diff options
author | Russ Cox <rsc@golang.org> | 2014-09-08 00:08:51 -0400 |
---|---|---|
committer | Russ Cox <rsc@golang.org> | 2014-09-08 00:08:51 -0400 |
commit | 8528da672cc093d4dd06732819abc1f7b6b5a46e (patch) | |
tree | 334be80d4a4c85b77db6f6fdb67cbf0528cba5f5 /src/pkg/math | |
parent | 73bcb69f272cbf34ddcc9daa56427a8683b5a95d (diff) | |
download | go-8528da672cc093d4dd06732819abc1f7b6b5a46e.tar.gz |
build: move package sources from src/pkg to src
Preparation was in CL 134570043.
This CL contains only the effect of 'hg mv src/pkg/* src'.
For more about the move, see golang.org/s/go14nopkg.
Diffstat (limited to 'src/pkg/math')
172 files changed, 0 insertions, 22062 deletions
diff --git a/src/pkg/math/abs.go b/src/pkg/math/abs.go deleted file mode 100644 index bc41a6d6b..000000000 --- a/src/pkg/math/abs.go +++ /dev/null @@ -1,22 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// Abs returns the absolute value of x. -// -// Special cases are: -// Abs(±Inf) = +Inf -// Abs(NaN) = NaN -func Abs(x float64) float64 - -func abs(x float64) float64 { - switch { - case x < 0: - return -x - case x == 0: - return 0 // return correctly abs(-0) - } - return x -} diff --git a/src/pkg/math/abs_386.s b/src/pkg/math/abs_386.s deleted file mode 100644 index f30a439c2..000000000 --- a/src/pkg/math/abs_386.s +++ /dev/null @@ -1,12 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Abs(x float64) float64 -TEXT ·Abs(SB),NOSPLIT,$0 - FMOVD x+0(FP), F0 // F0=x - FABS // F0=|x| - FMOVDP F0, ret+8(FP) - RET diff --git a/src/pkg/math/abs_amd64.s b/src/pkg/math/abs_amd64.s deleted file mode 100644 index 0424eb5fa..000000000 --- a/src/pkg/math/abs_amd64.s +++ /dev/null @@ -1,14 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Abs(x float64) float64 -TEXT ·Abs(SB),NOSPLIT,$0 - MOVQ $(1<<63), BX - MOVQ BX, X0 // movsd $(-0.0), x0 - MOVSD x+0(FP), X1 - ANDNPD X1, X0 - MOVSD X0, ret+8(FP) - RET diff --git a/src/pkg/math/abs_amd64p32.s b/src/pkg/math/abs_amd64p32.s deleted file mode 100644 index 08c8c6b33..000000000 --- a/src/pkg/math/abs_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "abs_amd64.s" diff --git a/src/pkg/math/abs_arm.s b/src/pkg/math/abs_arm.s deleted file mode 100644 index bfa77eb49..000000000 --- a/src/pkg/math/abs_arm.s +++ /dev/null @@ -1,13 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Abs(SB),NOSPLIT,$0 - MOVW x_lo+0(FP), R0 - MOVW x_hi+4(FP), R1 - AND $((1<<31)-1), R1 - MOVW R0, ret_lo+8(FP) - MOVW R1, ret_hi+12(FP) - RET diff --git a/src/pkg/math/acosh.go b/src/pkg/math/acosh.go deleted file mode 100644 index e394008b0..000000000 --- a/src/pkg/math/acosh.go +++ /dev/null @@ -1,60 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// The original C code, the long comment, and the constants -// below are from FreeBSD's /usr/src/lib/msun/src/e_acosh.c -// and came with this notice. The go code is a simplified -// version of the original C. -// -// ==================================================== -// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. -// -// Developed at SunPro, a Sun Microsystems, Inc. business. -// Permission to use, copy, modify, and distribute this -// software is freely granted, provided that this notice -// is preserved. -// ==================================================== -// -// -// __ieee754_acosh(x) -// Method : -// Based on -// acosh(x) = log [ x + sqrt(x*x-1) ] -// we have -// acosh(x) := log(x)+ln2, if x is large; else -// acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else -// acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. -// -// Special cases: -// acosh(x) is NaN with signal if x<1. -// acosh(NaN) is NaN without signal. -// - -// Acosh returns the inverse hyperbolic cosine of x. -// -// Special cases are: -// Acosh(+Inf) = +Inf -// Acosh(x) = NaN if x < 1 -// Acosh(NaN) = NaN -func Acosh(x float64) float64 { - const ( - Ln2 = 6.93147180559945286227e-01 // 0x3FE62E42FEFA39EF - Large = 1 << 28 // 2**28 - ) - // first case is special case - switch { - case x < 1 || IsNaN(x): - return NaN() - case x == 1: - return 0 - case x >= Large: - return Log(x) + Ln2 // x > 2**28 - case x > 2: - return Log(2*x - 1/(x+Sqrt(x*x-1))) // 2**28 > x > 2 - } - t := x - 1 - return Log1p(t + Sqrt(2*t+t*t)) // 2 >= x > 1 -} diff --git a/src/pkg/math/all_test.go b/src/pkg/math/all_test.go deleted file mode 100644 index 763efb2e6..000000000 --- a/src/pkg/math/all_test.go +++ /dev/null @@ -1,2992 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math_test - -import ( - "fmt" - . "math" - "testing" -) - -var vf = []float64{ - 4.9790119248836735e+00, - 7.7388724745781045e+00, - -2.7688005719200159e-01, - -5.0106036182710749e+00, - 9.6362937071984173e+00, - 2.9263772392439646e+00, - 5.2290834314593066e+00, - 2.7279399104360102e+00, - 1.8253080916808550e+00, - -8.6859247685756013e+00, -} - -// The expected results below were computed by the high precision calculators -// at http://keisan.casio.com/. More exact input values (array vf[], above) -// were obtained by printing them with "%.26f". The answers were calculated -// to 26 digits (by using the "Digit number" drop-down control of each -// calculator). -var acos = []float64{ - 1.0496193546107222142571536e+00, - 6.8584012813664425171660692e-01, - 1.5984878714577160325521819e+00, - 2.0956199361475859327461799e+00, - 2.7053008467824138592616927e-01, - 1.2738121680361776018155625e+00, - 1.0205369421140629186287407e+00, - 1.2945003481781246062157835e+00, - 1.3872364345374451433846657e+00, - 2.6231510803970463967294145e+00, -} -var acosh = []float64{ - 2.4743347004159012494457618e+00, - 2.8576385344292769649802701e+00, - 7.2796961502981066190593175e-01, - 2.4796794418831451156471977e+00, - 3.0552020742306061857212962e+00, - 2.044238592688586588942468e+00, - 2.5158701513104513595766636e+00, - 1.99050839282411638174299e+00, - 1.6988625798424034227205445e+00, - 2.9611454842470387925531875e+00, -} -var asin = []float64{ - 5.2117697218417440497416805e-01, - 8.8495619865825236751471477e-01, - -02.769154466281941332086016e-02, - -5.2482360935268931351485822e-01, - 1.3002662421166552333051524e+00, - 2.9698415875871901741575922e-01, - 5.5025938468083370060258102e-01, - 2.7629597861677201301553823e-01, - 1.83559892257451475846656e-01, - -1.0523547536021497774980928e+00, -} -var asinh = []float64{ - 2.3083139124923523427628243e+00, - 2.743551594301593620039021e+00, - -2.7345908534880091229413487e-01, - -2.3145157644718338650499085e+00, - 2.9613652154015058521951083e+00, - 1.7949041616585821933067568e+00, - 2.3564032905983506405561554e+00, - 1.7287118790768438878045346e+00, - 1.3626658083714826013073193e+00, - -2.8581483626513914445234004e+00, -} -var atan = []float64{ - 1.372590262129621651920085e+00, - 1.442290609645298083020664e+00, - -2.7011324359471758245192595e-01, - -1.3738077684543379452781531e+00, - 1.4673921193587666049154681e+00, - 1.2415173565870168649117764e+00, - 1.3818396865615168979966498e+00, - 1.2194305844639670701091426e+00, - 1.0696031952318783760193244e+00, - -1.4561721938838084990898679e+00, -} -var atanh = []float64{ - 5.4651163712251938116878204e-01, - 1.0299474112843111224914709e+00, - -2.7695084420740135145234906e-02, - -5.5072096119207195480202529e-01, - 1.9943940993171843235906642e+00, - 3.01448604578089708203017e-01, - 5.8033427206942188834370595e-01, - 2.7987997499441511013958297e-01, - 1.8459947964298794318714228e-01, - -1.3273186910532645867272502e+00, -} -var atan2 = []float64{ - 1.1088291730037004444527075e+00, - 9.1218183188715804018797795e-01, - 1.5984772603216203736068915e+00, - 2.0352918654092086637227327e+00, - 8.0391819139044720267356014e-01, - 1.2861075249894661588866752e+00, - 1.0889904479131695712182587e+00, - 1.3044821793397925293797357e+00, - 1.3902530903455392306872261e+00, - 2.2859857424479142655411058e+00, -} -var cbrt = []float64{ - 1.7075799841925094446722675e+00, - 1.9779982212970353936691498e+00, - -6.5177429017779910853339447e-01, - -1.7111838886544019873338113e+00, - 2.1279920909827937423960472e+00, - 1.4303536770460741452312367e+00, - 1.7357021059106154902341052e+00, - 1.3972633462554328350552916e+00, - 1.2221149580905388454977636e+00, - -2.0556003730500069110343596e+00, -} -var ceil = []float64{ - 5.0000000000000000e+00, - 8.0000000000000000e+00, - 0.0000000000000000e+00, - -5.0000000000000000e+00, - 1.0000000000000000e+01, - 3.0000000000000000e+00, - 6.0000000000000000e+00, - 3.0000000000000000e+00, - 2.0000000000000000e+00, - -8.0000000000000000e+00, -} -var copysign = []float64{ - -4.9790119248836735e+00, - -7.7388724745781045e+00, - -2.7688005719200159e-01, - -5.0106036182710749e+00, - -9.6362937071984173e+00, - -2.9263772392439646e+00, - -5.2290834314593066e+00, - -2.7279399104360102e+00, - -1.8253080916808550e+00, - -8.6859247685756013e+00, -} -var cos = []float64{ - 2.634752140995199110787593e-01, - 1.148551260848219865642039e-01, - 9.6191297325640768154550453e-01, - 2.938141150061714816890637e-01, - -9.777138189897924126294461e-01, - -9.7693041344303219127199518e-01, - 4.940088096948647263961162e-01, - -9.1565869021018925545016502e-01, - -2.517729313893103197176091e-01, - -7.39241351595676573201918e-01, -} - -// Results for 100000 * Pi + vf[i] -var cosLarge = []float64{ - 2.634752141185559426744e-01, - 1.14855126055543100712e-01, - 9.61912973266488928113e-01, - 2.9381411499556122552e-01, - -9.777138189880161924641e-01, - -9.76930413445147608049e-01, - 4.940088097314976789841e-01, - -9.15658690217517835002e-01, - -2.51772931436786954751e-01, - -7.3924135157173099849e-01, -} -var cosh = []float64{ - 7.2668796942212842775517446e+01, - 1.1479413465659254502011135e+03, - 1.0385767908766418550935495e+00, - 7.5000957789658051428857788e+01, - 7.655246669605357888468613e+03, - 9.3567491758321272072888257e+00, - 9.331351599270605471131735e+01, - 7.6833430994624643209296404e+00, - 3.1829371625150718153881164e+00, - 2.9595059261916188501640911e+03, -} -var erf = []float64{ - 5.1865354817738701906913566e-01, - 7.2623875834137295116929844e-01, - -3.123458688281309990629839e-02, - -5.2143121110253302920437013e-01, - 8.2704742671312902508629582e-01, - 3.2101767558376376743993945e-01, - 5.403990312223245516066252e-01, - 3.0034702916738588551174831e-01, - 2.0369924417882241241559589e-01, - -7.8069386968009226729944677e-01, -} -var erfc = []float64{ - 4.8134645182261298093086434e-01, - 2.7376124165862704883070156e-01, - 1.0312345868828130999062984e+00, - 1.5214312111025330292043701e+00, - 1.7295257328687097491370418e-01, - 6.7898232441623623256006055e-01, - 4.596009687776754483933748e-01, - 6.9965297083261411448825169e-01, - 7.9630075582117758758440411e-01, - 1.7806938696800922672994468e+00, -} -var exp = []float64{ - 1.4533071302642137507696589e+02, - 2.2958822575694449002537581e+03, - 7.5814542574851666582042306e-01, - 6.6668778421791005061482264e-03, - 1.5310493273896033740861206e+04, - 1.8659907517999328638667732e+01, - 1.8662167355098714543942057e+02, - 1.5301332413189378961665788e+01, - 6.2047063430646876349125085e+00, - 1.6894712385826521111610438e-04, -} -var expm1 = []float64{ - 5.105047796122957327384770212e-02, - 8.046199708567344080562675439e-02, - -2.764970978891639815187418703e-03, - -4.8871434888875355394330300273e-02, - 1.0115864277221467777117227494e-01, - 2.969616407795910726014621657e-02, - 5.368214487944892300914037972e-02, - 2.765488851131274068067445335e-02, - 1.842068661871398836913874273e-02, - -8.3193870863553801814961137573e-02, -} -var exp2 = []float64{ - 3.1537839463286288034313104e+01, - 2.1361549283756232296144849e+02, - 8.2537402562185562902577219e-01, - 3.1021158628740294833424229e-02, - 7.9581744110252191462569661e+02, - 7.6019905892596359262696423e+00, - 3.7506882048388096973183084e+01, - 6.6250893439173561733216375e+00, - 3.5438267900243941544605339e+00, - 2.4281533133513300984289196e-03, -} -var fabs = []float64{ - 4.9790119248836735e+00, - 7.7388724745781045e+00, - 2.7688005719200159e-01, - 5.0106036182710749e+00, - 9.6362937071984173e+00, - 2.9263772392439646e+00, - 5.2290834314593066e+00, - 2.7279399104360102e+00, - 1.8253080916808550e+00, - 8.6859247685756013e+00, -} -var fdim = []float64{ - 4.9790119248836735e+00, - 7.7388724745781045e+00, - 0.0000000000000000e+00, - 0.0000000000000000e+00, - 9.6362937071984173e+00, - 2.9263772392439646e+00, - 5.2290834314593066e+00, - 2.7279399104360102e+00, - 1.8253080916808550e+00, - 0.0000000000000000e+00, -} -var floor = []float64{ - 4.0000000000000000e+00, - 7.0000000000000000e+00, - -1.0000000000000000e+00, - -6.0000000000000000e+00, - 9.0000000000000000e+00, - 2.0000000000000000e+00, - 5.0000000000000000e+00, - 2.0000000000000000e+00, - 1.0000000000000000e+00, - -9.0000000000000000e+00, -} -var fmod = []float64{ - 4.197615023265299782906368e-02, - 2.261127525421895434476482e+00, - 3.231794108794261433104108e-02, - 4.989396381728925078391512e+00, - 3.637062928015826201999516e-01, - 1.220868282268106064236690e+00, - 4.770916568540693347699744e+00, - 1.816180268691969246219742e+00, - 8.734595415957246977711748e-01, - 1.314075231424398637614104e+00, -} - -type fi struct { - f float64 - i int -} - -var frexp = []fi{ - {6.2237649061045918750e-01, 3}, - {9.6735905932226306250e-01, 3}, - {-5.5376011438400318000e-01, -1}, - {-6.2632545228388436250e-01, 3}, - {6.02268356699901081250e-01, 4}, - {7.3159430981099115000e-01, 2}, - {6.5363542893241332500e-01, 3}, - {6.8198497760900255000e-01, 2}, - {9.1265404584042750000e-01, 1}, - {-5.4287029803597508250e-01, 4}, -} -var gamma = []float64{ - 2.3254348370739963835386613898e+01, - 2.991153837155317076427529816e+03, - -4.561154336726758060575129109e+00, - 7.719403468842639065959210984e-01, - 1.6111876618855418534325755566e+05, - 1.8706575145216421164173224946e+00, - 3.4082787447257502836734201635e+01, - 1.579733951448952054898583387e+00, - 9.3834586598354592860187267089e-01, - -2.093995902923148389186189429e-05, -} -var j0 = []float64{ - -1.8444682230601672018219338e-01, - 2.27353668906331975435892e-01, - 9.809259936157051116270273e-01, - -1.741170131426226587841181e-01, - -2.1389448451144143352039069e-01, - -2.340905848928038763337414e-01, - -1.0029099691890912094586326e-01, - -1.5466726714884328135358907e-01, - 3.252650187653420388714693e-01, - -8.72218484409407250005360235e-03, -} -var j1 = []float64{ - -3.251526395295203422162967e-01, - 1.893581711430515718062564e-01, - -1.3711761352467242914491514e-01, - 3.287486536269617297529617e-01, - 1.3133899188830978473849215e-01, - 3.660243417832986825301766e-01, - -3.4436769271848174665420672e-01, - 4.329481396640773768835036e-01, - 5.8181350531954794639333955e-01, - -2.7030574577733036112996607e-01, -} -var j2 = []float64{ - 5.3837518920137802565192769e-02, - -1.7841678003393207281244667e-01, - 9.521746934916464142495821e-03, - 4.28958355470987397983072e-02, - 2.4115371837854494725492872e-01, - 4.842458532394520316844449e-01, - -3.142145220618633390125946e-02, - 4.720849184745124761189957e-01, - 3.122312022520957042957497e-01, - 7.096213118930231185707277e-02, -} -var jM3 = []float64{ - -3.684042080996403091021151e-01, - 2.8157665936340887268092661e-01, - 4.401005480841948348343589e-04, - 3.629926999056814081597135e-01, - 3.123672198825455192489266e-02, - -2.958805510589623607540455e-01, - -3.2033177696533233403289416e-01, - -2.592737332129663376736604e-01, - -1.0241334641061485092351251e-01, - -2.3762660886100206491674503e-01, -} -var lgamma = []fi{ - {3.146492141244545774319734e+00, 1}, - {8.003414490659126375852113e+00, 1}, - {1.517575735509779707488106e+00, -1}, - {-2.588480028182145853558748e-01, 1}, - {1.1989897050205555002007985e+01, 1}, - {6.262899811091257519386906e-01, 1}, - {3.5287924899091566764846037e+00, 1}, - {4.5725644770161182299423372e-01, 1}, - {-6.363667087767961257654854e-02, 1}, - {-1.077385130910300066425564e+01, -1}, -} -var log = []float64{ - 1.605231462693062999102599e+00, - 2.0462560018708770653153909e+00, - -1.2841708730962657801275038e+00, - 1.6115563905281545116286206e+00, - 2.2655365644872016636317461e+00, - 1.0737652208918379856272735e+00, - 1.6542360106073546632707956e+00, - 1.0035467127723465801264487e+00, - 6.0174879014578057187016475e-01, - 2.161703872847352815363655e+00, -} -var logb = []float64{ - 2.0000000000000000e+00, - 2.0000000000000000e+00, - -2.0000000000000000e+00, - 2.0000000000000000e+00, - 3.0000000000000000e+00, - 1.0000000000000000e+00, - 2.0000000000000000e+00, - 1.0000000000000000e+00, - 0.0000000000000000e+00, - 3.0000000000000000e+00, -} -var log10 = []float64{ - 6.9714316642508290997617083e-01, - 8.886776901739320576279124e-01, - -5.5770832400658929815908236e-01, - 6.998900476822994346229723e-01, - 9.8391002850684232013281033e-01, - 4.6633031029295153334285302e-01, - 7.1842557117242328821552533e-01, - 4.3583479968917773161304553e-01, - 2.6133617905227038228626834e-01, - 9.3881606348649405716214241e-01, -} -var log1p = []float64{ - 4.8590257759797794104158205e-02, - 7.4540265965225865330849141e-02, - -2.7726407903942672823234024e-03, - -5.1404917651627649094953380e-02, - 9.1998280672258624681335010e-02, - 2.8843762576593352865894824e-02, - 5.0969534581863707268992645e-02, - 2.6913947602193238458458594e-02, - 1.8088493239630770262045333e-02, - -9.0865245631588989681559268e-02, -} -var log2 = []float64{ - 2.3158594707062190618898251e+00, - 2.9521233862883917703341018e+00, - -1.8526669502700329984917062e+00, - 2.3249844127278861543568029e+00, - 3.268478366538305087466309e+00, - 1.5491157592596970278166492e+00, - 2.3865580889631732407886495e+00, - 1.447811865817085365540347e+00, - 8.6813999540425116282815557e-01, - 3.118679457227342224364709e+00, -} -var modf = [][2]float64{ - {4.0000000000000000e+00, 9.7901192488367350108546816e-01}, - {7.0000000000000000e+00, 