t)base->FIFORD;
                *handle->rxData = rxdata;
                handle->rxDataSize--;
                handle->rxData++;
                receiveEnabled = ((handle->rxDataSize != 0U) || (handle->rxRingBuffer != NULL));
                if (0U == handle->rxDataSize)
                {
                    if (NULL == handle->rxRingBuffer)
                    {
                        base->FIFOINTENCLR = USART_FIFOINTENCLR_RXLVL_MASK | USART_FIFOINTENSET_RXERR_MASK;
                    }
                    handle->rxState = (uint8_t)kUSART_RxIdle;
                    if (handle->callback != NULL)
                    {
                        handle->callback(base, handle, kStatus_USART_RxIdle, handle->userData);
                    }
                }
            }
            /* Otherwise receive to ring buffer if ring buffer is present */
            else
            {
                if (handle->rxRingBuffer != NULL)
                {
                    /* If RX ring buffer is full, trigger callback to notify over run. */
                    if (USART_TransferIsRxRingBufferFull(handle))
                    {
                        if (handle->callback != NULL)
                        {
                            handle->callback(base, handle, kStatus_USART_RxRingBufferOverrun, handle->userData);
                        }
                    }
                    /* If ring buffer is still full after callback function, the oldest data is overridden. */
                    if (USART_TransferIsRxRingBufferFull(handle))
                    {
                        /* Increase handle->rxRingBufferTail to make room for new data. */
                        if ((size_t)handle->rxRingBufferTail + 1U == handle->rxRingBufferSize)
                        {
                            handle->rxRingBufferTail = 0U;
                        }
                        else
                        {
                            handle->rxRingBufferTail++;
                        }
                    }
                    /* Read data. */
                    rxdata                                         = (uint8_t)base->FIFORD;
                    handle->rxRingBuffer[handle->rxRingBufferHead] = rxdata;
                    /* Increase handle->rxRingBufferHead. */
                    if ((size_t)handle->rxRingBufferHead + 1U == handle->rxRingBufferSize)
                    {
                        handle->rxRingBufferHead = 0U;
                    }
                    else
                    {
                        handle->rxRingBufferHead++;
                    }
                }
            }
        }
        /* Send data */
        if (sendEnabled && ((base->FIFOSTAT & USART_FIFOSTAT_TXNOTFULL_MASK) != 0U))
        {
            base->FIFOWR = *handle->txData;
            handle->txDataSize--;
            handle->txData++;
            sendEnabled = handle->txDataSize != 0U;
            if (!sendEnabled)
            {
                base->FIFOINTENCLR = USART_FIFOINTENCLR_TXLVL_MASK;
                handle->txState    = (uint8_t)kUSART_TxIdle;

                base->INTENSET |= USART_INTENSET_TXIDLEEN_MASK;
            }
        }
    }

    /* Tx idle and the interrupt is enabled. */
    if ((0U != (base->INTENSET & USART_INTENSET_TXIDLEEN_MASK)) &&
        (0U != (base->INTSTAT & USART_INTSTAT_TXIDLE_MASK)) && (handle->txState == (uint8_t)kUSART_TxIdle))
    {
        /* Disable tx idle interrupt */
        base->INTENCLR |= USART_INTENCLR_TXIDLECLR_MASK;
        /* Trigger callback. */
        if (handle->callback != NULL)
        {
            handle->callback(base, handle, kStatus_USART_TxIdle, handle->userData);
        }
    }

    /* ring buffer is not used */
    if (NULL == handle->rxRingBuffer)
    {
        tmpsize = handle->rxDataSize;

        /* restore if rx transfer ends and rxLevel is different from default value */
        if ((tmpsize == 0U) && (USART_FIFOTRIG_RXLVL_GET(base) != handle->rxWatermark))
        {
            base->FIFOTRIG =
                (base->FIFOTRIG & (~USART_FIFOTRIG_RXLVL_MASK)) | USART_FIFOTRIG_RXLVL(handle->rxWatermark);
        }
        /* decrease level if rx transfer is bellow */
        if ((tmpsize != 0U) && (tmpsize < (USART_FIFOTRIG_RXLVL_GET(base) + 1U)))
        {
            base->FIFOTRIG = (base->FIFOTRIG & (~USART_FIFOTRIG_RXLVL_MASK)) | (USART_FIFOTRIG_RXLVL(tmpsize - 1U));
        }
    }
}