7.3887247457810456552351752e-01}, - {0.0000000000000000e+00, -2.7688005719200159404635997e-01}, - {-5.0000000000000000e+00, -1.060361827107492160848778e-02}, - {9.0000000000000000e+00, 6.3629370719841737980004837e-01}, - {2.0000000000000000e+00, 9.2637723924396464525443662e-01}, - {5.0000000000000000e+00, 2.2908343145930665230025625e-01}, - {2.0000000000000000e+00, 7.2793991043601025126008608e-01}, - {1.0000000000000000e+00, 8.2530809168085506044576505e-01}, - {-8.0000000000000000e+00, -6.8592476857560136238589621e-01}, -} -var nextafter32 = []float32{ - 4.979012489318848e+00, - 7.738873004913330e+00, - -2.768800258636475e-01, - -5.010602951049805e+00, - 9.636294364929199e+00, - 2.926377534866333e+00, - 5.229084014892578e+00, - 2.727940082550049e+00, - 1.825308203697205e+00, - -8.685923576354980e+00, -} -var nextafter64 = []float64{ - 4.97901192488367438926388786e+00, - 7.73887247457810545370193722e+00, - -2.7688005719200153853520874e-01, - -5.01060361827107403343006808e+00, - 9.63629370719841915615688777e+00, - 2.92637723924396508934364647e+00, - 5.22908343145930754047867595e+00, - 2.72793991043601069534929593e+00, - 1.82530809168085528249036997e+00, - -8.68592476857559958602905681e+00, -} -var pow = []float64{ - 9.5282232631648411840742957e+04, - 5.4811599352999901232411871e+07, - 5.2859121715894396531132279e-01, - 9.7587991957286474464259698e-06, - 4.328064329346044846740467e+09, - 8.4406761805034547437659092e+02, - 1.6946633276191194947742146e+05, - 5.3449040147551939075312879e+02, - 6.688182138451414936380374e+01, - 2.0609869004248742886827439e-09, -} -var remainder = []float64{ - 4.197615023265299782906368e-02, - 2.261127525421895434476482e+00, - 3.231794108794261433104108e-02, - -2.120723654214984321697556e-02, - 3.637062928015826201999516e-01, - 1.220868282268106064236690e+00, - -4.581668629186133046005125e-01, - -9.117596417440410050403443e-01, - 8.734595415957246977711748e-01, - 1.314075231424398637614104e+00, -} -var signbit = []bool{ - false, - false, - true, - true, - false, - false, - false, - false, - false, - true, -} -var sin = []float64{ - -9.6466616586009283766724726e-01, - 9.9338225271646545763467022e-01, - -2.7335587039794393342449301e-01, - 9.5586257685042792878173752e-01, - -2.099421066779969164496634e-01, - 2.135578780799860532750616e-01, - -8.694568971167362743327708e-01, - 4.019566681155577786649878e-01, - 9.6778633541687993721617774e-01, - -6.734405869050344734943028e-01, -} - -// Results for 100000 * Pi + vf[i] -var sinLarge = []float64{ - -9.646661658548936063912e-01, - 9.933822527198506903752e-01, - -2.7335587036246899796e-01, - 9.55862576853689321268e-01, - -2.099421066862688873691e-01, - 2.13557878070308981163e-01, - -8.694568970959221300497e-01, - 4.01956668098863248917e-01, - 9.67786335404528727927e-01, - -6.7344058693131973066e-01, -} -var sinh = []float64{ - 7.2661916084208532301448439e+01, - 1.1479409110035194500526446e+03, - -2.8043136512812518927312641e-01, - -7.499429091181587232835164e+01, - 7.6552466042906758523925934e+03, - 9.3031583421672014313789064e+00, - 9.330815755828109072810322e+01, - 7.6179893137269146407361477e+00, - 3.021769180549615819524392e+00, - -2.95950575724449499189888e+03, -} -var sqrt = []float64{ - 2.2313699659365484748756904e+00, - 2.7818829009464263511285458e+00, - 5.2619393496314796848143251e-01, - 2.2384377628763938724244104e+00, - 3.1042380236055381099288487e+00, - 1.7106657298385224403917771e+00, - 2.286718922705479046148059e+00, - 1.6516476350711159636222979e+00, - 1.3510396336454586262419247e+00, - 2.9471892997524949215723329e+00, -} -var tan = []float64{ - -3.661316565040227801781974e+00, - 8.64900232648597589369854e+00, - -2.8417941955033612725238097e-01, - 3.253290185974728640827156e+00, - 2.147275640380293804770778e-01, - -2.18600910711067004921551e-01, - -1.760002817872367935518928e+00, - -4.389808914752818126249079e-01, - -3.843885560201130679995041e+00, - 9.10988793377685105753416e-01, -} - -// Results for 100000 * Pi + vf[i] -var tanLarge = []float64{ - -3.66131656475596512705e+00, - 8.6490023287202547927e+00, - -2.841794195104782406e-01, - 3.2532901861033120983e+00, - 2.14727564046880001365e-01, - -2.18600910700688062874e-01, - -1.760002817699722747043e+00, - -4.38980891453536115952e-01, - -3.84388555942723509071e+00, - 9.1098879344275101051e-01, -} -var tanh = []float64{ - 9.9990531206936338549262119e-01, - 9.9999962057085294197613294e-01, - -2.7001505097318677233756845e-01, - -9.9991110943061718603541401e-01, - 9.9999999146798465745022007e-01, - 9.9427249436125236705001048e-01, - 9.9994257600983138572705076e-01, - 9.9149409509772875982054701e-01, - 9.4936501296239685514466577e-01, - -9.9999994291374030946055701e-01, -} -var trunc = []float64{ - 4.0000000000000000e+00, - 7.0000000000000000e+00, - -0.0000000000000000e+00, - -5.0000000000000000e+00, - 9.0000000000000000e+00, - 2.0000000000000000e+00, - 5.0000000000000000e+00, - 2.0000000000000000e+00, - 1.0000000000000000e+00, - -8.0000000000000000e+00, -} -var y0 = []float64{ - -3.053399153780788357534855e-01, - 1.7437227649515231515503649e-01, - -8.6221781263678836910392572e-01, - -3.100664880987498407872839e-01, - 1.422200649300982280645377e-01, - 4.000004067997901144239363e-01, - -3.3340749753099352392332536e-01, - 4.5399790746668954555205502e-01, - 4.8290004112497761007536522e-01, - 2.7036697826604756229601611e-01, -} -var y1 = []float64{ - 0.15494213737457922210218611, - -0.2165955142081145245075746, - -2.4644949631241895201032829, - 0.1442740489541836405154505, - 0.2215379960518984777080163, - 0.3038800915160754150565448, - 0.0691107642452362383808547, - 0.2380116417809914424860165, - -0.20849492979459761009678934, - 0.0242503179793232308250804, -} -var y2 = []float64{ - 0.3675780219390303613394936, - -0.23034826393250119879267257, - -16.939677983817727205631397, - 0.367653980523052152867791, - -0.0962401471767804440353136, - -0.1923169356184851105200523, - 0.35984072054267882391843766, - -0.2794987252299739821654982, - -0.7113490692587462579757954, - -0.2647831587821263302087457, -} -var yM3 = []float64{ - -0.14035984421094849100895341, - -0.097535139617792072703973, - 242.25775994555580176377379, - -0.1492267014802818619511046, - 0.26148702629155918694500469, - 0.56675383593895176530394248, - -0.206150264009006981070575, - 0.64784284687568332737963658, - 1.3503631555901938037008443, - 0.1461869756579956803341844, -} - -// arguments and expected results for special cases -var vfacosSC = []float64{ - -Pi, - 1, - Pi, - NaN(), -} -var acosSC = []float64{ - NaN(), - 0, - NaN(), - NaN(), -} - -var vfacoshSC = []float64{ - Inf(-1), - 0.5, - 1, - Inf(1), - NaN(), -} -var acoshSC = []float64{ - NaN(), - NaN(), - 0, - Inf(1), - NaN(), -} - -var vfasinSC = []float64{ - -Pi, - Copysign(0, -1), - 0, - Pi, - NaN(), -} -var asinSC = []float64{ - NaN(), - Copysign(0, -1), - 0, - NaN(), - NaN(), -} - -var vfasinhSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var asinhSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} - -var vfatanSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var atanSC = []float64{ - -Pi / 2, - Copysign(0, -1), - 0, - Pi / 2, - NaN(), -} - -var vfatanhSC = []float64{ - Inf(-1), - -Pi, - -1, - Copysign(0, -1), - 0, - 1, - Pi, - Inf(1), - NaN(), -} -var atanhSC = []float64{ - NaN(), - NaN(), - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), - NaN(), - NaN(), -} -var vfatan2SC = [][2]float64{ - {Inf(-1), Inf(-1)}, - {Inf(-1), -Pi}, - {Inf(-1), 0}, - {Inf(-1), +Pi}, - {Inf(-1), Inf(1)}, - {Inf(-1), NaN()}, - {-Pi, Inf(-1)}, - {-Pi, 0}, - {-Pi, Inf(1)}, - {-Pi, NaN()}, - {Copysign(0, -1), Inf(-1)}, - {Copysign(0, -1), -Pi}, - {Copysign(0, -1), Copysign(0, -1)}, - {Copysign(0, -1), 0}, - {Copysign(0, -1), +Pi}, - {Copysign(0, -1), Inf(1)}, - {Copysign(0, -1), NaN()}, - {0, Inf(-1)}, - {0, -Pi}, - {0, Copysign(0, -1)}, - {0, 0}, - {0, +Pi}, - {0, Inf(1)}, - {0, NaN()}, - {+Pi, Inf(-1)}, - {+Pi, 0}, - {+Pi, Inf(1)}, - {+Pi, NaN()}, - {Inf(1), Inf(-1)}, - {Inf(1), -Pi}, - {Inf(1), 0}, - {Inf(1), +Pi}, - {Inf(1), Inf(1)}, - {Inf(1), NaN()}, - {NaN(), NaN()}, -} -var atan2SC = []float64{ - -3 * Pi / 4, // atan2(-Inf, -Inf) - -Pi / 2, // atan2(-Inf, -Pi) - -Pi / 2, // atan2(-Inf, +0) - -Pi / 2, // atan2(-Inf, +Pi) - -Pi / 4, // atan2(-Inf, +Inf) - NaN(), // atan2(-Inf, NaN) - -Pi, // atan2(-Pi, -Inf) - -Pi / 2, // atan2(-Pi, +0) - Copysign(0, -1), // atan2(-Pi, Inf) - NaN(), // atan2(-Pi, NaN) - -Pi, // atan2(-0, -Inf) - -Pi, // atan2(-0, -Pi) - -Pi, // atan2(-0, -0) - Copysign(0, -1), // atan2(-0, +0) - Copysign(0, -1), // atan2(-0, +Pi) - Copysign(0, -1), // atan2(-0, +Inf) - NaN(), // atan2(-0, NaN) - Pi, // atan2(+0, -Inf) - Pi, // atan2(+0, -Pi) - Pi, // atan2(+0, -0) - 0, // atan2(+0, +0) - 0, // atan2(+0, +Pi) - 0, // atan2(+0, +Inf) - NaN(), // atan2(+0, NaN) - Pi, // atan2(+Pi, -Inf) - Pi / 2, // atan2(+Pi, +0) - 0, // atan2(+Pi, +Inf) - NaN(), // atan2(+Pi, NaN) - 3 * Pi / 4, // atan2(+Inf, -Inf) - Pi / 2, // atan2(+Inf, -Pi) - Pi / 2, // atan2(+Inf, +0) - Pi / 2, // atan2(+Inf, +Pi) - Pi / 4, // atan2(+Inf, +Inf) - NaN(), // atan2(+Inf, NaN) - NaN(), // atan2(NaN, NaN) -} - -var vfcbrtSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var cbrtSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} - -var vfceilSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var ceilSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} - -var vfcopysignSC = []float64{ - Inf(-1), - Inf(1), - NaN(), -} -var copysignSC = []float64{ - Inf(-1), - Inf(-1), - NaN(), -} - -var vfcosSC = []float64{ - Inf(-1), - Inf(1), - NaN(), -} -var cosSC = []float64{ - NaN(), - NaN(), - NaN(), -} - -var vfcoshSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var coshSC = []float64{ - Inf(1), - 1, - 1, - Inf(1), - NaN(), -} - -var vferfSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var erfSC = []float64{ - -1, - Copysign(0, -1), - 0, - 1, - NaN(), -} - -var vferfcSC = []float64{ - Inf(-1), - Inf(1), - NaN(), -} -var erfcSC = []float64{ - 2, - 0, - NaN(), -} - -var vfexpSC = []float64{ - Inf(-1), - -2000, - 2000, - Inf(1), - NaN(), -} -var expSC = []float64{ - 0, - 0, - Inf(1), - Inf(1), - NaN(), -} - -var vfexpm1SC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var expm1SC = []float64{ - -1, - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} - -var vffabsSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var fabsSC = []float64{ - Inf(1), - 0, - 0, - Inf(1), - NaN(), -} - -var vffdimSC = [][2]float64{ - {Inf(-1), Inf(-1)}, - {Inf(-1), Inf(1)}, - {Inf(-1), NaN()}, - {Copysign(0, -1), Copysign(0, -1)}, - {Copysign(0, -1), 0}, - {0, Copysign(0, -1)}, - {0, 0}, - {Inf(1), Inf(-1)}, - {Inf(1), Inf(1)}, - {Inf(1), NaN()}, - {NaN(), Inf(-1)}, - {NaN(), Copysign(0, -1)}, - {NaN(), 0}, - {NaN(), Inf(1)}, - {NaN(), NaN()}, -} -var fdimSC = []float64{ - NaN(), - 0, - NaN(), - 0, - 0, - 0, - 0, - Inf(1), - NaN(), - NaN(), - NaN(), - NaN(), - NaN(), - NaN(), - NaN(), -} -var fmaxSC = []float64{ - Inf(-1), - Inf(1), - NaN(), - Copysign(0, -1), - 0, - 0, - 0, - Inf(1), - Inf(1), - Inf(1), - NaN(), - NaN(), - NaN(), - Inf(1), - NaN(), -} -var fminSC = []float64{ - Inf(-1), - Inf(-1), - Inf(-1), - Copysign(0, -1), - Copysign(0, -1), - Copysign(0, -1), - 0, - Inf(-1), - Inf(1), - NaN(), - Inf(-1), - NaN(), - NaN(), - NaN(), - NaN(), -} - -var vffmodSC = [][2]float64{ - {Inf(-1), Inf(-1)}, - {Inf(-1), -Pi}, - {Inf(-1), 0}, - {Inf(-1), Pi}, - {Inf(-1), Inf(1)}, - {Inf(-1), NaN()}, - {-Pi, Inf(-1)}, - {-Pi, 0}, - {-Pi, Inf(1)}, - {-Pi, NaN()}, - {Copysign(0, -1), Inf(-1)}, - {Copysign(0, -1), 0}, - {Copysign(0, -1), Inf(1)}, - {Copysign(0, -1), NaN()}, - {0, Inf(-1)}, - {0, 0}, - {0, Inf(1)}, - {0, NaN()}, - {Pi, Inf(-1)}, - {Pi, 0}, - {Pi, Inf(1)}, - {Pi, NaN()}, - {Inf(1), Inf(-1)}, - {Inf(1), -Pi}, - {Inf(1), 0}, - {Inf(1), Pi}, - {Inf(1), Inf(1)}, - {Inf(1), NaN()}, - {NaN(), Inf(-1)}, - {NaN(), -Pi}, - {NaN(), 0}, - {NaN(), Pi}, - {NaN(), Inf(1)}, - {NaN(), NaN()}, -} -var fmodSC = []float64{ - NaN(), // fmod(-Inf, -Inf) - NaN(), // fmod(-Inf, -Pi) - NaN(), // fmod(-Inf, 0) - NaN(), // fmod(-Inf, Pi) - NaN(), // fmod(-Inf, +Inf) - NaN(), // fmod(-Inf, NaN) - -Pi, // fmod(-Pi, -Inf) - NaN(), // fmod(-Pi, 0) - -Pi, // fmod(-Pi, +Inf) - NaN(), // fmod(-Pi, NaN) - Copysign(0, -1), // fmod(-0, -Inf) - NaN(), // fmod(-0, 0) - Copysign(0, -1), // fmod(-0, Inf) - NaN(), // fmod(-0, NaN) - 0, // fmod(0, -Inf) - NaN(), // fmod(0, 0) - 0, // fmod(0, +Inf) - NaN(), // fmod(0, NaN) - Pi, // fmod(Pi, -Inf) - NaN(), // fmod(Pi, 0) - Pi, // fmod(Pi, +Inf) - NaN(), // fmod(Pi, NaN) - NaN(), // fmod(+Inf, -Inf) - NaN(), // fmod(+Inf, -Pi) - NaN(), // fmod(+Inf, 0) - NaN(), // fmod(+Inf, Pi) - NaN(), // fmod(+Inf, +Inf) - NaN(), // fmod(+Inf, NaN) - NaN(), // fmod(NaN, -Inf) - NaN(), // fmod(NaN, -Pi) - NaN(), // fmod(NaN, 0) - NaN(), // fmod(NaN, Pi) - NaN(), // fmod(NaN, +Inf) - NaN(), // fmod(NaN, NaN) -} - -var vffrexpSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var frexpSC = []fi{ - {Inf(-1), 0}, - {Copysign(0, -1), 0}, - {0, 0}, - {Inf(1), 0}, - {NaN(), 0}, -} - -var vfgammaSC = []float64{ - Inf(-1), - -3, - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var gammaSC = []float64{ - NaN(), - NaN(), - Inf(-1), - Inf(1), - Inf(1), - NaN(), -} - -var vfhypotSC = [][2]float64{ - {Inf(-1), Inf(-1)}, - {Inf(-1), 0}, - {Inf(-1), Inf(1)}, - {Inf(-1), NaN()}, - {Copysign(0, -1), Copysign(0, -1)}, - {Copysign(0, -1), 0}, - {0, Copysign(0, -1)}, - {0, 0}, // +0, +0 - {0, Inf(-1)}, - {0, Inf(1)}, - {0, NaN()}, - {Inf(1), Inf(-1)}, - {Inf(1), 0}, - {Inf(1), Inf(1)}, - {Inf(1), NaN()}, - {NaN(), Inf(-1)}, - {NaN(), 0}, - {NaN(), Inf(1)}, - {NaN(), NaN()}, -} -var hypotSC = []float64{ - Inf(1), - Inf(1), - Inf(1), - Inf(1), - 0, - 0, - 0, - 0, - Inf(1), - Inf(1), - NaN(), - Inf(1), - Inf(1), - Inf(1), - Inf(1), - Inf(1), - NaN(), - Inf(1), - NaN(), -} - -var vfilogbSC = []float64{ - Inf(-1), - 0, - Inf(1), - NaN(), -} -var ilogbSC = []int{ - MaxInt32, - MinInt32, - MaxInt32, - MaxInt32, -} - -var vfj0SC = []float64{ - Inf(-1), - 0, - Inf(1), - NaN(), -} -var j0SC = []float64{ - 0, - 1, - 0, - NaN(), -} -var j1SC = []float64{ - 0, - 0, - 0, - NaN(), -} -var j2SC = []float64{ - 0, - 0, - 0, - NaN(), -} -var jM3SC = []float64{ - 0, - 0, - 0, - NaN(), -} - -var vfldexpSC = []fi{ - {0, 0}, - {0, -1075}, - {0, 1024}, - {Copysign(0, -1), 0}, - {Copysign(0, -1), -1075}, - {Copysign(0, -1), 1024}, - {Inf(1), 0}, - {Inf(1), -1024}, - {Inf(-1), 0}, - {Inf(-1), -1024}, - {NaN(), -1024}, -} -var ldexpSC = []float64{ - 0, - 0, - 0, - Copysign(0, -1), - Copysign(0, -1), - Copysign(0, -1), - Inf(1), - Inf(1), - Inf(-1), - Inf(-1), - NaN(), -} - -var vflgammaSC = []float64{ - Inf(-1), - -3, - 0, - 1, - 2, - Inf(1), - NaN(), -} -var lgammaSC = []fi{ - {Inf(-1), 1}, - {Inf(1), 1}, - {Inf(1), 1}, - {0, 1}, - {0, 1}, - {Inf(1), 1}, - {NaN(), 1}, -} - -var vflogSC = []float64{ - Inf(-1), - -Pi, - Copysign(0, -1), - 0, - 1, - Inf(1), - NaN(), -} -var logSC = []float64{ - NaN(), - NaN(), - Inf(-1), - Inf(-1), - 0, - Inf(1), - NaN(), -} - -var vflogbSC = []float64{ - Inf(-1), - 0, - Inf(1), - NaN(), -} -var logbSC = []float64{ - Inf(1), - Inf(-1), - Inf(1), - NaN(), -} - -var vflog1pSC = []float64{ - Inf(-1), - -Pi, - -1, - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var log1pSC = []float64{ - NaN(), - NaN(), - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} - -var vfmodfSC = []float64{ - Inf(-1), - Inf(1), - NaN(), -} -var modfSC = [][2]float64{ - {Inf(-1), NaN()}, // [2]float64{Copysign(0, -1), Inf(-1)}, - {Inf(1), NaN()}, // [2]float64{0, Inf(1)}, - {NaN(), NaN()}, -} - -var vfnextafter32SC = [][2]float32{ - {0, 0}, - {0, float32(Copysign(0, -1))}, - {0, -1}, - {0, float32(NaN())}, - {float32(Copysign(0, -1)), 1}, - {float32(Copysign(0, -1)), 0}, - {float32(Copysign(0, -1)), float32(Copysign(0, -1))}, - {float32(Copysign(0, -1)), -1}, - {float32(NaN()), 0}, - {float32(NaN()), float32(NaN())}, -} -var nextafter32SC = []float32{ - 0, - 0, - -1.401298464e-45, // Float32frombits(0x80000001) - float32(NaN()), - 1.401298464e-45, // Float32frombits(0x00000001) - float32(Copysign(0, -1)), - float32(Copysign(0, -1)), - -1.401298464e-45, // Float32frombits(0x80000001) - float32(NaN()), - float32(NaN()), -} - -var vfnextafter64SC = [][2]float64{ - {0, 0}, - {0, Copysign(0, -1)}, - {0, -1}, - {0, NaN()}, - {Copysign(0, -1), 1}, - {Copysign(0, -1), 0}, - {Copysign(0, -1), Copysign(0, -1)}, - {Copysign(0, -1), -1}, - {NaN(), 0}, - {NaN(), NaN()}, -} -var nextafter64SC = []float64{ - 0, - 0, - -4.9406564584124654418e-324, // Float64frombits(0x8000000000000001) - NaN(), - 4.9406564584124654418e-324, // Float64frombits(0x0000000000000001) - Copysign(0, -1), - Copysign(0, -1), - -4.9406564584124654418e-324, // Float64frombits(0x8000000000000001) - NaN(), - NaN(), -} - -var vfpowSC = [][2]float64{ - {Inf(-1), -Pi}, - {Inf(-1), -3}, - {Inf(-1), Copysign(0, -1)}, - {Inf(-1), 0}, - {Inf(-1), 1}, - {Inf(-1), 3}, - {Inf(-1), Pi}, - {Inf(-1), NaN()}, - - {-Pi, Inf(-1)}, - {-Pi, -Pi}, - {-Pi, Copysign(0, -1)}, - {-Pi, 0}, - {-Pi, 1}, - {-Pi, Pi}, - {-Pi, Inf(1)}, - {-Pi, NaN()}, - - {-1, Inf(-1)}, - {-1, Inf(1)}, - {-1, NaN()}, - {-1 / 2, Inf(-1)}, - {-1 / 2, Inf(1)}, - {Copysign(0, -1), Inf(-1)}, - {Copysign(0, -1), -Pi}, - {Copysign(0, -1), -3}, - {Copysign(0, -1), 3}, - {Copysign(0, -1), Pi}, - {Copysign(0, -1), Inf(1)}, - - {0, Inf(-1)}, - {0, -Pi}, - {0, -3}, - {0, Copysign(0, -1)}, - {0, 0}, - {0, 3}, - {0, Pi}, - {0, Inf(1)}, - {0, NaN()}, - - {1 / 2, Inf(-1)}, - {1 / 2, Inf(1)}, - {1, Inf(-1)}, - {1, Inf(1)}, - {1, NaN()}, - - {Pi, Inf(-1)}, - {Pi, Copysign(0, -1)}, - {Pi, 0}, - {Pi, 1}, - {Pi, Inf(1)}, - {Pi, NaN()}, - {Inf(1), -Pi}, - {Inf(1), Copysign(0, -1)}, - {Inf(1), 0}, - {Inf(1), 1}, - {Inf(1), Pi}, - {Inf(1), NaN()}, - {NaN(), -Pi}, - {NaN(), Copysign(0, -1)}, - {NaN(), 0}, - {NaN(), 1}, - {NaN(), Pi}, - {NaN(), NaN()}, -} -var powSC = []float64{ - 0, // pow(-Inf, -Pi) - Copysign(0, -1), // pow(-Inf, -3) - 1, // pow(-Inf, -0) - 1, // pow(-Inf, +0) - Inf(-1), // pow(-Inf, 1) - Inf(-1), // pow(-Inf, 3) - Inf(1), // pow(-Inf, Pi) - NaN(), // pow(-Inf, NaN) - 0, // pow(-Pi, -Inf) - NaN(), // pow(-Pi, -Pi) - 1, // pow(-Pi, -0) - 1, // pow(-Pi, +0) - -Pi, // pow(-Pi, 1) - NaN(), // pow(-Pi, Pi) - Inf(1), // pow(-Pi, +Inf) - NaN(), // pow(-Pi, NaN) - 1, // pow(-1, -Inf) IEEE 754-2008 - 1, // pow(-1, +Inf) IEEE 754-2008 - NaN(), // pow(-1, NaN) - Inf(1), // pow(-1/2, -Inf) - 0, // pow(-1/2, +Inf) - Inf(1), // pow(-0, -Inf) - Inf(1), // pow(-0, -Pi) - Inf(-1), // pow(-0, -3) IEEE 754-2008 - Copysign(0, -1), // pow(-0, 3) IEEE 754-2008 - 0, // pow(-0, +Pi) - 0, // pow(-0, +Inf) - Inf(1), // pow(+0, -Inf) - Inf(1), // pow(+0, -Pi) - Inf(1), // pow(+0, -3) - 1, // pow(+0, -0) - 1, // pow(+0, +0) - 0, // pow(+0, 3) - 0, // pow(+0, +Pi) - 0, // pow(+0, +Inf) - NaN(), // pow(+0, NaN) - Inf(1), // pow(1/2, -Inf) - 0, // pow(1/2, +Inf) - 1, // pow(1, -Inf) IEEE 754-2008 - 1, // pow(1, +Inf) IEEE 754-2008 - 1, // pow(1, NaN) IEEE 754-2008 - 0, // pow(+Pi, -Inf) - 1, // pow(+Pi, -0) - 1, // pow(+Pi, +0) - Pi, // pow(+Pi, 1) - Inf(1), // pow(+Pi, +Inf) - NaN(), // pow(+Pi, NaN) - 0, // pow(+Inf, -Pi) - 1, // pow(+Inf, -0) - 1, // pow(+Inf, +0) - Inf(1), // pow(+Inf, 1) - Inf(1), // pow(+Inf, Pi) - NaN(), // pow(+Inf, NaN) - NaN(), // pow(NaN, -Pi) - 1, // pow(NaN, -0) - 1, // pow(NaN, +0) - NaN(), // pow(NaN, 1) - NaN(), // pow(NaN, +Pi) - NaN(), // pow(NaN, NaN) -} - -var vfpow10SC = []int{ - MinInt32, - MaxInt32, - -325, - 309, -} - -var pow10SC = []float64{ - 0, // pow10(MinInt32) - Inf(1), // pow10(MaxInt32) - 0, // pow10(-325) - Inf(1), // pow10(309) -} - -var vfsignbitSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var signbitSC = []bool{ - true, - true, - false, - false, - false, -} - -var vfsinSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var sinSC = []float64{ - NaN(), - Copysign(0, -1), - 0, - NaN(), - NaN(), -} - -var vfsinhSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var sinhSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} - -var vfsqrtSC = []float64{ - Inf(-1), - -Pi, - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var sqrtSC = []float64{ - NaN(), - NaN(), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} - -var vftanhSC = []float64{ - Inf(-1), - Copysign(0, -1), - 0, - Inf(1), - NaN(), -} -var tanhSC = []float64{ - -1, - Copysign(0, -1), - 0, - 1, - NaN(), -} - -var vfy0SC = []float64{ - Inf(-1), - 0, - Inf(1), - NaN(), -} -var y0SC = []float64{ - NaN(), - Inf(-1), - 0, - NaN(), -} -var y1SC = []float64{ - NaN(), - Inf(-1), - 0, - NaN(), -} -var y2SC = []float64{ - NaN(), - Inf(-1), - 0, - NaN(), -} -var yM3SC = []float64{ - NaN(), - Inf(1), - 0, - NaN(), -} - -// arguments and expected results for boundary cases -const ( - SmallestNormalFloat64 = 2.2250738585072014e-308 // 2**-1022 - LargestSubnormalFloat64 = SmallestNormalFloat64 - SmallestNonzeroFloat64 -) - -var vffrexpBC = []float64{ - SmallestNormalFloat64, - LargestSubnormalFloat64, - SmallestNonzeroFloat64, - MaxFloat64, - -SmallestNormalFloat64, - -LargestSubnormalFloat64, - -SmallestNonzeroFloat64, - -MaxFloat64, -} -var frexpBC = []fi{ - {0.5, -1021}, - {0.99999999999999978, -1022}, - {0.5, -1073}, - {0.99999999999999989, 1024}, - {-0.5, -1021}, - {-0.99999999999999978, -1022}, - {-0.5, -1073}, - {-0.99999999999999989, 1024}, -} - -var vfldexpBC = []fi{ - {SmallestNormalFloat64, -52}, - {LargestSubnormalFloat64, -51}, - {SmallestNonzeroFloat64, 1074}, - {MaxFloat64, -(1023 + 1074)}, - {1, -1075}, - {-1, -1075}, - {1, 1024}, - {-1, 1024}, -} -var ldexpBC = []float64{ - SmallestNonzeroFloat64, - 1e-323, // 2**-1073 - 1, - 1e-323, // 2**-1073 - 0, - Copysign(0, -1), - Inf(1), - Inf(-1), -} - -var logbBC = []float64{ - -1022, - -1023, - -1074, - 1023, - -1022, - -1023, - -1074, - 1023, -} - -func tolerance(a, b, e float64) bool { - d := a - b - if d < 0 { - d = -d - } - - if a != 0 { - e = e * a - if e < 0 { - e = -e - } - } - return d < e -} -func kindaclose(a, b float64) bool { return tolerance(a, b, 1e-8) } -func close(a, b float64) bool { return tolerance(a, b, 1e-14) } -func veryclose(a, b float64) bool { return tolerance(a, b, 4e-16) } -func soclose(a, b, e float64) bool { return tolerance(a, b, e) } -func alike(a, b float64) bool { - switch { - case IsNaN(a) && IsNaN(b): - return true - case a == b: - return Signbit(a) == Signbit(b) - } - return false -} - -func TestNaN(t *testing.T) { - f64 := NaN() - if f64 == f64 { - t.Fatalf("NaN() returns %g, expected NaN", f64) - } - f32 := float32(f64) - if f32 == f32 { - t.Fatalf("float32(NaN()) is %g, expected NaN", f32) - } -} - -func TestAcos(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := vf[i] / 10 - if f := Acos(a); !close(acos[i], f) { - t.Errorf("Acos(%g) = %g, want %g", a, f, acos[i]) - } - } - for i := 0; i < len(vfacosSC); i++ { - if f := Acos(vfacosSC[i]); !alike(acosSC[i], f) { - t.Errorf("Acos(%g) = %g, want %g", vfacosSC[i], f, acosSC[i]) - } - } -} - -func TestAcosh(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := 1 + Abs(vf[i]) - if f := Acosh(a); !veryclose(acosh[i], f) { - t.Errorf("Acosh(%g) = %g, want %g", a, f, acosh[i]) - } - } - for i := 0; i < len(vfacoshSC); i++ { - if f := Acosh(vfacoshSC[i]); !alike(acoshSC[i], f) { - t.Errorf("Acosh(%g) = %g, want %g", vfacoshSC[i], f, acoshSC[i]) - } - } -} - -func TestAsin(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := vf[i] / 10 - if f := Asin(a); !veryclose(asin[i], f) { - t.Errorf("Asin(%g) = %g, want %g", a, f, asin[i]) - } - } - for i := 0; i < len(vfasinSC); i++ { - if f := Asin(vfasinSC[i]); !alike(asinSC[i], f) { - t.Errorf("Asin(%g) = %g, want %g", vfasinSC[i], f, asinSC[i]) - } - } -} - -func TestAsinh(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Asinh(vf[i]); !veryclose(asinh[i], f) { - t.Errorf("Asinh(%g) = %g, want %g", vf[i], f, asinh[i]) - } - } - for i := 0; i < len(vfasinhSC); i++ { - if f := Asinh(vfasinhSC[i]); !alike(asinhSC[i], f) { - t.Errorf("Asinh(%g) = %g, want %g", vfasinhSC[i], f, asinhSC[i]) - } - } -} - -func TestAtan(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Atan(vf[i]); !veryclose(atan[i], f) { - t.Errorf("Atan(%g) = %g, want %g", vf[i], f, atan[i]) - } - } - for i := 0; i < len(vfatanSC); i++ { - if f := Atan(vfatanSC[i]); !alike(atanSC[i], f) { - t.Errorf("Atan(%g) = %g, want %g", vfatanSC[i], f, atanSC[i]) - } - } -} - -func TestAtanh(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := vf[i] / 10 - if f := Atanh(a); !veryclose(atanh[i], f) { - t.Errorf("Atanh(%g) = %g, want %g", a, f, atanh[i]) - } - } - for i := 0; i < len(vfatanhSC); i++ { - if f := Atanh(vfatanhSC[i]); !alike(atanhSC[i], f) { - t.Errorf("Atanh(%g) = %g, want %g", vfatanhSC[i], f, atanhSC[i]) - } - } -} - -func TestAtan2(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Atan2(10, vf[i]); !veryclose(atan2[i], f) { - t.Errorf("Atan2(10, %g) = %g, want %g", vf[i], f, atan2[i]) - } - } - for i := 0; i < len(vfatan2SC); i++ { - if f := Atan2(vfatan2SC[i][0], vfatan2SC[i][1]); !alike(atan2SC[i], f) { - t.Errorf("Atan2(%g, %g) = %g, want %g", vfatan2SC[i][0], vfatan2SC[i][1], f, atan2SC[i]) - } - } -} - -func TestCbrt(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Cbrt(vf[i]); !veryclose(cbrt[i], f) { - t.Errorf("Cbrt(%g) = %g, want %g", vf[i], f, cbrt[i]) - } - } - for i := 0; i < len(vfcbrtSC); i++ { - if f := Cbrt(vfcbrtSC[i]); !alike(cbrtSC[i], f) { - t.Errorf("Cbrt(%g) = %g, want %g", vfcbrtSC[i], f, cbrtSC[i]) - } - } -} - -func TestCeil(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Ceil(vf[i]); ceil[i] != f { - t.Errorf("Ceil(%g) = %g, want %g", vf[i], f, ceil[i]) - } - } - for i := 0; i < len(vfceilSC); i++ { - if f := Ceil(vfceilSC[i]); !alike(ceilSC[i], f) { - t.Errorf("Ceil(%g) = %g, want %g", vfceilSC[i], f, ceilSC[i]) - } - } -} - -func TestCopysign(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Copysign(vf[i], -1); copysign[i] != f { - t.Errorf("Copysign(%g, -1) = %g, want %g", vf[i], f, copysign[i]) - } - } - for i := 0; i < len(vf); i++ { - if f := Copysign(vf[i], 1); -copysign[i] != f { - t.Errorf("Copysign(%g, 1) = %g, want %g", vf[i], f, -copysign[i]) - } - } - for i := 0; i < len(vfcopysignSC); i++ { - if f := Copysign(vfcopysignSC[i], -1); !alike(copysignSC[i], f) { - t.Errorf("Copysign(%g, -1) = %g, want %g", vfcopysignSC[i], f, copysignSC[i]) - } - } -} - -func TestCos(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Cos(vf[i]); !veryclose(cos[i], f) { - t.Errorf("Cos(%g) = %g, want %g", vf[i], f, cos[i]) - } - } - for i := 0; i < len(vfcosSC); i++ { - if f := Cos(vfcosSC[i]); !alike(cosSC[i], f) { - t.Errorf("Cos(%g) = %g, want %g", vfcosSC[i], f, cosSC[i]) - } - } -} - -func TestCosh(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Cosh(vf[i]); !close(cosh[i], f) { - t.Errorf("Cosh(%g) = %g, want %g", vf[i], f, cosh[i]) - } - } - for i := 0; i < len(vfcoshSC); i++ { - if f := Cosh(vfcoshSC[i]); !alike(coshSC[i], f) { - t.Errorf("Cosh(%g) = %g, want %g", vfcoshSC[i], f, coshSC[i]) - } - } -} - -func TestErf(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := vf[i] / 10 - if f := Erf(a); !veryclose(erf[i], f) { - t.Errorf("Erf(%g) = %g, want %g", a, f, erf[i]) - } - } - for i := 0; i < len(vferfSC); i++ { - if f := Erf(vferfSC[i]); !alike(erfSC[i], f) { - t.Errorf("Erf(%g) = %g, want %g", vferfSC[i], f, erfSC[i]) - } - } -} - -func TestErfc(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := vf[i] / 10 - if f := Erfc(a); !veryclose(erfc[i], f) { - t.Errorf("Erfc(%g) = %g, want %g", a, f, erfc[i]) - } - } - for i := 0; i < len(vferfcSC); i++ { - if f := Erfc(vferfcSC[i]); !alike(erfcSC[i], f) { - t.Errorf("Erfc(%g) = %g, want %g", vferfcSC[i], f, erfcSC[i]) - } - } -} - -func TestExp(t *testing.T) { - testExp(t, Exp, "Exp") - testExp(t, ExpGo, "ExpGo") -} - -func testExp(t *testing.T, Exp func(float64) float64, name string) { - for i := 0; i < len(vf); i++ { - if f := Exp(vf[i]); !close(exp[i], f) { - t.Errorf("%s(%g) = %g, want %g", name, vf[i], f, exp[i]) - } - } - for i := 0; i < len(vfexpSC); i++ { - if f := Exp(vfexpSC[i]); !alike(expSC[i], f) { - t.Errorf("%s(%g) = %g, want %g", name, vfexpSC[i], f, expSC[i]) - } - } -} - -func TestExpm1(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := vf[i] / 100 - if f := Expm1(a); !veryclose(expm1[i], f) { - t.Errorf("Expm1(%g) = %g, want %g", a, f, expm1[i]) - } - } - for i := 0; i < len(vfexpm1SC); i++ { - if f := Expm1(vfexpm1SC[i]); !alike(expm1SC[i], f) { - t.Errorf("Expm1(%g) = %g, want %g", vfexpm1SC[i], f, expm1SC[i]) - } - } -} - -func TestExp2(t *testing.T) { - testExp2(t, Exp2, "Exp2") - testExp2(t, Exp2Go, "Exp2Go") -} - -func testExp2(t *testing.T, Exp2 func(float64) float64, name string) { - for i := 0; i < len(vf); i++ { - if f := Exp2(vf[i]); !close(exp2[i], f) { - t.Errorf("%s(%g) = %g, want %g", name, vf[i], f, exp2[i]) - } - } - for i := 0; i < len(vfexpSC); i++ { - if f := Exp2(vfexpSC[i]); !alike(expSC[i], f) { - t.Errorf("%s(%g) = %g, want %g", name, vfexpSC[i], f, expSC[i]) - } - } - for n := -1074; n < 1024; n++ { - f := Exp2(float64(n)) - vf := Ldexp(1, n) - if f != vf { - t.Errorf("%s(%d) = %g, want %g", name, n, f, vf) - } - } -} - -func TestAbs(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Abs(vf[i]); fabs[i] != f { - t.Errorf("Abs(%g) = %g, want %g", vf[i], f, fabs[i]) - } - } - for i := 0; i < len(vffabsSC); i++ { - if f := Abs(vffabsSC[i]); !alike(fabsSC[i], f) { - t.Errorf("Abs(%g) = %g, want %g", vffabsSC[i], f, fabsSC[i]) - } - } -} - -func TestDim(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Dim(vf[i], 0); fdim[i] != f { - t.Errorf("Dim(%g, %g) = %g, want %g", vf[i], 0.0, f, fdim[i]) - } - } - for i := 0; i < len(vffdimSC); i++ { - if f := Dim(vffdimSC[i][0], vffdimSC[i][1]); !alike(fdimSC[i], f) { - t.Errorf("Dim(%g, %g) = %g, want %g", vffdimSC[i][0], vffdimSC[i][1], f, fdimSC[i]) - } - } -} - -func TestFloor(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Floor(vf[i]); floor[i] != f { - t.Errorf("Floor(%g) = %g, want %g", vf[i], f, floor[i]) - } - } - for i := 0; i < len(vfceilSC); i++ { - if f := Floor(vfceilSC[i]); !alike(ceilSC[i], f) { - t.Errorf("Floor(%g) = %g, want %g", vfceilSC[i], f, ceilSC[i]) - } - } -} - -func TestMax(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Max(vf[i], ceil[i]); ceil[i] != f { - t.Errorf("Max(%g, %g) = %g, want %g", vf[i], ceil[i], f, ceil[i]) - } - } - for i := 0; i < len(vffdimSC); i++ { - if f := Max(vffdimSC[i][0], vffdimSC[i][1]); !alike(fmaxSC[i], f) { - t.Errorf("Max(%g, %g) = %g, want %g", vffdimSC[i][0], vffdimSC[i][1], f, fmaxSC[i]) - } - } -} - -func TestMin(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Min(vf[i], floor[i]); floor[i] != f { - t.Errorf("Min(%g, %g) = %g, want %g", vf[i], floor[i], f, floor[i]) - } - } - for i := 0; i < len(vffdimSC); i++ { - if f := Min(vffdimSC[i][0], vffdimSC[i][1]); !alike(fminSC[i], f) { - t.Errorf("Min(%g, %g) = %g, want %g", vffdimSC[i][0], vffdimSC[i][1], f, fminSC[i]) - } - } -} - -func TestMod(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Mod(10, vf[i]); fmod[i] != f { - t.Errorf("Mod(10, %g) = %g, want %g", vf[i], f, fmod[i]) - } - } - for i := 0; i < len(vffmodSC); i++ { - if f := Mod(vffmodSC[i][0], vffmodSC[i][1]); !alike(fmodSC[i], f) { - t.Errorf("Mod(%g, %g) = %g, want %g", vffmodSC[i][0], vffmodSC[i][1], f, fmodSC[i]) - } - } -} - -func TestFrexp(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f, j := Frexp(vf[i]); !veryclose(frexp[i].f, f) || frexp[i].i != j { - t.Errorf("Frexp(%g) = %g, %d, want %g, %d", vf[i], f, j, frexp[i].f, frexp[i].i) - } - } - for i := 0; i < len(vffrexpSC); i++ { - if f, j := Frexp(vffrexpSC[i]); !alike(frexpSC[i].f, f) || frexpSC[i].i != j { - t.Errorf("Frexp(%g) = %g, %d, want %g, %d", vffrexpSC[i], f, j, frexpSC[i].f, frexpSC[i].i) - } - } - for i := 0; i < len(vffrexpBC); i++ { - if f, j := Frexp(vffrexpBC[i]); !alike(frexpBC[i].f, f) || frexpBC[i].i != j { - t.Errorf("Frexp(%g) = %g, %d, want %g, %d", vffrexpBC[i], f, j, frexpBC[i].f, frexpBC[i].i) - } - } -} - -func TestGamma(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Gamma(vf[i]); !close(gamma[i], f) { - t.Errorf("Gamma(%g) = %g, want %g", vf[i], f, gamma[i]) - } - } - for i := 0; i < len(vfgammaSC); i++ { - if f := Gamma(vfgammaSC[i]); !alike(gammaSC[i], f) { - t.Errorf("Gamma(%g) = %g, want %g", vfgammaSC[i], f, gammaSC[i]) - } - } -} - -func TestHypot(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := Abs(1e200 * tanh[i] * Sqrt(2)) - if f := Hypot(1e200*tanh[i], 1e200*tanh[i]); !veryclose(a, f) { - t.Errorf("Hypot(%g, %g) = %g, want %g", 1e200*tanh[i], 1e200*tanh[i], f, a) - } - } - for i := 0; i < len(vfhypotSC); i++ { - if f := Hypot(vfhypotSC[i][0], vfhypotSC[i][1]); !alike(hypotSC[i], f) { - t.Errorf("Hypot(%g, %g) = %g, want %g", vfhypotSC[i][0], vfhypotSC[i][1], f, hypotSC[i]) - } - } -} - -func TestHypotGo(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := Abs(1e200 * tanh[i] * Sqrt(2)) - if f := HypotGo(1e200*tanh[i], 1e200*tanh[i]); !veryclose(a, f) { - t.Errorf("HypotGo(%g, %g) = %g, want %g", 1e200*tanh[i], 1e200*tanh[i], f, a) - } - } - for i := 0; i < len(vfhypotSC); i++ { - if f := HypotGo(vfhypotSC[i][0], vfhypotSC[i][1]); !alike(hypotSC[i], f) { - t.Errorf("HypotGo(%g, %g) = %g, want %g", vfhypotSC[i][0], vfhypotSC[i][1], f, hypotSC[i]) - } - } -} - -func TestIlogb(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := frexp[i].i - 1 // adjust because fr in the interval [½, 1) - if e := Ilogb(vf[i]); a != e { - t.Errorf("Ilogb(%g) = %d, want %d", vf[i], e, a) - } - } - for i := 0; i < len(vflogbSC); i++ { - if e := Ilogb(vflogbSC[i]); ilogbSC[i] != e { - t.Errorf("Ilogb(%g) = %d, want %d", vflogbSC[i], e, ilogbSC[i]) - } - } - for i := 0; i < len(vffrexpBC); i++ { - if e := Ilogb(vffrexpBC[i]); int(logbBC[i]) != e { - t.Errorf("Ilogb(%g) = %d, want %d", vffrexpBC[i], e, int(logbBC[i])) - } - } -} - -func TestJ0(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := J0(vf[i]); !soclose(j0[i], f, 4e-14) { - t.Errorf("J0(%g) = %g, want %g", vf[i], f, j0[i]) - } - } - for i := 0; i < len(vfj0SC); i++ { - if f := J0(vfj0SC[i]); !alike(j0SC[i], f) { - t.Errorf("J0(%g) = %g, want %g", vfj0SC[i], f, j0SC[i]) - } - } -} - -func TestJ1(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := J1(vf[i]); !close(j1[i], f) { - t.Errorf("J1(%g) = %g, want %g", vf[i], f, j1[i]) - } - } - for i := 0; i < len(vfj0SC); i++ { - if f := J1(vfj0SC[i]); !alike(j1SC[i], f) { - t.Errorf("J1(%g) = %g, want %g", vfj0SC[i], f, j1SC[i]) - } - } -} - -func TestJn(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Jn(2, vf[i]); !close(j2[i], f) { - t.Errorf("Jn(2, %g) = %g, want %g", vf[i], f, j2[i]) - } - if f := Jn(-3, vf[i]); !close(jM3[i], f) { - t.Errorf("Jn(-3, %g) = %g, want %g", vf[i], f, jM3[i]) - } - } - for i := 0; i < len(vfj0SC); i++ { - if f := Jn(2, vfj0SC[i]); !alike(j2SC[i], f) { - t.Errorf("Jn(2, %g) = %g, want %g", vfj0SC[i], f, j2SC[i]) - } - if f := Jn(-3, vfj0SC[i]); !alike(jM3SC[i], f) { - t.Errorf("Jn(-3, %g) = %g, want %g", vfj0SC[i], f, jM3SC[i]) - } - } -} - -func TestLdexp(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Ldexp(frexp[i].f, frexp[i].i); !veryclose(vf[i], f) { - t.Errorf("Ldexp(%g, %d) = %g, want %g", frexp[i].f, frexp[i].i, f, vf[i]) - } - } - for i := 0; i < len(vffrexpSC); i++ { - if f := Ldexp(frexpSC[i].f, frexpSC[i].i); !alike(vffrexpSC[i], f) { - t.Errorf("Ldexp(%g, %d) = %g, want %g", frexpSC[i].f, frexpSC[i].i, f, vffrexpSC[i]) - } - } - for i := 0; i < len(vfldexpSC); i++ { - if f := Ldexp(vfldexpSC[i].f, vfldexpSC[i].i); !alike(ldexpSC[i], f) { - t.Errorf("Ldexp(%g, %d) = %g, want %g", vfldexpSC[i].f, vfldexpSC[i].i, f, ldexpSC[i]) - } - } - for i := 0; i < len(vffrexpBC); i++ { - if f := Ldexp(frexpBC[i].f, frexpBC[i].i); !alike(vffrexpBC[i], f) { - t.Errorf("Ldexp(%g, %d) = %g, want %g", frexpBC[i].f, frexpBC[i].i, f, vffrexpBC[i]) - } - } - for i := 0; i < len(vfldexpBC); i++ { - if f := Ldexp(vfldexpBC[i].f, vfldexpBC[i].i); !alike(ldexpBC[i], f) { - t.Errorf("Ldexp(%g, %d) = %g, want %g", vfldexpBC[i].f, vfldexpBC[i].i, f, ldexpBC[i]) - } - } -} - -func TestLgamma(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f, s := Lgamma(vf[i]); !close(lgamma[i].f, f) || lgamma[i].i != s { - t.Errorf("Lgamma(%g) = %g, %d, want %g, %d", vf[i], f, s, lgamma[i].f, lgamma[i].i) - } - } - for i := 0; i < len(vflgammaSC); i++ { - if f, s := Lgamma(vflgammaSC[i]); !alike(lgammaSC[i].f, f) || lgammaSC[i].i != s { - t.Errorf("Lgamma(%g) = %g, %d, want %g, %d", vflgammaSC[i], f, s, lgammaSC[i].f, lgammaSC[i].i) - } - } -} - -func TestLog(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := Abs(vf[i]) - if f := Log(a); log[i] != f { - t.Errorf("Log(%g) = %g, want %g", a, f, log[i]) - } - } - if f := Log(10); f != Ln10 { - t.Errorf("Log(%g) = %g, want %g", 10.0, f, Ln10) - } - for i := 0; i < len(vflogSC); i++ { - if f := Log(vflogSC[i]); !alike(logSC[i], f) { - t.Errorf("Log(%g) = %g, want %g", vflogSC[i], f, logSC[i]) - } - } -} - -func TestLogb(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Logb(vf[i]); logb[i] != f { - t.Errorf("Logb(%g) = %g, want %g", vf[i], f, logb[i]) - } - } - for i := 0; i < len(vflogbSC); i++ { - if f := Logb(vflogbSC[i]); !alike(logbSC[i], f) { - t.Errorf("Logb(%g) = %g, want %g", vflogbSC[i], f, logbSC[i]) - } - } - for i := 0; i < len(vffrexpBC); i++ { - if f := Logb(vffrexpBC[i]); !alike(logbBC[i], f) { - t.Errorf("Logb(%g) = %g, want %g", vffrexpBC[i], f, logbBC[i]) - } - } -} - -func TestLog10(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := Abs(vf[i]) - if f := Log10(a); !veryclose(log10[i], f) { - t.Errorf("Log10(%g) = %g, want %g", a, f, log10[i]) - } - } - if f := Log10(E); f != Log10E { - t.Errorf("Log10(%g) = %g, want %g", E, f, Log10E) - } - for i := 0; i < len(vflogSC); i++ { - if f := Log10(vflogSC[i]); !alike(logSC[i], f) { - t.Errorf("Log10(%g) = %g, want %g", vflogSC[i], f, logSC[i]) - } - } -} - -func TestLog1p(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := vf[i] / 100 - if f := Log1p(a); !veryclose(log1p[i], f) { - t.Errorf("Log1p(%g) = %g, want %g", a, f, log1p[i]) - } - } - a := 9.0 - if f := Log1p(a); f != Ln10 { - t.Errorf("Log1p(%g) = %g, want %g", a, f, Ln10) - } - for i := 0; i < len(vflogSC); i++ { - if f := Log1p(vflog1pSC[i]); !alike(log1pSC[i], f) { - t.Errorf("Log1p(%g) = %g, want %g", vflog1pSC[i], f, log1pSC[i]) - } - } -} - -func TestLog2(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := Abs(vf[i]) - if f := Log2(a); !veryclose(log2[i], f) { - t.Errorf("Log2(%g) = %g, want %g", a, f, log2[i]) - } - } - if f := Log2(E); f != Log2E { - t.Errorf("Log2(%g) = %g, want %g", E, f, Log2E) - } - for i := 0; i < len(vflogSC); i++ { - if f := Log2(vflogSC[i]); !alike(logSC[i], f) { - t.Errorf("Log2(%g) = %g, want %g", vflogSC[i], f, logSC[i]) - } - } - for i := -1074; i <= 1023; i++ { - f := Ldexp(1, i) - l := Log2(f) - if l != float64(i) { - t.Errorf("Log2(2**%d) = %g, want %d", i, l, i) - } - } -} - -func TestModf(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f, g := Modf(vf[i]); !veryclose(modf[i][0], f) || !veryclose(modf[i][1], g) { - t.Errorf("Modf(%g) = %g, %g, want %g, %g", vf[i], f, g, modf[i][0], modf[i][1]) - } - } - for i := 0; i < len(vfmodfSC); i++ { - if f, g := Modf(vfmodfSC[i]); !alike(modfSC[i][0], f) || !alike(modfSC[i][1], g) { - t.Errorf("Modf(%g) = %g, %g, want %g, %g", vfmodfSC[i], f, g, modfSC[i][0], modfSC[i][1]) - } - } -} - -func TestNextafter32(t *testing.T) { - for i := 0; i < len(vf); i++ { - vfi := float32(vf[i]) - if f := Nextafter32(vfi, 10); nextafter32[i] != f { - t.Errorf("Nextafter32(%g, %g) = %g want %g", vfi, 10.0, f, nextafter32[i]) - } - } - for i := 0; i < len(vfnextafter32SC); i++ { - if f := Nextafter32(vfnextafter32SC[i][0], vfnextafter32SC[i][1]); !alike(float64(nextafter32SC[i]), float64(f)) { - t.Errorf("Nextafter32(%g, %g) = %g want %g", vfnextafter32SC[i][0], vfnextafter32SC[i][1], f, nextafter32SC[i]) - } - } -} - -func TestNextafter64(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Nextafter(vf[i], 10); nextafter64[i] != f { - t.Errorf("Nextafter64(%g, %g) = %g want %g", vf[i], 10.0, f, nextafter64[i]) - } - } - for i := 0; i < len(vfnextafter64SC); i++ { - if f := Nextafter(vfnextafter64SC[i][0], vfnextafter64SC[i][1]); !alike(nextafter64SC[i], f) { - t.Errorf("Nextafter64(%g, %g) = %g want %g", vfnextafter64SC[i][0], vfnextafter64SC[i][1], f, nextafter64SC[i]) - } - } -} - -func TestPow(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Pow(10, vf[i]); !close(pow[i], f) { - t.Errorf("Pow(10, %g) = %g, want %g", vf[i], f, pow[i]) - } - } - for i := 0; i < len(vfpowSC); i++ { - if f := Pow(vfpowSC[i][0], vfpowSC[i][1]); !alike(powSC[i], f) { - t.Errorf("Pow(%g, %g) = %g, want %g", vfpowSC[i][0], vfpowSC[i][1], f, powSC[i]) - } - } -} - -func TestPow10(t *testing.T) { - for i := 0; i < len(vfpow10SC); i++ { - if f := Pow10(vfpow10SC[i]); !alike(pow10SC[i], f) { - t.Errorf("Pow10(%d) = %g, want %g", vfpow10SC[i], f, pow10SC[i]) - } - } -} - -func TestRemainder(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Remainder(10, vf[i]); remainder[i] != f { - t.Errorf("Remainder(10, %g) = %g, want %g", vf[i], f, remainder[i]) - } - } - for i := 0; i < len(vffmodSC); i++ { - if f := Remainder(vffmodSC[i][0], vffmodSC[i][1]); !alike(fmodSC[i], f) { - t.Errorf("Remainder(%g, %g) = %g, want %g", vffmodSC[i][0], vffmodSC[i][1], f, fmodSC[i]) - } - } -} - -func TestSignbit(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Signbit(vf[i]); signbit[i] != f { - t.Errorf("Signbit(%g) = %t, want %t", vf[i], f, signbit[i]) - } - } - for i := 0; i < len(vfsignbitSC); i++ { - if f := Signbit(vfsignbitSC[i]); signbitSC[i] != f { - t.Errorf("Signbit(%g) = %t, want %t", vfsignbitSC[i], f, signbitSC[i]) - } - } -} -func TestSin(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Sin(vf[i]); !veryclose(sin[i], f) { - t.Errorf("Sin(%g) = %g, want %g", vf[i], f, sin[i]) - } - } - for i := 0; i < len(vfsinSC); i++ { - if f := Sin(vfsinSC[i]); !alike(sinSC[i], f) { - t.Errorf("Sin(%g) = %g, want %g", vfsinSC[i], f, sinSC[i]) - } - } -} - -func TestSincos(t *testing.T) { - for i := 0; i < len(vf); i++ { - if s, c := Sincos(vf[i]); !veryclose(sin[i], s) || !veryclose(cos[i], c) { - t.Errorf("Sincos(%g) = %g, %g want %g, %g", vf[i], s, c, sin[i], cos[i]) - } - } -} - -func TestSinh(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Sinh(vf[i]); !close(sinh[i], f) { - t.Errorf("Sinh(%g) = %g, want %g", vf[i], f, sinh[i]) - } - } - for i := 0; i < len(vfsinhSC); i++ { - if f := Sinh(vfsinhSC[i]); !alike(sinhSC[i], f) { - t.Errorf("Sinh(%g) = %g, want %g", vfsinhSC[i], f, sinhSC[i]) - } - } -} - -func TestSqrt(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := Abs(vf[i]) - if f := SqrtGo(a); sqrt[i] != f { - t.Errorf("SqrtGo(%g) = %g, want %g", a, f, sqrt[i]) - } - a = Abs(vf[i]) - if f := Sqrt(a); sqrt[i] != f { - t.Errorf("Sqrt(%g) = %g, want %g", a, f, sqrt[i]) - } - } - for i := 0; i < len(vfsqrtSC); i++ { - if f := SqrtGo(vfsqrtSC[i]); !alike(sqrtSC[i], f) { - t.Errorf("SqrtGo(%g) = %g, want %g", vfsqrtSC[i], f, sqrtSC[i]) - } - if f := Sqrt(vfsqrtSC[i]); !alike(sqrtSC[i], f) { - t.Errorf("Sqrt(%g) = %g, want %g", vfsqrtSC[i], f, sqrtSC[i]) - } - } -} - -func TestTan(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Tan(vf[i]); !veryclose(tan[i], f) { - t.Errorf("Tan(%g) = %g, want %g", vf[i], f, tan[i]) - } - } - // same special cases as Sin - for i := 0; i < len(vfsinSC); i++ { - if f := Tan(vfsinSC[i]); !alike(sinSC[i], f) { - t.Errorf("Tan(%g) = %g, want %g", vfsinSC[i], f, sinSC[i]) - } - } -} - -func TestTanh(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Tanh(vf[i]); !veryclose(tanh[i], f) { - t.Errorf("Tanh(%g) = %g, want %g", vf[i], f, tanh[i]) - } - } - for i := 0; i < len(vftanhSC); i++ { - if f := Tanh(vftanhSC[i]); !alike(tanhSC[i], f) { - t.Errorf("Tanh(%g) = %g, want %g", vftanhSC[i], f, tanhSC[i]) - } - } -} - -func TestTrunc(t *testing.T) { - for i := 0; i < len(vf); i++ { - if f := Trunc(vf[i]); trunc[i] != f { - t.Errorf("Trunc(%g) = %g, want %g", vf[i], f, trunc[i]) - } - } - for i := 0; i < len(vfceilSC); i++ { - if f := Trunc(vfceilSC[i]); !alike(ceilSC[i], f) { - t.Errorf("Trunc(%g) = %g, want %g", vfceilSC[i], f, ceilSC[i]) - } - } -} - -func TestY0(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := Abs(vf[i]) - if f := Y0(a); !close(y0[i], f) { - t.Errorf("Y0(%g) = %g, want %g", a, f, y0[i]) - } - } - for i := 0; i < len(vfy0SC); i++ { - if f := Y0(vfy0SC[i]); !alike(y0SC[i], f) { - t.Errorf("Y0(%g) = %g, want %g", vfy0SC[i], f, y0SC[i]) - } - } -} - -func TestY1(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := Abs(vf[i]) - if f := Y1(a); !soclose(y1[i], f, 2e-14) { - t.Errorf("Y1(%g) = %g, want %g", a, f, y1[i]) - } - } - for i := 0; i < len(vfy0SC); i++ { - if f := Y1(vfy0SC[i]); !alike(y1SC[i], f) { - t.Errorf("Y1(%g) = %g, want %g", vfy0SC[i], f, y1SC[i]) - } - } -} - -func TestYn(t *testing.T) { - for i := 0; i < len(vf); i++ { - a := Abs(vf[i]) - if f := Yn(2, a); !close(y2[i], f) { - t.Errorf("Yn(2, %g) = %g, want %g", a, f, y2[i]) - } - if f := Yn(-3, a); !close(yM3[i], f) { - t.Errorf("Yn(-3, %g) = %g, want %g", a, f, yM3[i]) - } - } - for i := 0; i < len(vfy0SC); i++ { - if f := Yn(2, vfy0SC[i]); !alike(y2SC[i], f) { - t.Errorf("Yn(2, %g) = %g, want %g", vfy0SC[i], f, y2SC[i]) - } - if f := Yn(-3, vfy0SC[i]); !alike(yM3SC[i], f) { - t.Errorf("Yn(-3, %g) = %g, want %g", vfy0SC[i], f, yM3SC[i]) - } - } -} - -// Check that math functions of high angle values -// return accurate results. [Since (vf[i] + large) - large != vf[i], -// testing for Trig(vf[i] + large) == Trig(vf[i]), where large is -// a multiple of 2*Pi, is misleading.] -func TestLargeCos(t *testing.T) { - large := float64(100000 * Pi) - for i := 0; i < len(vf); i++ { - f1 := cosLarge[i] - f2 := Cos(vf[i] + large) - if !close(f1, f2) { - t.Errorf("Cos(%g) = %g, want %g", vf[i]+large, f2, f1) - } - } -} - -func TestLargeSin(t *testing.T) { - large := float64(100000 * Pi) - for i := 0; i < len(vf); i++ { - f1 := sinLarge[i] - f2 := Sin(vf[i] + large) - if !close(f1, f2) { - t.Errorf("Sin(%g) = %g, want %g", vf[i]+large, f2, f1) - } - } -} - -func TestLargeSincos(t *testing.T) { - large := float64(100000 * Pi) - for i := 0; i < len(vf); i++ { - f1, g1 := sinLarge[i], cosLarge[i] - f2, g2 := Sincos(vf[i] + large) - if !close(f1, f2) || !close(g1, g2) { - t.Errorf("Sincos(%g) = %g, %g, want %g, %g", vf[i]+large, f2, g2, f1, g1) - } - } -} - -func TestLargeTan(t *testing.T) { - large := float64(100000 * Pi) - for i := 0; i < len(vf); i++ { - f1 := tanLarge[i] - f2 := Tan(vf[i] + large) - if !close(f1, f2) { - t.Errorf("Tan(%g) = %g, want %g", vf[i]+large, f2, f1) - } - } -} - -// Check that math constants are accepted by compiler -// and have right value (assumes strconv.ParseFloat works). -// http://code.google.com/p/go/issues/detail?id=201 - -type floatTest struct { - val interface{} - name string - str string -} - -var floatTests = []floatTest{ - {float64(MaxFloat64), "MaxFloat64", "1.7976931348623157e+308"}, - {float64(SmallestNonzeroFloat64), "SmallestNonzeroFloat64", "5e-324"}, - {float32(MaxFloat32), "MaxFloat32", "3.4028235e+38"}, - {float32(SmallestNonzeroFloat32), "SmallestNonzeroFloat32", "1e-45"}, -} - -func TestFloatMinMax(t *testing.T) { - for _, tt := range floatTests { - s := fmt.Sprint(tt.val) - if s != tt.str { - t.Errorf("Sprint(%v) = %s, want %s", tt.name, s, tt.str) - } - } -} - -// Benchmarks - -func BenchmarkAcos(b *testing.B) { - for i := 0; i < b.N; i++ { - Acos(.5) - } -} - -func BenchmarkAcosh(b *testing.B) { - for i := 0; i < b.N; i++ { - Acosh(1.5) - } -} - -func BenchmarkAsin(b *testing.B) { - for i := 0; i < b.N; i++ { - Asin(.5) - } -} - -func BenchmarkAsinh(b *testing.B) { - for i := 0; i < b.N; i++ { - Asinh(.5) - } -} - -func BenchmarkAtan(b *testing.B) { - for i := 0; i < b.N; i++ { - Atan(.5) - } -} - -func BenchmarkAtanh(b *testing.B) { - for i := 0; i < b.N; i++ { - Atanh(.5) - } -} - -func BenchmarkAtan2(b *testing.B) { - for i := 0; i < b.N; i++ { - Atan2(.5, 1) - } -} - -func BenchmarkCbrt(b *testing.B) { - for i := 0; i < b.N; i++ { - Cbrt(10) - } -} - -func BenchmarkCeil(b *testing.B) { - for i := 0; i < b.N; i++ { - Ceil(.5) - } -} - -func BenchmarkCopysign(b *testing.B) { - for i := 0; i < b.N; i++ { - Copysign(.5, -1) - } -} - -func BenchmarkCos(b *testing.B) { - for i := 0; i < b.N; i++ { - Cos(.5) - } -} - -func BenchmarkCosh(b *testing.B) { - for i := 0; i < b.N; i++ { - Cosh(2.5) - } -} - -func BenchmarkErf(b *testing.B) { - for i := 0; i < b.N; i++ { - Erf(.5) - } -} - -func BenchmarkErfc(b *testing.B) { - for i := 0; i < b.N; i++ { - Erfc(.5) - } -} - -func BenchmarkExp(b *testing.B) { - for i := 0; i < b.N; i++ { - Exp(.5) - } -} - -func BenchmarkExpGo(b *testing.B) { - for i := 0; i < b.N; i++ { - ExpGo(.5) - } -} - -func BenchmarkExpm1(b *testing.B) { - for i := 0; i < b.N; i++ { - Expm1(.5) - } -} - -func BenchmarkExp2(b *testing.B) { - for i := 0; i < b.N; i++ { - Exp2(.5) - } -} - -func BenchmarkExp2Go(b *testing.B) { - for i := 0; i < b.N; i++ { - Exp2Go(.5) - } -} - -func BenchmarkAbs(b *testing.B) { - for i := 0; i < b.N; i++ { - Abs(.5) - } -} - -func BenchmarkDim(b *testing.B) { - for i := 0; i < b.N; i++ { - Dim(10, 3) - } -} - -func BenchmarkFloor(b *testing.B) { - for i := 0; i < b.N; i++ { - Floor(.5) - } -} - -func BenchmarkMax(b *testing.B) { - for i := 0; i < b.N; i++ { - Max(10, 3) - } -} - -func BenchmarkMin(b *testing.B) { - for i := 0; i < b.N; i++ { - Min(10, 3) - } -} - -func BenchmarkMod(b *testing.B) { - for i := 0; i < b.N; i++ { - Mod(10, 3) - } -} - -func BenchmarkFrexp(b *testing.B) { - for i := 0; i < b.N; i++ { - Frexp(8) - } -} - -func BenchmarkGamma(b *testing.B) { - for i := 0; i < b.N; i++ { - Gamma(2.5) - } -} - -func BenchmarkHypot(b *testing.B) { - for i := 0; i < b.N; i++ { - Hypot(3, 4) - } -} - -func BenchmarkHypotGo(b *testing.B) { - for i := 0; i < b.N; i++ { - HypotGo(3, 4) - } -} - -func BenchmarkIlogb(b *testing.B) { - for i := 0; i < b.N; i++ { - Ilogb(.5) - } -} - -func BenchmarkJ0(b *testing.B) { - for i := 0; i < b.N; i++ { - J0(2.5) - } -} - -func BenchmarkJ1(b *testing.B) { - for i := 0; i < b.N; i++ { - J1(2.5) - } -} - -func BenchmarkJn(b *testing.B) { - for i := 0; i < b.N; i++ { - Jn(2, 2.5) - } -} - -func BenchmarkLdexp(b *testing.B) { - for i := 0; i < b.N; i++ { - Ldexp(.5, 2) - } -} - -func BenchmarkLgamma(b *testing.B) { - for i := 0; i < b.N; i++ { - Lgamma(2.5) - } -} - -func BenchmarkLog(b *testing.B) { - for i := 0; i < b.N; i++ { - Log(.5) - } -} - -func BenchmarkLogb(b *testing.B) { - for i := 0; i < b.N; i++ { - Logb(.5) - } -} - -func BenchmarkLog1p(b *testing.B) { - for i := 0; i < b.N; i++ { - Log1p(.5) - } -} - -func BenchmarkLog10(b *testing.B) { - for i := 0; i < b.N; i++ { - Log10(.5) - } -} - -func BenchmarkLog2(b *testing.B) { - for i := 0; i < b.N; i++ { - Log2(.5) - } -} - -func BenchmarkModf(b *testing.B) { - for i := 0; i < b.N; i++ { - Modf(1.5) - } -} - -func BenchmarkNextafter32(b *testing.B) { - for i := 0; i < b.N; i++ { - Nextafter32(.5, 1) - } -} - -func BenchmarkNextafter64(b *testing.B) { - for i := 0; i < b.N; i++ { - Nextafter(.5, 1) - } -} - -func BenchmarkPowInt(b *testing.B) { - for i := 0; i < b.N; i++ { - Pow(2, 2) - } -} - -func BenchmarkPowFrac(b *testing.B) { - for i := 0; i < b.N; i++ { - Pow(2.5, 1.5) - } -} - -func BenchmarkPow10Pos(b *testing.B) { - for i := 0; i < b.N; i++ { - Pow10(300) - } -} - -func BenchmarkPow10Neg(b *testing.B) { - for i := 0; i < b.N; i++ { - Pow10(-300) - } -} - -func BenchmarkRemainder(b *testing.B) { - for i := 0; i < b.N; i++ { - Remainder(10, 3) - } -} - -func BenchmarkSignbit(b *testing.B) { - for i := 0; i < b.N; i++ { - Signbit(2.5) - } -} - -func BenchmarkSin(b *testing.B) { - for i := 0; i < b.N; i++ { - Sin(.5) - } -} - -func BenchmarkSincos(b *testing.B) { - for i := 0; i < b.N; i++ { - Sincos(.5) - } -} - -func BenchmarkSinh(b *testing.B) { - for i := 0; i < b.N; i++ { - Sinh(2.5) - } -} - -func BenchmarkSqrt(b *testing.B) { - for i := 0; i < b.N; i++ { - Sqrt(10) - } -} - -func BenchmarkSqrtGo(b *testing.B) { - for i := 0; i < b.N; i++ { - SqrtGo(10) - } -} - -func BenchmarkTan(b *testing.B) { - for i := 0; i < b.N; i++ { - Tan(.5) - } -} - -func BenchmarkTanh(b *testing.B) { - for i := 0; i < b.N; i++ { - Tanh(2.5) - } -} -func BenchmarkTrunc(b *testing.B) { - for i := 0; i < b.N; i++ { - Trunc(.5) - } -} - -func BenchmarkY0(b *testing.B) { - for i := 0; i < b.N; i++ { - Y0(2.5) - } -} - -func BenchmarkY1(b *testing.B) { - for i := 0; i < b.N; i++ { - Y1(2.5) - } -} - -func BenchmarkYn(b *testing.B) { - for i := 0; i < b.N; i++ { - Yn(2, 2.5) - } -} diff --git a/src/pkg/math/asin.go b/src/pkg/math/asin.go deleted file mode 100644 index 88b851e55..000000000 --- a/src/pkg/math/asin.go +++ /dev/null @@ -1,55 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -/* - Floating-point arcsine and arccosine. - - They are implemented by computing the arctangent - after appropriate range reduction. -*/ - -// Asin returns the arcsine, in radians, of x. -// -// Special cases are: -// Asin(±0) = ±0 -// Asin(x) = NaN if x < -1 or x > 1 -func Asin(x float64) float64 - -func asin(x float64) float64 { - if x == 0 { - return x // special case - } - sign := false - if x < 0 { - x = -x - sign = true - } - if x > 1 { - return NaN() // special case - } - - temp := Sqrt(1 - x*x) - if x > 0.7 { - temp = Pi/2 - satan(temp/x) - } else { - temp = satan(x / temp) - } - - if sign { - temp = -temp - } - return temp -} - -// Acos returns the arccosine, in radians, of x. -// -// Special case is: -// Acos(x) = NaN if x < -1 or x > 1 -func Acos(x float64) float64 - -func acos(x float64) float64 { - return Pi/2 - Asin(x) -} diff --git a/src/pkg/math/asin_386.s b/src/pkg/math/asin_386.s deleted file mode 100644 index 4f34e123e..000000000 --- a/src/pkg/math/asin_386.s +++ /dev/null @@ -1,30 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Asin(x float64) float64 -TEXT ·Asin(SB),NOSPLIT,$0 - FMOVD x+0(FP), F0 // F0=sin(x) - FMOVD F0, F1 // F0=sin(x), F1=sin(x) - FMULD F0, F0 // F0=sin(x)*sin(x), F1=sin(x) - FLD1 // F0=1, F1=sin(x)*sin(x), F2=sin(x) - FSUBRDP F0, F1 // F0=1-sin(x)*sin(x) (=cos(x)*cos(x)), F1=sin(x) - FSQRT // F0=cos(x), F1=sin(x) - FPATAN // F0=arcsin(sin(x))=x - FMOVDP F0, ret+8(FP) - RET - -// func Acos(x float64) float64 -TEXT ·Acos(SB),NOSPLIT,$0 - FMOVD x+0(FP), F0 // F0=cos(x) - FMOVD F0, F1 // F0=cos(x), F1=cos(x) - FMULD F0, F0 // F0=cos(x)*cos(x), F1=cos(x) - FLD1 // F0=1, F1=cos(x)*cos(x), F2=cos(x) - FSUBRDP F0, F1 // F0=1-cos(x)*cos(x) (=sin(x)*sin(x)), F1=cos(x) - FSQRT // F0=sin(x), F1=cos(x) - FXCHD F0, F1 // F0=cos(x), F1=sin(x) - FPATAN // F0=arccos(cos(x))=x - FMOVDP F0, ret+8(FP) - RET diff --git a/src/pkg/math/asin_amd64.s b/src/pkg/math/asin_amd64.s deleted file mode 100644 index 1a43d489b..000000000 --- a/src/pkg/math/asin_amd64.s +++ /dev/null @@ -1,11 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Asin(SB),NOSPLIT,$0 - JMP ·asin(SB) - -TEXT ·Acos(SB),NOSPLIT,$0 - JMP ·acos(SB) diff --git a/src/pkg/math/asin_amd64p32.s b/src/pkg/math/asin_amd64p32.s deleted file mode 100644 index 2751c475f..000000000 --- a/src/pkg/math/asin_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "asin_amd64.s" diff --git a/src/pkg/math/asin_arm.s b/src/pkg/math/asin_arm.s deleted file mode 100644 index 8fe03b61d..000000000 --- a/src/pkg/math/asin_arm.s +++ /dev/null @@ -1,11 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Asin(SB),NOSPLIT,$0 - B ·asin(SB) - -TEXT ·Acos(SB),NOSPLIT,$0 - B ·acos(SB) diff --git a/src/pkg/math/asinh.go b/src/pkg/math/asinh.go deleted file mode 100644 index ff2de0215..000000000 --- a/src/pkg/math/asinh.go +++ /dev/null @@ -1,69 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// The original C code, the long comment, and the constants -// below are from FreeBSD's /usr/src/lib/msun/src/s_asinh.c -// and came with this notice. The go code is a simplified -// version of the original C. -// -// ==================================================== -// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. -// -// Developed at SunPro, a Sun Microsystems, Inc. business. -// Permission to use, copy, modify, and distribute this -// software is freely granted, provided that this notice -// is preserved. -// ==================================================== -// -// -// asinh(x) -// Method : -// Based on -// asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] -// we have -// asinh(x) := x if 1+x*x=1, -// := sign(x)*(log(x)+ln2)) for large |x|, else -// := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else -// := sign(x)*log1p(|x| + x**2/(1 + sqrt(1+x**2))) -// - -// Asinh returns the inverse hyperbolic sine of x. -// -// Special cases are: -// Asinh(±0) = ±0 -// Asinh(±Inf) = ±Inf -// Asinh(NaN) = NaN -func Asinh(x float64) float64 { - const ( - Ln2 = 6.93147180559945286227e-01 // 0x3FE62E42FEFA39EF - NearZero = 1.0 / (1 << 28) // 2**-28 - Large = 1 << 28 // 2**28 - ) - // special cases - if IsNaN(x) || IsInf(x, 0) { - return x - } - sign := false - if x < 0 { - x = -x - sign = true - } - var temp float64 - switch { - case x > Large: - temp = Log(x) + Ln2 // |x| > 2**28 - case x > 2: - temp = Log(2*x + 1/(Sqrt(x*x+1)+x)) // 2**28 > |x| > 2.0 - case x < NearZero: - temp = x // |x| < 2**-28 - default: - temp = Log1p(x + x*x/(1+Sqrt(1+x*x))) // 2.0 > |x| > 2**-28 - } - if sign { - temp = -temp - } - return temp -} diff --git a/src/pkg/math/atan.go b/src/pkg/math/atan.go deleted file mode 100644 index 7fcc90b8b..000000000 --- a/src/pkg/math/atan.go +++ /dev/null @@ -1,105 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -/* - Floating-point arctangent. -*/ - -// The original C code, the long comment, and the constants below were -// from http://netlib.sandia.gov/cephes/cmath/atan.c, available from -// http://www.netlib.org/cephes/cmath.tgz. -// The go code is a version of the original C. -// -// atan.c -// Inverse circular tangent (arctangent) -// -// SYNOPSIS: -// double x, y, atan(); -// y = atan( x ); -// -// DESCRIPTION: -// Returns radian angle between -pi/2 and +pi/2 whose tangent is x. -// -// Range reduction is from three intervals into the interval from zero to 0.66. -// The approximant uses a rational function of degree 4/5 of the form -// x + x**3 P(x)/Q(x). -// -// ACCURACY: -// Relative error: -// arithmetic domain # trials peak rms -// DEC -10, 10 50000 2.4e-17 8.3e-18 -// IEEE -10, 10 10^6 1.8e-16 5.0e-17 -// -// Cephes Math Library Release 2.8: June, 2000 -// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier -// -// The readme file at http://netlib.sandia.gov/cephes/ says: -// Some software in this archive may be from the book _Methods and -// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster -// International, 1989) or from the Cephes Mathematical Library, a -// commercial product. In either event, it is copyrighted by the author. -// What you see here may be used freely but it comes with no support or -// guarantee. -// -// The two known misprints in the book are repaired here in the -// source listings for the gamma function and the incomplete beta -// integral. -// -// Stephen L. Moshier -// moshier@na-net.ornl.gov - -// xatan evaluates a series valid in the range [0, 0.66]. -func xatan(x float64) float64 { - const ( - P0 = -8.750608600031904122785e-01 - P1 = -1.615753718733365076637e+01 - P2 = -7.500855792314704667340e+01 - P3 = -1.228866684490136173410e+02 - P4 = -6.485021904942025371773e+01 - Q0 = +2.485846490142306297962e+01 - Q1 = +1.650270098316988542046e+02 - Q2 = +4.328810604912902668951e+02 - Q3 = +4.853903996359136964868e+02 - Q4 = +1.945506571482613964425e+02 - ) - z := x * x - z = z * ((((P0*z+P1)*z+P2)*z+P3)*z + P4) / (((((z+Q0)*z+Q1)*z+Q2)*z+Q3)*z + Q4) - z = x*z + x - return z -} - -// satan reduces its argument (known to be positive) -// to the range [0, 0.66] and calls xatan. -func satan(x float64) float64 { - const ( - Morebits = 6.123233995736765886130e-17 // pi/2 = PIO2 + Morebits - Tan3pio8 = 2.41421356237309504880 // tan(3*pi/8) - ) - if x <= 0.66 { - return xatan(x) - } - if x > Tan3pio8 { - return Pi/2 - xatan(1/x) + Morebits - } - return Pi/4 + xatan((x-1)/(x+1)) + 0.5*Morebits -} - -// Atan returns the arctangent, in radians, of x. -// -// Special cases are: -// Atan(±0) = ±0 -// Atan(±Inf) = ±Pi/2 -func Atan(x float64) float64 - -func atan(x float64) float64 { - if x == 0 { - return x - } - if x > 0 { - return satan(x) - } - return -satan(-x) -} diff --git a/src/pkg/math/atan2.go b/src/pkg/math/atan2.go deleted file mode 100644 index d84b332c9..000000000 --- a/src/pkg/math/atan2.go +++ /dev/null @@ -1,71 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// Atan2 returns the arc tangent of y/x, using -// the signs of the two to determine the quadrant -// of the return value. -// -// Special cases are (in order): -// Atan2(y, NaN) = NaN -// Atan2(NaN, x) = NaN -// Atan2(+0, x>=0) = +0 -// Atan2(-0, x>=0) = -0 -// Atan2(+0, x<=-0) = +Pi -// Atan2(-0, x<=-0) = -Pi -// Atan2(y>0, 0) = +Pi/2 -// Atan2(y<0, 0) = -Pi/2 -// Atan2(+Inf, +Inf) = +Pi/4 -// Atan2(-Inf, +Inf) = -Pi/4 -// Atan2(+Inf, -Inf) = 3Pi/4 -// Atan2(-Inf, -Inf) = -3Pi/4 -// Atan2(y, +Inf) = 0 -// Atan2(y>0, -Inf) = +Pi -// Atan2(y<0, -Inf) = -Pi -// Atan2(+Inf, x) = +Pi/2 -// Atan2(-Inf, x) = -Pi/2 -func Atan2(y, x float64) float64 - -func atan2(y, x float64) float64 { - // special cases - switch { - case IsNaN(y) || IsNaN(x): - return NaN() - case y == 0: - if x >= 0 && !Signbit(x) { - return Copysign(0, y) - } - return Copysign(Pi, y) - case x == 0: - return Copysign(Pi/2, y) - case IsInf(x, 0): - if IsInf(x, 1) { - switch { - case IsInf(y, 0): - return Copysign(Pi/4, y) - default: - return Copysign(0, y) - } - } - switch { - case IsInf(y, 0): - return Copysign(3*Pi/4, y) - default: - return Copysign(Pi, y) - } - case IsInf(y, 0): - return Copysign(Pi/2, y) - } - - // Call atan and determine the quadrant. - q := Atan(y / x) - if x < 0 { - if q <= 0 { - return q + Pi - } - return q - Pi - } - return q -} diff --git a/src/pkg/math/atan2_386.s b/src/pkg/math/atan2_386.s deleted file mode 100644 index 31a74e726..000000000 --- a/src/pkg/math/atan2_386.s +++ /dev/null @@ -1,13 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Atan2(y, x float64) float64 // =atan(y/x) -TEXT ·Atan2(SB),NOSPLIT,$0 - FMOVD y+0(FP), F0 // F0=y - FMOVD x+8(FP), F0 // F0=x, F1=y - FPATAN // F0=atan(F1/F0) - FMOVDP F0, ret+16(FP) - RET diff --git a/src/pkg/math/atan2_amd64.s b/src/pkg/math/atan2_amd64.s deleted file mode 100644 index fc471f76c..000000000 --- a/src/pkg/math/atan2_amd64.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Atan2(SB),NOSPLIT,$0 - JMP ·atan2(SB) diff --git a/src/pkg/math/atan2_amd64p32.s b/src/pkg/math/atan2_amd64p32.s deleted file mode 100644 index 3fdc03ca8..000000000 --- a/src/pkg/math/atan2_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "atan2_amd64.s" diff --git a/src/pkg/math/atan2_arm.s b/src/pkg/math/atan2_arm.s deleted file mode 100644 index 06c12ecbc..000000000 --- a/src/pkg/math/atan2_arm.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Atan2(SB),NOSPLIT,$0 - B ·atan2(SB) diff --git a/src/pkg/math/atan_386.s b/src/pkg/math/atan_386.s deleted file mode 100644 index f3976b1d3..000000000 --- a/src/pkg/math/atan_386.s +++ /dev/null @@ -1,13 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Atan(x float64) float64 -TEXT ·Atan(SB),NOSPLIT,$0 - FMOVD x+0(FP), F0 // F0=x - FLD1 // F0=1, F1=x - FPATAN // F0=atan(F1/F0) - FMOVDP F0, ret+8(FP) - RET diff --git a/src/pkg/math/atan_amd64.s b/src/pkg/math/atan_amd64.s deleted file mode 100644 index b801ae99d..000000000 --- a/src/pkg/math/atan_amd64.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Atan(SB),NOSPLIT,$0 - JMP ·atan(SB) diff --git a/src/pkg/math/atan_amd64p32.s b/src/pkg/math/atan_amd64p32.s deleted file mode 100644 index 1c1f6ceda..000000000 --- a/src/pkg/math/atan_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "atan_amd64.s" diff --git a/src/pkg/math/atan_arm.s b/src/pkg/math/atan_arm.s deleted file mode 100644 index d190a8bb0..000000000 --- a/src/pkg/math/atan_arm.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Atan(SB),NOSPLIT,$0 - B ·atan(SB) diff --git a/src/pkg/math/atanh.go b/src/pkg/math/atanh.go deleted file mode 100644 index 113d5c103..000000000 --- a/src/pkg/math/atanh.go +++ /dev/null @@ -1,77 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// The original C code, the long comment, and the constants -// below are from FreeBSD's /usr/src/lib/msun/src/e_atanh.c -// and came with this notice. The go code is a simplified -// version of the original C. -// -// ==================================================== -// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. -// -// Developed at SunPro, a Sun Microsystems, Inc. business. -// Permission to use, copy, modify, and distribute this -// software is freely granted, provided that this notice -// is preserved. -// ==================================================== -// -// -// __ieee754_atanh(x) -// Method : -// 1. Reduce x to positive by atanh(-x) = -atanh(x) -// 2. For x>=0.5 -// 1 2x x -// atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) -// 2 1 - x 1 - x -// -// For x<0.5 -// atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) -// -// Special cases: -// atanh(x) is NaN if |x| > 1 with signal; -// atanh(NaN) is that NaN with no signal; -// atanh(+-1) is +-INF with signal. -// - -// Atanh returns the inverse hyperbolic tangent of x. -// -// Special cases are: -// Atanh(1) = +Inf -// Atanh(±0) = ±0 -// Atanh(-1) = -Inf -// Atanh(x) = NaN if x < -1 or x > 1 -// Atanh(NaN) = NaN -func Atanh(x float64) float64 { - const NearZero = 1.0 / (1 << 28) // 2**-28 - // special cases - switch { - case x < -1 || x > 1 || IsNaN(x): - return NaN() - case x == 1: - return Inf(1) - case x == -1: - return Inf(-1) - } - sign := false - if x < 0 { - x = -x - sign = true - } - var temp float64 - switch { - case x < NearZero: - temp = x - case x < 0.5: - temp = x + x - temp = 0.5 * Log1p(temp+temp*x/(1-x)) - default: - temp = 0.5 * Log1p((x+x)/(1-x)) - } - if sign { - temp = -temp - } - return temp -} diff --git a/src/pkg/math/big/arith.go b/src/pkg/math/big/arith.go deleted file mode 100644 index 3d5a8682d..000000000 --- a/src/pkg/math/big/arith.go +++ /dev/null @@ -1,240 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// This file provides Go implementations of elementary multi-precision -// arithmetic operations on word vectors. Needed for platforms without -// assembly implementations of these routines. - -package big - -// A Word represents a single digit of a multi-precision unsigned integer. -type Word uintptr - -const ( - // Compute the size _S of a Word in bytes. - _m = ^Word(0) - _logS = _m>>8&1 + _m>>16&1 + _m>>32&1 - _S = 1 << _logS - - _W = _S << 3 // word size in bits - _B = 1 << _W // digit base - _M = _B - 1 // digit mask - - _W2 = _W / 2 // half word size in bits - _B2 = 1 << _W2 // half digit base - _M2 = _B2 - 1 // half digit mask -) - -// ---------------------------------------------------------------------------- -// Elementary operations on words -// -// These operations are used by the vector operations below. - -// z1<<_W + z0 = x+y+c, with c == 0 or 1 -func addWW_g(x, y, c Word) (z1, z0 Word) { - yc := y + c - z0 = x + yc - if z0 < x || yc < y { - z1 = 1 - } - return -} - -// z1<<_W + z0 = x-y-c, with c == 0 or 1 -func subWW_g(x, y, c Word) (z1, z0 Word) { - yc := y + c - z0 = x - yc - if z0 > x || yc < y { - z1 = 1 - } - return -} - -// z1<<_W + z0 = x*y -// Adapted from Warren, Hacker's Delight, p. 132. -func mulWW_g(x, y Word) (z1, z0 Word) { - x0 := x & _M2 - x1 := x >> _W2 - y0 := y & _M2 - y1 := y >> _W2 - w0 := x0 * y0 - t := x1*y0 + w0>>_W2 - w1 := t & _M2 - w2 := t >> _W2 - w1 += x0 * y1 - z1 = x1*y1 + w2 + w1>>_W2 - z0 = x * y - return -} - -// z1<<_W + z0 = x*y + c -func mulAddWWW_g(x, y, c Word) (z1, z0 Word) { - z1, zz0 := mulWW(x, y) - if z0 = zz0 + c; z0 < zz0 { - z1++ - } - return -} - -// Length of x in bits. -func bitLen_g(x Word) (n int) { - for ; x >= 0x8000; x >>= 16 { - n += 16 - } - if x >= 0x80 { - x >>= 8 - n += 8 - } - if x >= 0x8 { - x >>= 4 - n += 4 - } - if x >= 0x2 { - x >>= 2 - n += 2 - } - if x >= 0x1 { - n++ - } - return -} - -// log2 computes the integer binary logarithm of x. -// The result is the integer n for which 2^n <= x < 2^(n+1). -// If x == 0, the result is -1. -func log2(x Word) int { - return bitLen(x) - 1 -} - -// Number of leading zeros in x. -func leadingZeros(x Word) uint { - return uint(_W - bitLen(x)) -} - -// q = (u1<<_W + u0 - r)/y -// Adapted from Warren, Hacker's Delight, p. 152. -func divWW_g(u1, u0, v Word) (q, r Word) { - if u1 >= v { - return 1<<_W - 1, 1<<_W - 1 - } - - s := leadingZeros(v) - v <<= s - - vn1 := v >> _W2 - vn0 := v & _M2 - un32 := u1<<s | u0>>(_W-s) - un10 := u0 << s - un1 := un10 >> _W2 - un0 := un10 & _M2 - q1 := un32 / vn1 - rhat := un32 - q1*vn1 - - for q1 >= _B2 || q1*vn0 > _B2*rhat+un1 { - q1-- - rhat += vn1 - if rhat >= _B2 { - break - } - } - - un21 := un32*_B2 + un1 - q1*v - q0 := un21 / vn1 - rhat = un21 - q0*vn1 - - for q0 >= _B2 || q0*vn0 > _B2*rhat+un0 { - q0-- - rhat += vn1 - if rhat >= _B2 { - break - } - } - - return q1*_B2 + q0, (un21*_B2 + un0 - q0*v) >> s -} - -func addVV_g(z, x, y []Word) (c Word) { - for i := range z { - c, z[i] = addWW_g(x[i], y[i], c) - } - return -} - -func subVV_g(z, x, y []Word) (c Word) { - for i := range z { - c, z[i] = subWW_g(x[i], y[i], c) - } - return -} - -func addVW_g(z, x []Word, y Word) (c Word) { - c = y - for i := range z { - c, z[i] = addWW_g(x[i], c, 0) - } - return -} - -func subVW_g(z, x []Word, y Word) (c Word) { - c = y - for i := range z { - c, z[i] = subWW_g(x[i], c, 0) - } - return -} - -func shlVU_g(z, x []Word, s uint) (c Word) { - if n := len(z); n > 0 { - ŝ := _W - s - w1 := x[n-1] - c = w1 >> ŝ - for i := n - 1; i > 0; i-- { - w := w1 - w1 = x[i-1] - z[i] = w<<s | w1>>ŝ - } - z[0] = w1 << s - } - return -} - -func shrVU_g(z, x []Word, s uint) (c Word) { - if n := len(z); n > 0 { - ŝ := _W - s - w1 := x[0] - c = w1 << ŝ - for i := 0; i < n-1; i++ { - w := w1 - w1 = x[i+1] - z[i] = w>>s | w1<<ŝ - } - z[n-1] = w1 >> s - } - return -} - -func mulAddVWW_g(z, x []Word, y, r Word) (c Word) { - c = r - for i := range z { - c, z[i] = mulAddWWW_g(x[i], y, c) - } - return -} - -func addMulVVW_g(z, x []Word, y Word) (c Word) { - for i := range z { - z1, z0 := mulAddWWW_g(x[i], y, z[i]) - c, z[i] = addWW_g(z0, c, 0) - c += z1 - } - return -} - -func divWVW_g(z []Word, xn Word, x []Word, y Word) (r Word) { - r = xn - for i := len(z) - 1; i >= 0; i-- { - z[i], r = divWW_g(r, x[i], y) - } - return -} diff --git a/src/pkg/math/big/arith_386.s b/src/pkg/math/big/arith_386.s deleted file mode 100644 index 1b47c898f..000000000 --- a/src/pkg/math/big/arith_386.s +++ /dev/null @@ -1,278 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// This file provides fast assembly versions for the elementary -// arithmetic operations on vectors implemented in arith.go. - -// func mulWW(x, y Word) (z1, z0 Word) -TEXT ·mulWW(SB),NOSPLIT,$0 - MOVL x+0(FP), AX - MULL y+4(FP) - MOVL DX, z1+8(FP) - MOVL AX, z0+12(FP) - RET - - -// func divWW(x1, x0, y Word) (q, r Word) -TEXT ·divWW(SB),NOSPLIT,$0 - MOVL x1+0(FP), DX - MOVL x0+4(FP), AX - DIVL y+8(FP) - MOVL AX, q+12(FP) - MOVL DX, r+16(FP) - RET - - -// func addVV(z, x, y []Word) (c Word) -TEXT ·addVV(SB),NOSPLIT,$0 - MOVL z+0(FP), DI - MOVL x+12(FP), SI - MOVL y+24(FP), CX - MOVL z_len+4(FP), BP - MOVL $0, BX // i = 0 - MOVL $0, DX // c = 0 - JMP E1 - -L1: MOVL (SI)(BX*4), AX - RCRL $1, DX - ADCL (CX)(BX*4), AX - RCLL $1, DX - MOVL AX, (DI)(BX*4) - ADDL $1, BX // i++ - -E1: CMPL BX, BP // i < n - JL L1 - - MOVL DX, c+36(FP) - RET - - -// func subVV(z, x, y []Word) (c Word) -// (same as addVV except for SBBL instead of ADCL and label names) -TEXT ·subVV(SB),NOSPLIT,$0 - MOVL z+0(FP), DI - MOVL x+12(FP), SI - MOVL y+24(FP), CX - MOVL z_len+4(FP), BP - MOVL $0, BX // i = 0 - MOVL $0, DX // c = 0 - JMP E2 - -L2: MOVL (SI)(BX*4), AX - RCRL $1, DX - SBBL (CX)(BX*4), AX - RCLL $1, DX - MOVL AX, (DI)(BX*4) - ADDL $1, BX // i++ - -E2: CMPL BX, BP // i < n - JL L2 - - MOVL DX, c+36(FP) - RET - - -// func addVW(z, x []Word, y Word) (c Word) -TEXT ·addVW(SB),NOSPLIT,$0 - MOVL z+0(FP), DI - MOVL x+12(FP), SI - MOVL y+24(FP), AX // c = y - MOVL z_len+4(FP), BP - MOVL $0, BX // i = 0 - JMP E3 - -L3: ADDL (SI)(BX*4), AX - MOVL AX, (DI)(BX*4) - RCLL $1, AX - ANDL $1, AX - ADDL $1, BX // i++ - -E3: CMPL BX, BP // i < n - JL L3 - - MOVL AX, c+28(FP) - RET - - -// func subVW(z, x []Word, y Word) (c Word) -TEXT ·subVW(SB),NOSPLIT,$0 - MOVL z+0(FP), DI - MOVL x+12(FP), SI - MOVL y+24(FP), AX // c = y - MOVL z_len+4(FP), BP - MOVL $0, BX // i = 0 - JMP E4 - -L4: MOVL (SI)(BX*4), DX // TODO(gri) is there a reverse SUBL? - SUBL AX, DX - MOVL DX, (DI)(BX*4) - RCLL $1, AX - ANDL $1, AX - ADDL $1, BX // i++ - -E4: CMPL BX, BP // i < n - JL L4 - - MOVL AX, c+28(FP) - RET - - -// func shlVU(z, x []Word, s uint) (c Word) -TEXT ·shlVU(SB),NOSPLIT,$0 - MOVL z_len+4(FP), BX // i = z - SUBL $1, BX // i-- - JL X8b // i < 0 (n <= 0) - - // n > 0 - MOVL z+0(FP), DI - MOVL x+12(FP), SI - MOVL s+24(FP), CX - MOVL (SI)(BX*4), AX // w1 = x[n-1] - MOVL $0, DX - SHLL CX, DX:AX // w1>>ŝ - MOVL DX, c+28(FP) - - CMPL BX, $0 - JLE X8a // i <= 0 - - // i > 0 -L8: MOVL AX, DX // w = w1 - MOVL -4(SI)(BX*4), AX // w1 = x[i-1] - SHLL CX, DX:AX // w<<s | w1>>ŝ - MOVL DX, (DI)(BX*4) // z[i] = w<<s | w1>>ŝ - SUBL $1, BX // i-- - JG L8 // i > 0 - - // i <= 0 -X8a: SHLL CX, AX // w1<<s - MOVL AX, (DI) // z[0] = w1<<s - RET - -X8b: MOVL $0, c+28(FP) - RET - - -// func shrVU(z, x []Word, s uint) (c Word) -TEXT ·shrVU(SB),NOSPLIT,$0 - MOVL z_len+4(FP), BP - SUBL $1, BP // n-- - JL X9b // n < 0 (n <= 0) - - // n > 0 - MOVL z+0(FP), DI - MOVL x+12(FP), SI - MOVL s+24(FP), CX - MOVL (SI), AX // w1 = x[0] - MOVL $0, DX - SHRL CX, DX:AX // w1<<ŝ - MOVL DX, c+28(FP) - - MOVL $0, BX // i = 0 - JMP E9 - - // i < n-1 -L9: MOVL AX, DX // w = w1 - MOVL 4(SI)(BX*4), AX // w1 = x[i+1] - SHRL CX, DX:AX // w>>s | w1<<ŝ - MOVL DX, (DI)(BX*4) // z[i] = w>>s | w1<<ŝ - ADDL $1, BX // i++ - -E9: CMPL BX, BP - JL L9 // i < n-1 - - // i >= n-1 -X9a: SHRL CX, AX // w1>>s - MOVL AX, (DI)(BP*4) // z[n-1] = w1>>s - RET - -X9b: MOVL $0, c+28(FP) - RET - - -// func mulAddVWW(z, x []Word, y, r Word) (c Word) -TEXT ·mulAddVWW(SB),NOSPLIT,$0 - MOVL z+0(FP), DI - MOVL x+12(FP), SI - MOVL y+24(FP), BP - MOVL r+28(FP), CX // c = r - MOVL z_len+4(FP), BX - LEAL (DI)(BX*4), DI - LEAL (SI)(BX*4), SI - NEGL BX // i = -n - JMP E5 - -L5: MOVL (SI)(BX*4), AX - MULL BP - ADDL CX, AX - ADCL $0, DX - MOVL AX, (DI)(BX*4) - MOVL DX, CX - ADDL $1, BX // i++ - -E5: CMPL BX, $0 // i < 0 - JL L5 - - MOVL CX, c+32(FP) - RET - - -// func addMulVVW(z, x []Word, y Word) (c Word) -TEXT ·addMulVVW(SB),NOSPLIT,$0 - MOVL z+0(FP), DI - MOVL x+12(FP), SI - MOVL y+24(FP), BP - MOVL z_len+4(FP), BX - LEAL (DI)(BX*4), DI - LEAL (SI)(BX*4), SI - NEGL BX // i = -n - MOVL $0, CX // c = 0 - JMP E6 - -L6: MOVL (SI)(BX*4), AX - MULL BP - ADDL CX, AX - ADCL $0, DX - ADDL AX, (DI)(BX*4) - ADCL $0, DX - MOVL DX, CX - ADDL $1, BX // i++ - -E6: CMPL BX, $0 // i < 0 - JL L6 - - MOVL CX, c+28(FP) - RET - - -// func divWVW(z* Word, xn Word, x []Word, y Word) (r Word) -TEXT ·divWVW(SB),NOSPLIT,$0 - MOVL z+0(FP), DI - MOVL xn+12(FP), DX // r = xn - MOVL x+16(FP), SI - MOVL y+28(FP), CX - MOVL z_len+4(FP), BX // i = z - JMP E7 - -L7: MOVL (SI)(BX*4), AX - DIVL CX - MOVL AX, (DI)(BX*4) - -E7: SUBL $1, BX // i-- - JGE L7 // i >= 0 - - MOVL DX, r+32(FP) - RET - -// func bitLen(x Word) (n int) -TEXT ·bitLen(SB),NOSPLIT,$0 - BSRL x+0(FP), AX - JZ Z1 - INCL AX - MOVL AX, n+4(FP) - RET - -Z1: MOVL $0, n+4(FP) - RET diff --git a/src/pkg/math/big/arith_amd64.s b/src/pkg/math/big/arith_amd64.s deleted file mode 100644 index 56c4cb050..000000000 --- a/src/pkg/math/big/arith_amd64.s +++ /dev/null @@ -1,401 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// This file provides fast assembly versions for the elementary -// arithmetic operations on vectors implemented in arith.go. - -// Literal instruction for MOVQ $0, CX. -// (MOVQ $0, reg is translated to XORQ reg, reg and clears CF.) -#define ZERO_CX BYTE $0x48; \ - BYTE $0xc7; \ - BYTE $0xc1; \ - BYTE $0x00; \ - BYTE $0x00; \ - BYTE $0x00; \ - BYTE $0x00 - -// func mulWW(x, y Word) (z1, z0 Word) -TEXT ·mulWW(SB),NOSPLIT,$0 - MOVQ x+0(FP), AX - MULQ y+8(FP) - MOVQ DX, z1+16(FP) - MOVQ AX, z0+24(FP) - RET - - -// func divWW(x1, x0, y Word) (q, r Word) -TEXT ·divWW(SB),NOSPLIT,$0 - MOVQ x1+0(FP), DX - MOVQ x0+8(FP), AX - DIVQ y+16(FP) - MOVQ AX, q+24(FP) - MOVQ DX, r+32(FP) - RET - - -// func addVV(z, x, y []Word) (c Word) -TEXT ·addVV(SB),NOSPLIT,$0 - MOVQ z_len+8(FP), DI - MOVQ x+24(FP), R8 - MOVQ y+48(FP), R9 - MOVQ z+0(FP), R10 - - MOVQ $0, CX // c = 0 - MOVQ $0, SI // i = 0 - - // s/JL/JMP/ below to disable the unrolled loop - SUBQ $4, DI // n -= 4 - JL V1 // if n < 0 goto V1 - -U1: // n >= 0 - // regular loop body unrolled 4x - RCRQ $1, CX // CF = c - MOVQ 0(R8)(SI*8), R11 - MOVQ 8(R8)(SI*8), R12 - MOVQ 16(R8)(SI*8), R13 - MOVQ 24(R8)(SI*8), R14 - ADCQ 0(R9)(SI*8), R11 - ADCQ 8(R9)(SI*8), R12 - ADCQ 16(R9)(SI*8), R13 - ADCQ 24(R9)(SI*8), R14 - MOVQ R11, 0(R10)(SI*8) - MOVQ R12, 8(R10)(SI*8) - MOVQ R13, 16(R10)(SI*8) - MOVQ R14, 24(R10)(SI*8) - RCLQ $1, CX // c = CF - - ADDQ $4, SI // i += 4 - SUBQ $4, DI // n -= 4 - JGE U1 // if n >= 0 goto U1 - -V1: ADDQ $4, DI // n += 4 - JLE E1 // if n <= 0 goto E1 - -L1: // n > 0 - RCRQ $1, CX // CF = c - MOVQ 0(R8)(SI*8), R11 - ADCQ 0(R9)(SI*8), R11 - MOVQ R11, 0(R10)(SI*8) - RCLQ $1, CX // c = CF - - ADDQ $1, SI // i++ - SUBQ $1, DI // n-- - JG L1 // if n > 0 goto L1 - -E1: MOVQ CX, c+72(FP) // return c - RET - - -// func subVV(z, x, y []Word) (c Word) -// (same as addVV except for SBBQ instead of ADCQ and label names) -TEXT ·subVV(SB),NOSPLIT,$0 - MOVQ z_len+8(FP), DI - MOVQ x+24(FP), R8 - MOVQ y+48(FP), R9 - MOVQ z+0(FP), R10 - - MOVQ $0, CX // c = 0 - MOVQ $0, SI // i = 0 - - // s/JL/JMP/ below to disable the unrolled loop - SUBQ $4, DI // n -= 4 - JL V2 // if n < 0 goto V2 - -U2: // n >= 0 - // regular loop body unrolled 4x - RCRQ $1, CX // CF = c - MOVQ 0(R8)(SI*8), R11 - MOVQ 8(R8)(SI*8), R12 - MOVQ 16(R8)(SI*8), R13 - MOVQ 24(R8)(SI*8), R14 - SBBQ 0(R9)(SI*8), R11 - SBBQ 8(R9)(SI*8), R12 - SBBQ 16(R9)(SI*8), R13 - SBBQ 24(R9)(SI*8), R14 - MOVQ R11, 0(R10)(SI*8) - MOVQ R12, 8(R10)(SI*8) - MOVQ R13, 16(R10)(SI*8) - MOVQ R14, 24(R10)(SI*8) - RCLQ $1, CX // c = CF - - ADDQ $4, SI // i += 4 - SUBQ $4, DI // n -= 4 - JGE U2 // if n >= 0 goto U2 - -V2: ADDQ $4, DI // n += 4 - JLE E2 // if n <= 0 goto E2 - -L2: // n > 0 - RCRQ $1, CX // CF = c - MOVQ 0(R8)(SI*8), R11 - SBBQ 0(R9)(SI*8), R11 - MOVQ R11, 0(R10)(SI*8) - RCLQ $1, CX // c = CF - - ADDQ $1, SI // i++ - SUBQ $1, DI // n-- - JG L2 // if n > 0 goto L2 - -E2: MOVQ CX, c+72(FP) // return c - RET - - -// func addVW(z, x []Word, y Word) (c Word) -TEXT ·addVW(SB),NOSPLIT,$0 - MOVQ z_len+8(FP), DI - MOVQ x+24(FP), R8 - MOVQ y+48(FP), CX // c = y - MOVQ z+0(FP), R10 - - MOVQ $0, SI // i = 0 - - // s/JL/JMP/ below to disable the unrolled loop - SUBQ $4, DI // n -= 4 - JL V3 // if n < 4 goto V3 - -U3: // n >= 0 - // regular loop body unrolled 4x - MOVQ 0(R8)(SI*8), R11 - MOVQ 8(R8)(SI*8), R12 - MOVQ 16(R8)(SI*8), R13 - MOVQ 24(R8)(SI*8), R14 - ADDQ CX, R11 - ZERO_CX - ADCQ $0, R12 - ADCQ $0, R13 - ADCQ $0, R14 - SETCS CX // c = CF - MOVQ R11, 0(R10)(SI*8) - MOVQ R12, 8(R10)(SI*8) - MOVQ R13, 16(R10)(SI*8) - MOVQ R14, 24(R10)(SI*8) - - ADDQ $4, SI // i += 4 - SUBQ $4, DI // n -= 4 - JGE U3 // if n >= 0 goto U3 - -V3: ADDQ $4, DI // n += 4 - JLE E3 // if n <= 0 goto E3 - -L3: // n > 0 - ADDQ 0(R8)(SI*8), CX - MOVQ CX, 0(R10)(SI*8) - ZERO_CX - RCLQ $1, CX // c = CF - - ADDQ $1, SI // i++ - SUBQ $1, DI // n-- - JG L3 // if n > 0 goto L3 - -E3: MOVQ CX, c+56(FP) // return c - RET - - -// func subVW(z, x []Word, y Word) (c Word) -// (same as addVW except for SUBQ/SBBQ instead of ADDQ/ADCQ and label names) -TEXT ·subVW(SB),NOSPLIT,$0 - MOVQ z_len+8(FP), DI - MOVQ x+24(FP), R8 - MOVQ y+48(FP), CX // c = y - MOVQ z+0(FP), R10 - - MOVQ $0, SI // i = 0 - - // s/JL/JMP/ below to disable the unrolled loop - SUBQ $4, DI // n -= 4 - JL V4 // if n < 4 goto V4 - -U4: // n >= 0 - // regular loop body unrolled 4x - MOVQ 0(R8)(SI*8), R11 - MOVQ 8(R8)(SI*8), R12 - MOVQ 16(R8)(SI*8), R13 - MOVQ 24(R8)(SI*8), R14 - SUBQ CX, R11 - ZERO_CX - SBBQ $0, R12 - SBBQ $0, R13 - SBBQ $0, R14 - SETCS CX // c = CF - MOVQ R11, 0(R10)(SI*8) - MOVQ R12, 8(R10)(SI*8) - MOVQ R13, 16(R10)(SI*8) - MOVQ R14, 24(R10)(SI*8) - - ADDQ $4, SI // i += 4 - SUBQ $4, DI // n -= 4 - JGE U4 // if n >= 0 goto U4 - -V4: ADDQ $4, DI // n += 4 - JLE E4 // if n <= 0 goto E4 - -L4: // n > 0 - MOVQ 0(R8)(SI*8), R11 - SUBQ CX, R11 - MOVQ R11, 0(R10)(SI*8) - ZERO_CX - RCLQ $1, CX // c = CF - - ADDQ $1, SI // i++ - SUBQ $1, DI // n-- - JG L4 // if n > 0 goto L4 - -E4: MOVQ CX, c+56(FP) // return c - RET - - -// func shlVU(z, x []Word, s uint) (c Word) -TEXT ·shlVU(SB),NOSPLIT,$0 - MOVQ z_len+8(FP), BX // i = z - SUBQ $1, BX // i-- - JL X8b // i < 0 (n <= 0) - - // n > 0 - MOVQ z+0(FP), R10 - MOVQ x+24(FP), R8 - MOVQ s+48(FP), CX - MOVQ (R8)(BX*8), AX // w1 = x[n-1] - MOVQ $0, DX - SHLQ CX, DX:AX // w1>>ŝ - MOVQ DX, c+56(FP) - - CMPQ BX, $0 - JLE X8a // i <= 0 - - // i > 0 -L8: MOVQ AX, DX // w = w1 - MOVQ -8(R8)(BX*8), AX // w1 = x[i-1] - SHLQ CX, DX:AX // w<<s | w1>>ŝ - MOVQ DX, (R10)(BX*8) // z[i] = w<<s | w1>>ŝ - SUBQ $1, BX // i-- - JG L8 // i > 0 - - // i <= 0 -X8a: SHLQ CX, AX // w1<<s - MOVQ AX, (R10) // z[0] = w1<<s - RET - -X8b: MOVQ $0, c+56(FP) - RET - - -// func shrVU(z, x []Word, s uint) (c Word) -TEXT ·shrVU(SB),NOSPLIT,$0 - MOVQ z_len+8(FP), R11 - SUBQ $1, R11 // n-- - JL X9b // n < 0 (n <= 0) - - // n > 0 - MOVQ z+0(FP), R10 - MOVQ x+24(FP), R8 - MOVQ s+48(FP), CX - MOVQ (R8), AX // w1 = x[0] - MOVQ $0, DX - SHRQ CX, DX:AX // w1<<ŝ - MOVQ DX, c+56(FP) - - MOVQ $0, BX // i = 0 - JMP E9 - - // i < n-1 -L9: MOVQ AX, DX // w = w1 - MOVQ 8(R8)(BX*8), AX // w1 = x[i+1] - SHRQ CX, DX:AX // w>>s | w1<<ŝ - MOVQ DX, (R10)(BX*8) // z[i] = w>>s | w1<<ŝ - ADDQ $1, BX // i++ - -E9: CMPQ BX, R11 - JL L9 // i < n-1 - - // i >= n-1 -X9a: SHRQ CX, AX // w1>>s - MOVQ AX, (R10)(R11*8) // z[n-1] = w1>>s - RET - -X9b: MOVQ $0, c+56(FP) - RET - - -// func mulAddVWW(z, x []Word, y, r Word) (c Word) -TEXT ·mulAddVWW(SB),NOSPLIT,$0 - MOVQ z+0(FP), R10 - MOVQ x+24(FP), R8 - MOVQ y+48(FP), R9 - MOVQ r+56(FP), CX // c = r - MOVQ z_len+8(FP), R11 - MOVQ $0, BX // i = 0 - JMP E5 - -L5: MOVQ (R8)(BX*8), AX - MULQ R9 - ADDQ CX, AX - ADCQ $0, DX - MOVQ AX, (R10)(BX*8) - MOVQ DX, CX - ADDQ $1, BX // i++ - -E5: CMPQ BX, R11 // i < n - JL L5 - - MOVQ CX, c+64(FP) - RET - - -// func addMulVVW(z, x []Word, y Word) (c Word) -TEXT ·addMulVVW(SB),NOSPLIT,$0 - MOVQ z+0(FP), R10 - MOVQ x+24(FP), R8 - MOVQ y+48(FP), R9 - MOVQ z_len+8(FP), R11 - MOVQ $0, BX // i = 0 - MOVQ $0, CX // c = 0 - JMP E6 - -L6: MOVQ (R8)(BX*8), AX - MULQ R9 - ADDQ CX, AX - ADCQ $0, DX - ADDQ AX, (R10)(BX*8) - ADCQ $0, DX - MOVQ DX, CX - ADDQ $1, BX // i++ - -E6: CMPQ BX, R11 // i < n - JL L6 - - MOVQ CX, c+56(FP) - RET - - -// func divWVW(z []Word, xn Word, x []Word, y Word) (r Word) -TEXT ·divWVW(SB),NOSPLIT,$0 - MOVQ z+0(FP), R10 - MOVQ xn+24(FP), DX // r = xn - MOVQ x+32(FP), R8 - MOVQ y+56(FP), R9 - MOVQ z_len+8(FP), BX // i = z - JMP E7 - -L7: MOVQ (R8)(BX*8), AX - DIVQ R9 - MOVQ AX, (R10)(BX*8) - -E7: SUBQ $1, BX // i-- - JGE L7 // i >= 0 - - MOVQ DX, r+64(FP) - RET - -// func bitLen(x Word) (n int) -TEXT ·bitLen(SB),NOSPLIT,$0 - BSRQ x+0(FP), AX - JZ Z1 - ADDQ $1, AX - MOVQ AX, n+8(FP) - RET - -Z1: MOVQ $0, n+8(FP) - RET diff --git a/src/pkg/math/big/arith_amd64p32.s b/src/pkg/math/big/arith_amd64p32.s deleted file mode 100644 index 908dbbdc5..000000000 --- a/src/pkg/math/big/arith_amd64p32.s +++ /dev/null @@ -1,41 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·mulWW(SB),NOSPLIT,$0 - JMP ·mulWW_g(SB) - -TEXT ·divWW(SB),NOSPLIT,$0 - JMP ·divWW_g(SB) - -TEXT ·addVV(SB),NOSPLIT,$0 - JMP ·addVV_g(SB) - -TEXT ·subVV(SB),NOSPLIT,$0 - JMP ·subVV_g(SB) - -TEXT ·addVW(SB),NOSPLIT,$0 - JMP ·addVW_g(SB) - -TEXT ·subVW(SB),NOSPLIT,$0 - JMP ·subVW_g(SB) - -TEXT ·shlVU(SB),NOSPLIT,$0 - JMP ·shlVU_g(SB) - -TEXT ·shrVU(SB),NOSPLIT,$0 - JMP ·shrVU_g(SB) - -TEXT ·mulAddVWW(SB),NOSPLIT,$0 - JMP ·mulAddVWW_g(SB) - -TEXT ·addMulVVW(SB),NOSPLIT,$0 - JMP ·addMulVVW_g(SB) - -TEXT ·divWVW(SB),NOSPLIT,$0 - JMP ·divWVW_g(SB) - -TEXT ·bitLen(SB),NOSPLIT,$0 - JMP ·bitLen_g(SB) diff --git a/src/pkg/math/big/arith_arm.s b/src/pkg/math/big/arith_arm.s deleted file mode 100644 index a4c51c212..000000000 --- a/src/pkg/math/big/arith_arm.s +++ /dev/null @@ -1,300 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// This file provides fast assembly versions for the elementary -// arithmetic operations on vectors implemented in arith.go. - -// func addVV(z, x, y []Word) (c Word) -TEXT ·addVV(SB),NOSPLIT,$0 - ADD.S $0, R0 // clear carry flag - MOVW z+0(FP), R1 - MOVW z_len+4(FP), R4 - MOVW x+12(FP), R2 - MOVW y+24(FP), R3 - ADD R4<<2, R1, R4 - B E1 -L1: - MOVW.P 4(R2), R5 - MOVW.P 4(R3), R6 - ADC.S R6, R5 - MOVW.P R5, 4(R1) -E1: - TEQ R1, R4 - BNE L1 - - MOVW $0, R0 - MOVW.CS $1, R0 - MOVW R0, c+36(FP) - RET - - -// func subVV(z, x, y []Word) (c Word) -// (same as addVV except for SBC instead of ADC and label names) -TEXT ·subVV(SB),NOSPLIT,$0 - SUB.S $0, R0 // clear borrow flag - MOVW z+0(FP), R1 - MOVW z_len+4(FP), R4 - MOVW x+12(FP), R2 - MOVW y+24(FP), R3 - ADD R4<<2, R1, R4 - B E2 -L2: - MOVW.P 4(R2), R5 - MOVW.P 4(R3), R6 - SBC.S R6, R5 - MOVW.P R5, 4(R1) -E2: - TEQ R1, R4 - BNE L2 - - MOVW $0, R0 - MOVW.CC $1, R0 - MOVW R0, c+36(FP) - RET - - -// func addVW(z, x []Word, y Word) (c Word) -TEXT ·addVW(SB),NOSPLIT,$0 - MOVW z+0(FP), R1 - MOVW z_len+4(FP), R4 - MOVW x+12(FP), R2 - MOVW y+24(FP), R3 - ADD R4<<2, R1, R4 - TEQ R1, R4 - BNE L3a - MOVW R3, c+28(FP) - RET -L3a: - MOVW.P 4(R2), R5 - ADD.S R3, R5 - MOVW.P R5, 4(R1) - B E3 -L3: - MOVW.P 4(R2), R5 - ADC.S $0, R5 - MOVW.P R5, 4(R1) -E3: - TEQ R1, R4 - BNE L3 - - MOVW $0, R0 - MOVW.CS $1, R0 - MOVW R0, c+28(FP) - RET - - -// func subVW(z, x []Word, y Word) (c Word) -TEXT ·subVW(SB),NOSPLIT,$0 - MOVW z+0(FP), R1 - MOVW z_len+4(FP), R4 - MOVW x+12(FP), R2 - MOVW y+24(FP), R3 - ADD R4<<2, R1, R4 - TEQ R1, R4 - BNE L4a - MOVW R3, c+28(FP) - RET -L4a: - MOVW.P 4(R2), R5 - SUB.S R3, R5 - MOVW.P R5, 4(R1) - B E4 -L4: - MOVW.P 4(R2), R5 - SBC.S $0, R5 - MOVW.P R5, 4(R1) -E4: - TEQ R1, R4 - BNE L4 - - MOVW $0, R0 - MOVW.CC $1, R0 - MOVW R0, c+28(FP) - RET - - -// func shlVU(z, x []Word, s uint) (c Word) -TEXT ·shlVU(SB),NOSPLIT,$0 - MOVW z_len+4(FP), R5 - TEQ $0, R5 - BEQ X7 - - MOVW z+0(FP), R1 - MOVW x+12(FP), R2 - ADD R5<<2, R2, R2 - ADD R5<<2, R1, R5 - MOVW s+24(FP), R3 - TEQ $0, R3 // shift 0 is special - BEQ Y7 - ADD $4, R1 // stop one word early - MOVW $32, R4 - SUB R3, R4 - MOVW $0, R7 - - MOVW.W -4(R2), R6 - MOVW R6<<R3, R7 - MOVW R6>>R4, R6 - MOVW R6, c+28(FP) - B E7 - -L7: - MOVW.W -4(R2), R6 - ORR R6>>R4, R7 - MOVW.W R7, -4(R5) - MOVW R6<<R3, R7 -E7: - TEQ R1, R5 - BNE L7 - - MOVW R7, -4(R5) - RET - -Y7: // copy loop, because shift 0 == shift 32 - MOVW.W -4(R2), R6 - MOVW.W R6, -4(R5) - TEQ R1, R5 - BNE Y7 - -X7: - MOVW $0, R1 - MOVW R1, c+28(FP) - RET - - -// func shrVU(z, x []Word, s uint) (c Word) -TEXT ·shrVU(SB),NOSPLIT,$0 - MOVW z_len+4(FP), R5 - TEQ $0, R5 - BEQ X6 - - MOVW z+0(FP), R1 - MOVW x+12(FP), R2 - ADD R5<<2, R1, R5 - MOVW s+24(FP), R3 - TEQ $0, R3 // shift 0 is special - BEQ Y6 - SUB $4, R5 // stop one word early - MOVW $32, R4 - SUB R3, R4 - MOVW $0, R7 - - // first word - MOVW.P 4(R2), R6 - MOVW R6>>R3, R7 - MOVW R6<<R4, R6 - MOVW R6, c+28(FP) - B E6 - - // word loop -L6: - MOVW.P 4(R2), R6 - ORR R6<<R4, R7 - MOVW.P R7, 4(R1) - MOVW R6>>R3, R7 -E6: - TEQ R1, R5 - BNE L6 - - MOVW R7, 0(R1) - RET - -Y6: // copy loop, because shift 0 == shift 32 - MOVW.P 4(R2), R6 - MOVW.P R6, 4(R1) - TEQ R1, R5 - BNE Y6 - -X6: - MOVW $0, R1 - MOVW R1, c+28(FP) - RET - - -// func mulAddVWW(z, x []Word, y, r Word) (c Word) -TEXT ·mulAddVWW(SB),NOSPLIT,$0 - MOVW $0, R0 - MOVW z+0(FP), R1 - MOVW z_len+4(FP), R5 - MOVW x+12(FP), R2 - MOVW y+24(FP), R3 - MOVW r+28(FP), R4 - ADD R5<<2, R1, R5 - B E8 - - // word loop -L8: - MOVW.P 4(R2), R6 - MULLU R6, R3, (R7, R6) - ADD.S R4, R6 - ADC R0, R7 - MOVW.P R6, 4(R1) - MOVW R7, R4 -E8: - TEQ R1, R5 - BNE L8 - - MOVW R4, c+32(FP) - RET - - -// func addMulVVW(z, x []Word, y Word) (c Word) -TEXT ·addMulVVW(SB),NOSPLIT,$0 - MOVW $0, R0 - MOVW z+0(FP), R1 - MOVW z_len+4(FP), R5 - MOVW x+12(FP), R2 - MOVW y+24(FP), R3 - ADD R5<<2, R1, R5 - MOVW $0, R4 - B E9 - - // word loop -L9: - MOVW.P 4(R2), R6 - MULLU R6, R3, (R7, R6) - ADD.S R4, R6 - ADC R0, R7 - MOVW 0(R1), R4 - ADD.S R4, R6 - ADC R0, R7 - MOVW.P R6, 4(R1) - MOVW R7, R4 -E9: - TEQ R1, R5 - BNE L9 - - MOVW R4, c+28(FP) - RET - - -// func divWVW(z* Word, xn Word, x []Word, y Word) (r Word) -TEXT ·divWVW(SB),NOSPLIT,$0 - // ARM has no multiword division, so use portable code. - B ·divWVW_g(SB) - - -// func divWW(x1, x0, y Word) (q, r Word) -TEXT ·divWW(SB),NOSPLIT,$0 - // ARM has no multiword division, so use portable code. - B ·divWW_g(SB) - - -// func mulWW(x, y Word) (z1, z0 Word) -TEXT ·mulWW(SB),NOSPLIT,$0 - MOVW x+0(FP), R1 - MOVW y+4(FP), R2 - MULLU R1, R2, (R4, R3) - MOVW R4, z1+8(FP) - MOVW R3, z0+12(FP) - RET - -// func bitLen(x Word) (n int) -TEXT ·bitLen(SB),NOSPLIT,$0 - MOVW x+0(FP), R0 - CLZ R0, R0 - RSB $32, R0 - MOVW R0, n+4(FP) - RET diff --git a/src/pkg/math/big/arith_decl.go b/src/pkg/math/big/arith_decl.go deleted file mode 100644 index 068cc8d93..000000000 --- a/src/pkg/math/big/arith_decl.go +++ /dev/null @@ -1,19 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package big - -// implemented in arith_$GOARCH.s -func mulWW(x, y Word) (z1, z0 Word) -func divWW(x1, x0, y Word) (q, r Word) -func addVV(z, x, y []Word) (c Word) -func subVV(z, x, y []Word) (c Word) -func addVW(z, x []Word, y Word) (c Word) -func subVW(z, x []Word, y Word) (c Word) -func shlVU(z, x []Word, s uint) (c Word) -func shrVU(z, x []Word, s uint) (c Word) -func mulAddVWW(z, x []Word, y, r Word) (c Word) -func addMulVVW(z, x []Word, y Word) (c Word) -func divWVW(z []Word, xn Word, x []Word, y Word) (r Word) -func bitLen(x Word) (n int) diff --git a/src/pkg/math/big/arith_test.go b/src/pkg/math/big/arith_test.go deleted file mode 100644 index 3615a659c..000000000 --- a/src/pkg/math/big/arith_test.go +++ /dev/null @@ -1,456 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package big - -import ( - "math/rand" - "testing" -) - -type funWW func(x, y, c Word) (z1, z0 Word) -type argWW struct { - x, y, c, z1, z0 Word -} - -var sumWW = []argWW{ - {0, 0, 0, 0, 0}, - {0, 1, 0, 0, 1}, - {0, 0, 1, 0, 1}, - {0, 1, 1, 0, 2}, - {12345, 67890, 0, 0, 80235}, - {12345, 67890, 1, 0, 80236}, - {_M, 1, 0, 1, 0}, - {_M, 0, 1, 1, 0}, - {_M, 1, 1, 1, 1}, - {_M, _M, 0, 1, _M - 1}, - {_M, _M, 1, 1, _M}, -} - -func testFunWW(t *testing.T, msg string, f funWW, a argWW) { - z1, z0 := f(a.x, a.y, a.c) - if z1 != a.z1 || z0 != a.z0 { - t.Errorf("%s%+v\n\tgot z1:z0 = %#x:%#x; want %#x:%#x", msg, a, z1, z0, a.z1, a.z0) - } -} - -func TestFunWW(t *testing.T) { - for _, a := range sumWW { - arg := a - testFunWW(t, "addWW_g", addWW_g, arg) - - arg = argWW{a.y, a.x, a.c, a.z1, a.z0} - testFunWW(t, "addWW_g symmetric", addWW_g, arg) - - arg = argWW{a.z0, a.x, a.c, a.z1, a.y} - testFunWW(t, "subWW_g", subWW_g, arg) - - arg = argWW{a.z0, a.y, a.c, a.z1, a.x} - testFunWW(t, "subWW_g symmetric", subWW_g, arg) - } -} - -type funVV func(z, x, y []Word) (c Word) -type argVV struct { - z, x, y nat - c Word -} - -var sumVV = []argVV{ - {}, - {nat{0}, nat{0}, nat{0}, 0}, - {nat{1}, nat{1}, nat{0}, 0}, - {nat{0}, nat{_M}, nat{1}, 1}, - {nat{80235}, nat{12345}, nat{67890}, 0}, - {nat{_M - 1}, nat{_M}, nat{_M}, 1}, - {nat{0, 0, 0, 0}, nat{_M, _M, _M, _M}, nat{1, 0, 0, 0}, 1}, - {nat{0, 0, 0, _M}, nat{_M, _M, _M, _M - 1}, nat{1, 0, 0, 0}, 0}, - {nat{0, 0, 0, 0}, nat{_M, 0, _M, 0}, nat{1, _M, 0, _M}, 1}, -} - -func testFunVV(t *testing.T, msg string, f funVV, a argVV) { - z := make(nat, len(a.z)) - c := f(z, a.x, a.y) - for i, zi := range z { - if zi != a.z[i] { - t.Errorf("%s%+v\n\tgot z[%d] = %#x; want %#x", msg, a, i, zi, a.z[i]) - break - } - } - if c != a.c { - t.Errorf("%s%+v\n\tgot c = %#x; want %#x", msg, a, c, a.c) - } -} - -func TestFunVV(t *testing.T) { - for _, a := range sumVV { - arg := a - testFunVV(t, "addVV_g", addVV_g, arg) - testFunVV(t, "addVV", addVV, arg) - - arg = argVV{a.z, a.y, a.x, a.c} - testFunVV(t, "addVV_g symmetric", addVV_g, arg) - testFunVV(t, "addVV symmetric", addVV, arg) - - arg = argVV{a.x, a.z, a.y, a.c} - testFunVV(t, "subVV_g", subVV_g, arg) - testFunVV(t, "subVV", subVV, arg) - - arg = argVV{a.y, a.z, a.x, a.c} - testFunVV(t, "subVV_g symmetric", subVV_g, arg) - testFunVV(t, "subVV symmetric", subVV, arg) - } -} - -// Always the same seed for reproducible results. -var rnd = rand.New(rand.NewSource(0)) - -func rndW() Word { - return Word(rnd.Int63()<<1 | rnd.Int63n(2)) -} - -func rndV(n int) []Word { - v := make([]Word, n) - for i := range v { - v[i] = rndW() - } - return v -} - -func benchmarkFunVV(b *testing.B, f funVV, n int) { - x := rndV(n) - y := rndV(n) - z := make([]Word, n) - b.SetBytes(int64(n * _W)) - b.ResetTimer() - for i := 0; i < b.N; i++ { - f(z, x, y) - } -} - -func BenchmarkAddVV_1(b *testing.B) { benchmarkFunVV(b, addVV, 1) } -func BenchmarkAddVV_2(b *testing.B) { benchmarkFunVV(b, addVV, 2) } -func BenchmarkAddVV_3(b *testing.B) { benchmarkFunVV(b, addVV, 3) } -func BenchmarkAddVV_4(b *testing.B) { benchmarkFunVV(b, addVV, 4) } -func BenchmarkAddVV_5(b *testing.B) { benchmarkFunVV(b, addVV, 5) } -func BenchmarkAddVV_1e1(b *testing.B) { benchmarkFunVV(b, addVV, 1e1) } -func BenchmarkAddVV_1e2(b *testing.B) { benchmarkFunVV(b, addVV, 1e2) } -func BenchmarkAddVV_1e3(b *testing.B) { benchmarkFunVV(b, addVV, 1e3) } -func BenchmarkAddVV_1e4(b *testing.B) { benchmarkFunVV(b, addVV, 1e4) } -func BenchmarkAddVV_1e5(b *testing.B) { benchmarkFunVV(b, addVV, 1e5) } - -type funVW func(z, x []Word, y Word) (c Word) -type argVW struct { - z, x nat - y Word - c Word -} - -var sumVW = []argVW{ - {}, - {nil, nil, 2, 2}, - {nat{0}, nat{0}, 0, 0}, - {nat{1}, nat{0}, 1, 0}, - {nat{1}, nat{1}, 0, 0}, - {nat{0}, nat{_M}, 1, 1}, - {nat{0, 0, 0, 0}, nat{_M, _M, _M, _M}, 1, 1}, -} - -var prodVW = []argVW{ - {}, - {nat{0}, nat{0}, 0, 0}, - {nat{0}, nat{_M}, 0, 0}, - {nat{0}, nat{0}, _M, 0}, - {nat{1}, nat{1}, 1, 0}, - {nat{22793}, nat{991}, 23, 0}, - {nat{0, 0, 0, 22793}, nat{0, 0, 0, 991}, 23, 0}, - {nat{0, 0, 0, 0}, nat{7893475, 7395495, 798547395, 68943}, 0, 0}, - {nat{0, 0, 0, 0}, nat{0, 0, 0, 0}, 894375984, 0}, - {nat{_M << 1 & _M}, nat{_M}, 1 << 1, _M >> (_W - 1)}, - {nat{_M << 7 & _M}, nat{_M}, 1 << 7, _M >> (_W - 7)}, - {nat{_M << 7 & _M, _M, _M, _M}, nat{_M, _M, _M, _M}, 1 << 7, _M >> (_W - 7)}, -} - -var lshVW = []argVW{ - {}, - {nat{0}, nat{0}, 0, 0}, - {nat{0}, nat{0}, 1, 0}, - {nat{0}, nat{0}, 20, 0}, - - {nat{_M}, nat{_M}, 0, 0}, - {nat{_M << 1 & _M}, nat{_M}, 1, 1}, - {nat{_M << 20 & _M}, nat{_M}, 20, _M >> (_W - 20)}, - - {nat{_M, _M, _M}, nat{_M, _M, _M}, 0, 0}, - {nat{_M << 1 & _M, _M, _M}, nat{_M, _M, _M}, 1, 1}, - {nat{_M << 20 & _M, _M, _M}, nat{_M, _M, _M}, 20, _M >> (_W - 20)}, -} - -var rshVW = []argVW{ - {}, - {nat{0}, nat{0}, 0, 0}, - {nat{0}, nat{0}, 1, 0}, - {nat{0}, nat{0}, 20, 0}, - - {nat{_M}, nat{_M}, 0, 0}, - {nat{_M >> 1}, nat{_M}, 1, _M << (_W - 1) & _M}, - {nat{_M >> 20}, nat{_M}, 20, _M << (_W - 20) & _M}, - - {nat{_M, _M, _M}, nat{_M, _M, _M}, 0, 0}, - {nat{_M, _M, _M >> 1}, nat{_M, _M, _M}, 1, _M << (_W - 1) & _M}, - {nat{_M, _M, _M >> 20}, nat{_M, _M, _M}, 20, _M << (_W - 20) & _M}, -} - -func testFunVW(t *testing.T, msg string, f funVW, a argVW) { - z := make(nat, len(a.z)) - c := f(z, a.x, a.y) - for i, zi := range z { - if zi != a.z[i] { - t.Errorf("%s%+v\n\tgot z[%d] = %#x; want %#x", msg, a, i, zi, a.z[i]) - break - } - } - if c != a.c { - t.Errorf("%s%+v\n\tgot c = %#x; want %#x", msg, a, c, a.c) - } -} - -func makeFunVW(f func(z, x []Word, s uint) (c Word)) funVW { - return func(z, x []Word, s Word) (c Word) { - return f(z, x, uint(s)) - } -} - -func TestFunVW(t *testing.T) { - for _, a := range sumVW { - arg := a - testFunVW(t, "addVW_g", addVW_g, arg) - testFunVW(t, "addVW", addVW, arg) - - arg = argVW{a.x, a.z, a.y, a.c} - testFunVW(t, "subVW_g", subVW_g, arg) - testFunVW(t, "subVW", subVW, arg) - } - - shlVW_g := makeFunVW(shlVU_g) - shlVW := makeFunVW(shlVU) - for _, a := range lshVW { - arg := a - testFunVW(t, "shlVU_g", shlVW_g, arg) - testFunVW(t, "shlVU", shlVW, arg) - } - - shrVW_g := makeFunVW(shrVU_g) - shrVW := makeFunVW(shrVU) - for _, a := range rshVW { - arg := a - testFunVW(t, "shrVU_g", shrVW_g, arg) - testFunVW(t, "shrVU", shrVW, arg) - } -} - -func benchmarkFunVW(b *testing.B, f funVW, n int) { - x := rndV(n) - y := rndW() - z := make([]Word, n) - b.SetBytes(int64(n * _W)) - b.ResetTimer() - for i := 0; i < b.N; i++ { - f(z, x, y) - } -} - -func BenchmarkAddVW_1(b *testing.B) { benchmarkFunVW(b, addVW, 1) } -func BenchmarkAddVW_2(b *testing.B) { benchmarkFunVW(b, addVW, 2) } -func BenchmarkAddVW_3(b *testing.B) { benchmarkFunVW(b, addVW, 3) } -func BenchmarkAddVW_4(b *testing.B) { benchmarkFunVW(b, addVW, 4) } -func BenchmarkAddVW_5(b *testing.B) { benchmarkFunVW(b, addVW, 5) } -func BenchmarkAddVW_1e1(b *testing.B) { benchmarkFunVW(b, addVW, 1e1) } -func BenchmarkAddVW_1e2(b *testing.B) { benchmarkFunVW(b, addVW, 1e2) } -func BenchmarkAddVW_1e3(b *testing.B) { benchmarkFunVW(b, addVW, 1e3) } -func BenchmarkAddVW_1e4(b *testing.B) { benchmarkFunVW(b, addVW, 1e4) } -func BenchmarkAddVW_1e5(b *testing.B) { benchmarkFunVW(b, addVW, 1e5) } - -type funVWW func(z, x []Word, y, r Word) (c Word) -type argVWW struct { - z, x nat - y, r Word - c Word -} - -var prodVWW = []argVWW{ - {}, - {nat{0}, nat{0}, 0, 0, 0}, - {nat{991}, nat{0}, 0, 991, 0}, - {nat{0}, nat{_M}, 0, 0, 0}, - {nat{991}, nat{_M}, 0, 991, 0}, - {nat{0}, nat{0}, _M, 0, 0}, - {nat{991}, nat{0}, _M, 991, 0}, - {nat{1}, nat{1}, 1, 0, 0}, - {nat{992}, nat{1}, 1, 991, 0}, - {nat{22793}, nat{991}, 23, 0, 0}, - {nat{22800}, nat{991}, 23, 7, 0}, - {nat{0, 0, 0, 22793}, nat{0, 0, 0, 991}, 23, 0, 0}, - {nat{7, 0, 0, 22793}, nat{0, 0, 0, 991}, 23, 7, 0}, - {nat{0, 0, 0, 0}, nat{7893475, 7395495, 798547395, 68943}, 0, 0, 0}, - {nat{991, 0, 0, 0}, nat{7893475, 7395495, 798547395, 68943}, 0, 991, 0}, - {nat{0, 0, 0, 0}, nat{0, 0, 0, 0}, 894375984, 0, 0}, - {nat{991, 0, 0, 0}, nat{0, 0, 0, 0}, 894375984, 991, 0}, - {nat{_M << 1 & _M}, nat{_M}, 1 << 1, 0, _M >> (_W - 1)}, - {nat{_M<<1&_M + 1}, nat{_M}, 1 << 1, 1, _M >> (_W - 1)}, - {nat{_M << 7 & _M}, nat{_M}, 1 << 7, 0, _M >> (_W - 7)}, - {nat{_M<<7&_M + 1<<6}, nat{_M}, 1 << 7, 1 << 6, _M >> (_W - 7)}, - {nat{_M << 7 & _M, _M, _M, _M}, nat{_M, _M, _M, _M}, 1 << 7, 0, _M >> (_W - 7)}, - {nat{_M<<7&_M + 1<<6, _M, _M, _M}, nat{_M, _M, _M, _M}, 1 << 7, 1 << 6, _M >> (_W - 7)}, -} - -func testFunVWW(t *testing.T, msg string, f funVWW, a argVWW) { - z := make(nat, len(a.z)) - c := f(z, a.x, a.y, a.r) - for i, zi := range z { - if zi != a.z[i] { - t.Errorf("%s%+v\n\tgot z[%d] = %#x; want %#x", msg, a, i, zi, a.z[i]) - break - } - } - if c != a.c { - t.Errorf("%s%+v\n\tgot c = %#x; want %#x", msg, a, c, a.c) - } -} - -// TODO(gri) mulAddVWW and divWVW are symmetric operations but -// their signature is not symmetric. Try to unify. - -type funWVW func(z []Word, xn Word, x []Word, y Word) (r Word) -type argWVW struct { - z nat - xn Word - x nat - y Word - r Word -} - -func testFunWVW(t *testing.T, msg string, f funWVW, a argWVW) { - z := make(nat, len(a.z)) - r := f(z, a.xn, a.x, a.y) - for i, zi := range z { - if zi != a.z[i] { - t.Errorf("%s%+v\n\tgot z[%d] = %#x; want %#x", msg, a, i, zi, a.z[i]) - break - } - } - if r != a.r { - t.Errorf("%s%+v\n\tgot r = %#x; want %#x", msg, a, r, a.r) - } -} - -func TestFunVWW(t *testing.T) { - for _, a := range prodVWW { - arg := a - testFunVWW(t, "mulAddVWW_g", mulAddVWW_g, arg) - testFunVWW(t, "mulAddVWW", mulAddVWW, arg) - - if a.y != 0 && a.r < a.y { - arg := argWVW{a.x, a.c, a.z, a.y, a.r} - testFunWVW(t, "divWVW_g", divWVW_g, arg) - testFunWVW(t, "divWVW", divWVW, arg) - } - } -} - -var mulWWTests = []struct { - x, y Word - q, r Word -}{ - {_M, _M, _M - 1, 1}, - // 32 bit only: {0xc47dfa8c, 50911, 0x98a4, 0x998587f4}, -} - -func TestMulWW(t *testing.T) { - for i, test := range mulWWTests { - q, r := mulWW_g(test.x, test.y) - if q != test.q || r != test.r { - t.Errorf("#%d got (%x, %x) want (%x, %x)", i, q, r, test.q, test.r) - } - } -} - -var mulAddWWWTests = []struct { - x, y, c Word - q, r Word -}{ - // TODO(agl): These will only work on 64-bit platforms. - // {15064310297182388543, 0xe7df04d2d35d5d80, 13537600649892366549, 13644450054494335067, 10832252001440893781}, - // {15064310297182388543, 0xdab2f18048baa68d, 13644450054494335067, 12869334219691522700, 14233854684711418382}, - {_M, _M, 0, _M - 1, 1}, - {_M, _M, _M, _M, 0}, -} - -func TestMulAddWWW(t *testing.T) { - for i, test := range mulAddWWWTests { - q, r := mulAddWWW_g(test.x, test.y, test.c) - if q != test.q || r != test.r { - t.Errorf("#%d got (%x, %x) want (%x, %x)", i, q, r, test.q, test.r) - } - } -} - -func benchmarkAddMulVVW(b *testing.B, n int) { - x := rndV(n) - y := rndW() - z := make([]Word, n) - b.SetBytes(int64(n * _W)) - b.ResetTimer() - for i := 0; i < b.N; i++ { - addMulVVW(z, x, y) - } -} - -func BenchmarkAddMulVVW_1(b *testing.B) { benchmarkAddMulVVW(b, 1) } -func BenchmarkAddMulVVW_2(b *testing.B) { benchmarkAddMulVVW(b, 2) } -func BenchmarkAddMulVVW_3(b *testing.B) { benchmarkAddMulVVW(b, 3) } -func BenchmarkAddMulVVW_4(b *testing.B) { benchmarkAddMulVVW(b, 4) } -func BenchmarkAddMulVVW_5(b *testing.B) { benchmarkAddMulVVW(b, 5) } -func BenchmarkAddMulVVW_1e1(b *testing.B) { benchmarkAddMulVVW(b, 1e1) } -func BenchmarkAddMulVVW_1e2(b *testing.B) { benchmarkAddMulVVW(b, 1e2) } -func BenchmarkAddMulVVW_1e3(b *testing.B) { benchmarkAddMulVVW(b, 1e3) } -func BenchmarkAddMulVVW_1e4(b *testing.B) { benchmarkAddMulVVW(b, 1e4) } -func BenchmarkAddMulVVW_1e5(b *testing.B) { benchmarkAddMulVVW(b, 1e5) } - -func testWordBitLen(t *testing.T, fname string, f func(Word) int) { - for i := 0; i <= _W; i++ { - x := Word(1) << uint(i-1) // i == 0 => x == 0 - n := f(x) - if n != i { - t.Errorf("got %d; want %d for %s(%#x)", n, i, fname, x) - } - } -} - -func TestWordBitLen(t *testing.T) { - testWordBitLen(t, "bitLen", bitLen) - testWordBitLen(t, "bitLen_g", bitLen_g) -} - -// runs b.N iterations of bitLen called on a Word containing (1 << nbits)-1. -func benchmarkBitLenN(b *testing.B, nbits uint) { - testword := Word((uint64(1) << nbits) - 1) - for i := 0; i < b.N; i++ { - bitLen(testword) - } -} - -// Individual bitLen tests. Numbers chosen to examine both sides -// of powers-of-two boundaries. -func BenchmarkBitLen0(b *testing.B) { benchmarkBitLenN(b, 0) } -func BenchmarkBitLen1(b *testing.B) { benchmarkBitLenN(b, 1) } -func BenchmarkBitLen2(b *testing.B) { benchmarkBitLenN(b, 2) } -func BenchmarkBitLen3(b *testing.B) { benchmarkBitLenN(b, 3) } -func BenchmarkBitLen4(b *testing.B) { benchmarkBitLenN(b, 4) } -func BenchmarkBitLen5(b *testing.B) { benchmarkBitLenN(b, 5) } -func BenchmarkBitLen8(b *testing.B) { benchmarkBitLenN(b, 8) } -func BenchmarkBitLen9(b *testing.B) { benchmarkBitLenN(b, 9) } -func BenchmarkBitLen16(b *testing.B) { benchmarkBitLenN(b, 16) } -func BenchmarkBitLen17(b *testing.B) { benchmarkBitLenN(b, 17) } -func BenchmarkBitLen31(b *testing.B) { benchmarkBitLenN(b, 31) } diff --git a/src/pkg/math/big/calibrate_test.go b/src/pkg/math/big/calibrate_test.go deleted file mode 100644 index f69ffbf5c..000000000 --- a/src/pkg/math/big/calibrate_test.go +++ /dev/null @@ -1,88 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// This file prints execution times for the Mul benchmark -// given different Karatsuba thresholds. The result may be -// used to manually fine-tune the threshold constant. The -// results are somewhat fragile; use repeated runs to get -// a clear picture. - -// Usage: go test -run=TestCalibrate -calibrate - -package big - -import ( - "flag" - "fmt" - "testing" - "time" -) - -var calibrate = flag.Bool("calibrate", false, "run calibration test") - -func karatsubaLoad(b *testing.B) { - BenchmarkMul(b) -} - -// measureKaratsuba returns the time to run a Karatsuba-relevant benchmark -// given Karatsuba threshold th. -func measureKaratsuba(th int) time.Duration { - th, karatsubaThreshold = karatsubaThreshold, th - res := testing.Benchmark(karatsubaLoad) - karatsubaThreshold = th - return time.Duration(res.NsPerOp()) -} - -func computeThresholds() { - fmt.Printf("Multiplication times for varying Karatsuba thresholds\n") - fmt.Printf("(run repeatedly for good results)\n") - - // determine Tk, the work load execution time using basic multiplication - Tb := measureKaratsuba(1e9) // th == 1e9 => Karatsuba multiplication disabled - fmt.Printf("Tb = %10s\n", Tb) - - // thresholds - th := 4 - th1 := -1 - th2 := -1 - - var deltaOld time.Duration - for count := -1; count != 0 && th < 128; count-- { - // determine Tk, the work load execution time using Karatsuba multiplication - Tk := measureKaratsuba(th) - - // improvement over Tb - delta := (Tb - Tk) * 100 / Tb - - fmt.Printf("th = %3d Tk = %10s %4d%%", th, Tk, delta) - - // determine break-even point - if Tk < Tb && th1 < 0 { - th1 = th - fmt.Print(" break-even point") - } - - // determine diminishing return - if 0 < delta && delta < deltaOld && th2 < 0 { - th2 = th - fmt.Print(" diminishing return") - } - deltaOld = delta - - fmt.Println() - - // trigger counter - if th1 >= 0 && th2 >= 0 && count < 0 { - count = 10 // this many extra measurements after we got both thresholds - } - - th++ - } -} - -func TestCalibrate(t *testing.T) { - if *calibrate { - computeThresholds() - } -} diff --git a/src/pkg/math/big/example_test.go b/src/pkg/math/big/example_test.go deleted file mode 100644 index 078be47f9..000000000 --- a/src/pkg/math/big/example_test.go +++ /dev/null @@ -1,51 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package big_test - -import ( - "fmt" - "log" - "math/big" -) - -func ExampleRat_SetString() { - r := new(big.Rat) - r.SetString("355/113") - fmt.Println(r.FloatString(3)) - // Output: 3.142 -} - -func ExampleInt_SetString() { - i := new(big.Int) - i.SetString("644", 8) // octal - fmt.Println(i) - // Output: 420 -} - -func ExampleRat_Scan() { - // The Scan function is rarely used directly; - // the fmt package recognizes it as an implementation of fmt.Scanner. - r := new(big.Rat) - _, err := fmt.Sscan("1.5000", r) - if err != nil { - log.Println("error scanning value:", err) - } else { - fmt.Println(r) - } - // Output: 3/2 -} - -func ExampleInt_Scan() { - // The Scan function is rarely used directly; - // the fmt package recognizes it as an implementation of fmt.Scanner. - i := new(big.Int) - _, err := fmt.Sscan("18446744073709551617", i) - if err != nil { - log.Println("error scanning value:", err) - } else { - fmt.Println(i) - } - // Output: 18446744073709551617 -} diff --git a/src/pkg/math/big/gcd_test.go b/src/pkg/math/big/gcd_test.go deleted file mode 100644 index c0b9f5830..000000000 --- a/src/pkg/math/big/gcd_test.go +++ /dev/null @@ -1,47 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// This file implements a GCD benchmark. -// Usage: go test math/big -test.bench GCD - -package big - -import ( - "math/rand" - "testing" -) - -// randInt returns a pseudo-random Int in the range [1<<(size-1), (1<<size) - 1] -func randInt(r *rand.Rand, size uint) *Int { - n := new(Int).Lsh(intOne, size-1) - x := new(Int).Rand(r, n) - return x.Add(x, n) // make sure result > 1<<(size-1) -} - -func runGCD(b *testing.B, aSize, bSize uint) { - b.StopTimer() - var r = rand.New(rand.NewSource(1234)) - aa := randInt(r, aSize) - bb := randInt(r, bSize) - b.StartTimer() - for i := 0; i < b.N; i++ { - new(Int).GCD(nil, nil, aa, bb) - } -} - -func BenchmarkGCD10x10(b *testing.B) { runGCD(b, 10, 10) } -func BenchmarkGCD10x100(b *testing.B) { runGCD(b, 10, 100) } -func BenchmarkGCD10x1000(b *testing.B) { runGCD(b, 10, 1000) } -func BenchmarkGCD10x10000(b *testing.B) { runGCD(b, 10, 10000) } -func BenchmarkGCD10x100000(b *testing.B) { runGCD(b, 10, 100000) } -func BenchmarkGCD100x100(b *testing.B) { runGCD(b, 100, 100) } -func BenchmarkGCD100x1000(b *testing.B) { runGCD(b, 100, 1000) } -func BenchmarkGCD100x10000(b *testing.B) { runGCD(b, 100, 10000) } -func BenchmarkGCD100x100000(b *testing.B) { runGCD(b, 100, 100000) } -func BenchmarkGCD1000x1000(b *testing.B) { runGCD(b, 1000, 1000) } -func BenchmarkGCD1000x10000(b *testing.B) { runGCD(b, 1000, 10000) } -func BenchmarkGCD1000x100000(b *testing.B) { runGCD(b, 1000, 100000) } -func BenchmarkGCD10000x10000(b *testing.B) { runGCD(b, 10000, 10000) } -func BenchmarkGCD10000x100000(b *testing.B) { runGCD(b, 10000, 100000) } -func BenchmarkGCD100000x100000(b *testing.B) { runGCD(b, 100000, 100000) } diff --git a/src/pkg/math/big/hilbert_test.go b/src/pkg/math/big/hilbert_test.go deleted file mode 100644 index 1a84341b3..000000000 --- a/src/pkg/math/big/hilbert_test.go +++ /dev/null @@ -1,160 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// A little test program and benchmark for rational arithmetics. -// Computes a Hilbert matrix, its inverse, multiplies them -// and verifies that the product is the identity matrix. - -package big - -import ( - "fmt" - "testing" -) - -type matrix struct { - n, m int - a []*Rat -} - -func (a *matrix) at(i, j int) *Rat { - if !(0 <= i && i < a.n && 0 <= j && j < a.m) { - panic("index out of range") - } - return a.a[i*a.m+j] -} - -func (a *matrix) set(i, j int, x *Rat) { - if !(0 <= i && i < a.n && 0 <= j && j < a.m) { - panic("index out of range") - } - a.a[i*a.m+j] = x -} - -func newMatrix(n, m int) *matrix { - if !(0 <= n && 0 <= m) { - panic("illegal matrix") - } - a := new(matrix) - a.n = n - a.m = m - a.a = make([]*Rat, n*m) - return a -} - -func newUnit(n int) *matrix { - a := newMatrix(n, n) - for i := 0; i < n; i++ { - for j := 0; j < n; j++ { - x := NewRat(0, 1) - if i == j { - x.SetInt64(1) - } - a.set(i, j, x) - } - } - return a -} - -func newHilbert(n int) *matrix { - a := newMatrix(n, n) - for i := 0; i < n; i++ { - for j := 0; j < n; j++ { - a.set(i, j, NewRat(1, int64(i+j+1))) - } - } - return a -} - -func newInverseHilbert(n int) *matrix { - a := newMatrix(n, n) - for i := 0; i < n; i++ { - for j := 0; j < n; j++ { - x1 := new(Rat).SetInt64(int64(i + j + 1)) - x2 := new(Rat).SetInt(new(Int).Binomial(int64(n+i), int64(n-j-1))) - x3 := new(Rat).SetInt(new(Int).Binomial(int64(n+j), int64(n-i-1))) - x4 := new(Rat).SetInt(new(Int).Binomial(int64(i+j), int64(i))) - - x1.Mul(x1, x2) - x1.Mul(x1, x3) - x1.Mul(x1, x4) - x1.Mul(x1, x4) - - if (i+j)&1 != 0 { - x1.Neg(x1) - } - - a.set(i, j, x1) - } - } - return a -} - -func (a *matrix) mul(b *matrix) *matrix { - if a.m != b.n { - panic("illegal matrix multiply") - } - c := newMatrix(a.n, b.m) - for i := 0; i < c.n; i++ { - for j := 0; j < c.m; j++ { - x := NewRat(0, 1) - for k := 0; k < a.m; k++ { - x.Add(x, new(Rat).Mul(a.at(i, k), b.at(k, j))) - } - c.set(i, j, x) - } - } - return c -} - -func (a *matrix) eql(b *matrix) bool { - if a.n != b.n || a.m != b.m { - return false - } - for i := 0; i < a.n; i++ { - for j := 0; j < a.m; j++ { - if a.at(i, j).Cmp(b.at(i, j)) != 0 { - return false - } - } - } - return true -} - -func (a *matrix) String() string { - s := "" - for i := 0; i < a.n; i++ { - for j := 0; j < a.m; j++ { - s += fmt.Sprintf("\t%s", a.at(i, j)) - } - s += "\n" - } - return s -} - -func doHilbert(t *testing.T, n int) { - a := newHilbert(n) - b := newInverseHilbert(n) - I := newUnit(n) - ab := a.mul(b) - if !ab.eql(I) { - if t == nil { - panic("Hilbert failed") - } - t.Errorf("a = %s\n", a) - t.Errorf("b = %s\n", b) - t.Errorf("a*b = %s\n", ab) - t.Errorf("I = %s\n", I) - } -} - -func TestHilbert(t *testing.T) { - doHilbert(t, 10) -} - -func BenchmarkHilbert(b *testing.B) { - for i := 0; i < b.N; i++ { - doHilbert(nil, 10) - } -} diff --git a/src/pkg/math/big/int.go b/src/pkg/math/big/int.go deleted file mode 100644 index e70d0489b..000000000 --- a/src/pkg/math/big/int.go +++ /dev/null @@ -1,1024 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// This file implements signed multi-precision integers. - -package big - -import ( - "errors" - "fmt" - "io" - "math/rand" - "strings" -) - -// An Int represents a signed multi-precision integer. -// The zero value for an Int represents the value 0. -type Int struct { - neg bool // sign - abs nat // absolute value of the integer -} - -var intOne = &Int{false, natOne} - -// Sign returns: -// -// -1 if x < 0 -// 0 if x == 0 -// +1 if x > 0 -// -func (x *Int) Sign() int { - if len(x.abs) == 0 { - return 0 - } - if x.neg { - return -1 - } - return 1 -} - -// SetInt64 sets z to x and returns z. -func (z *Int) SetInt64(x int64) *Int { - neg := false - if x < 0 { - neg = true - x = -x - } - z.abs = z.abs.setUint64(uint64(x)) - z.neg = neg - return z -} - -// SetUint64 sets z to x and returns z. -func (z *Int) SetUint64(x uint64) *Int { - z.abs = z.abs.setUint64(x) - z.neg = false - return z -} - -// NewInt allocates and returns a new Int set to x. -func NewInt(x int64) *Int { - return new(Int).SetInt64(x) -} - -// Set sets z to x and returns z. -func (z *Int) Set(x *Int) *Int { - if z != x { - z.abs = z.abs.set(x.abs) - z.neg = x.neg - } - return z -} - -// Bits provides raw (unchecked but fast) access to x by returning its -// absolute value as a little-endian Word slice. The result and x share -// the same underlying array. -// Bits is intended to support implementation of missing low-level Int -// functionality outside this package; it should be avoided otherwise. -func (x *Int) Bits() []Word { - return x.abs -} - -// SetBits provides raw (unchecked but fast) access to z by setting its -// value to abs, interpreted as a little-endian Word slice, and returning -// z. The result and abs share the same underlying array. -// SetBits is intended to support implementation of missing low-level Int -// functionality outside this package; it should be avoided otherwise. -func (z *Int) SetBits(abs []Word) *Int { - z.abs = nat(abs).norm() - z.neg = false - return z -} - -// Abs sets z to |x| (the absolute value of x) and returns z. -func (z *Int) Abs(x *Int) *Int { - z.Set(x) - z.neg = false - return z -} - -// Neg sets z to -x and returns z. -func (z *Int) Neg(x *Int) *Int { - z.Set(x) - z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign - return z -} - -// Add sets z to the sum x+y and returns z. -func (z *Int) Add(x, y *Int) *Int { - neg := x.neg - if x.neg == y.neg { - // x + y == x + y - // (-x) + (-y) == -(x + y) - z.abs = z.abs.add(x.abs, y.abs) - } else { - // x + (-y) == x - y == -(y - x) - // (-x) + y == y - x == -(x - y) - if x.abs.cmp(y.abs) >= 0 { - z.abs = z.abs.sub(x.abs, y.abs) - } else { - neg = !neg - z.abs = z.abs.sub(y.abs, x.abs) - } - } - z.neg = len(z.abs) > 0 && neg // 0 has no sign - return z -} - -// Sub sets z to the difference x-y and returns z. -func (z *Int) Sub(x, y *Int) *Int { - neg := x.neg - if x.neg != y.neg { - // x - (-y) == x + y - // (-x) - y == -(x + y) - z.abs = z.abs.add(x.abs, y.abs) - } else { - // x - y == x - y == -(y - x) - // (-x) - (-y) == y - x == -(x - y) - if x.abs.cmp(y.abs) >= 0 { - z.abs = z.abs.sub(x.abs, y.abs) - } else { - neg = !neg - z.abs = z.abs.sub(y.abs, x.abs) - } - } - z.neg = len(z.abs) > 0 && neg // 0 has no sign - return z -} - -// Mul sets z to the product x*y and returns z. -func (z *Int) Mul(x, y *Int) *Int { - // x * y == x * y - // x * (-y) == -(x * y) - // (-x) * y == -(x * y) - // (-x) * (-y) == x * y - z.abs = z.abs.mul(x.abs, y.abs) - z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign - return z -} - -// MulRange sets z to the product of all integers -// in the range [a, b] inclusively and returns z. -// If a > b (empty range), the result is 1. -func (z *Int) MulRange(a, b int64) *Int { - switch { - case a > b: - return z.SetInt64(1) // empty range - case a <= 0 && b >= 0: - return z.SetInt64(0) // range includes 0 - } - // a <= b && (b < 0 || a > 0) - - neg := false - if a < 0 { - neg = (b-a)&1 == 0 - a, b = -b, -a - } - - z.abs = z.abs.mulRange(uint64(a), uint64(b)) - z.neg = neg - return z -} - -// Binomial sets z to the binomial coefficient of (n, k) and returns z. -func (z *Int) Binomial(n, k int64) *Int { - var a, b Int - a.MulRange(n-k+1, n) - b.MulRange(1, k) - return z.Quo(&a, &b) -} - -// Quo sets z to the quotient x/y for y != 0 and returns z. -// If y == 0, a division-by-zero run-time panic occurs. -// Quo implements truncated division (like Go); see QuoRem for more details. -func (z *Int) Quo(x, y *Int) *Int { - z.abs, _ = z.abs.div(nil, x.abs, y.abs) - z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign - return z -} - -// Rem sets z to the remainder x%y for y != 0 and returns z. -// If y == 0, a division-by-zero run-time panic occurs. -// Rem implements truncated modulus (like Go); see QuoRem for more details. -func (z *Int) Rem(x, y *Int) *Int { - _, z.abs = nat(nil).div(z.abs, x.abs, y.abs) - z.neg = len(z.abs) > 0 && x.neg // 0 has no sign - return z -} - -// QuoRem sets z to the quotient x/y and r to the remainder x%y -// and returns the pair (z, r) for y != 0. -// If y == 0, a division-by-zero run-time panic occurs. -// -// QuoRem implements T-division and modulus (like Go): -// -// q = x/y with the result truncated to zero -// r = x - y*q -// -// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.) -// See DivMod for Euclidean division and modulus (unlike Go). -// -func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) { - z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs) - z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign - return z, r -} - -// Div sets z to the quotient x/y for y != 0 and returns z. -// If y == 0, a division-by-zero run-time panic occurs. -// Div implements Euclidean division (unlike Go); see DivMod for more details. -func (z *Int) Div(x, y *Int) *Int { - y_neg := y.neg // z may be an alias for y - var r Int - z.QuoRem(x, y, &r) - if r.neg { - if y_neg { - z.Add(z, intOne) - } else { - z.Sub(z, intOne) - } - } - return z -} - -// Mod sets z to the modulus x%y for y != 0 and returns z. -// If y == 0, a division-by-zero run-time panic occurs. -// Mod implements Euclidean modulus (unlike Go); see DivMod for more details. -func (z *Int) Mod(x, y *Int) *Int { - y0 := y // save y - if z == y || alias(z.abs, y.abs) { - y0 = new(Int).Set(y) - } - var q Int - q.QuoRem(x, y, z) - if z.neg { - if y0.neg { - z.Sub(z, y0) - } else { - z.Add(z, y0) - } - } - return z -} - -// DivMod sets z to the quotient x div y and m to the modulus x mod y -// and returns the pair (z, m) for y != 0. -// If y == 0, a division-by-zero run-time panic occurs. -// -// DivMod implements Euclidean division and modulus (unlike Go): -// -// q = x div y such that -// m = x - y*q with 0 <= m < |q| -// -// (See Raymond T. Boute, ``The Euclidean definition of the functions -// div and mod''. ACM Transactions on Programming Languages and -// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992. -// ACM press.) -// See QuoRem for T-division and modulus (like Go). -// -func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) { - y0 := y // save y - if z == y || alias(z.abs, y.abs) { - y0 = new(Int).Set(y) - } - z.QuoRem(x, y, m) - if m.neg { - if y0.neg { - z.Add(z, intOne) - m.Sub(m, y0) - } else { - z.Sub(z, intOne) - m.Add(m, y0) - } - } - return z, m -} - -// Cmp compares x and y and returns: -// -// -1 if x < y -// 0 if x == y -// +1 if x > y -// -func (x *Int) Cmp(y *Int) (r int) { - // x cmp y == x cmp y - // x cmp (-y) == x - // (-x) cmp y == y - // (-x) cmp (-y) == -(x cmp y) - switch { - case x.neg == y.neg: - r = x.abs.cmp(y.abs) - if x.neg { - r = -r - } - case x.neg: - r = -1 - default: - r = 1 - } - return -} - -func (x *Int) String() string { - switch { - case x == nil: - return "<nil>" - case x.neg: - return "-" + x.abs.decimalString() - } - return x.abs.decimalString() -} - -func charset(ch rune) string { - switch ch { - case 'b': - return lowercaseDigits[0:2] - case 'o': - return lowercaseDigits[0:8] - case 'd', 's', 'v': - return lowercaseDigits[0:10] - case 'x': - return lowercaseDigits[0:16] - case 'X': - return uppercaseDigits[0:16] - } - return "" // unknown format -} - -// write count copies of text to s -func writeMultiple(s fmt.State, text string, count int) { - if len(text) > 0 { - b := []byte(text) - for ; count > 0; count-- { - s.Write(b) - } - } -} - -// Format is a support routine for fmt.Formatter. It accepts -// the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x' -// (lowercase hexadecimal), and 'X' (uppercase hexadecimal). -// Also supported are the full suite of package fmt's format -// verbs for integral types, including '+', '-', and ' ' -// for sign control, '#' for leading zero in octal and for -// hexadecimal, a leading "0x" or "0X" for "%#x" and "%#X" -// respectively, specification of minimum digits precision, -// output field width, space or zero padding, and left or -// right justification. -// -func (x *Int) Format(s fmt.State, ch rune) { - cs := charset(ch) - - // special cases - switch { - case cs == "": - // unknown format - fmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String()) - return - case x == nil: - fmt.Fprint(s, "<nil>") - return - } - - // determine sign character - sign := "" - switch { - case x.neg: - sign = "-" - case s.Flag('+'): // supersedes ' ' when both specified - sign = "+" - case s.Flag(' '): - sign = " " - } - - // determine prefix characters for indicating output base - prefix := "" - if s.Flag('#') { - switch ch { - case 'o': // octal - prefix = "0" - case 'x': // hexadecimal - prefix = "0x" - case 'X': - prefix = "0X" - } - } - - // determine digits with base set by len(cs) and digit characters from cs - digits := x.abs.string(cs) - - // number of characters for the three classes of number padding - var left int // space characters to left of digits for right justification ("%8d") - var zeroes int // zero characters (actually cs[0]) as left-most digits ("%.8d") - var right int // space characters to right of digits for left justification ("%-8d") - - // determine number padding from precision: the least number of digits to output - precision, precisionSet := s.Precision() - if precisionSet { - switch { - case len(digits) < precision: - zeroes = precision - len(digits) // count of zero padding - case digits == "0" && precision == 0: - return // print nothing if zero value (x == 0) and zero precision ("." or ".0") - } - } - - // determine field pad from width: the least number of characters to output - length := len(sign) + len(prefix) + zeroes + len(digits) - if width, widthSet := s.Width(); widthSet && length < width { // pad as specified - switch d := width - length; { - case s.Flag('-'): - // pad on the right with spaces; supersedes '0' when both specified - right = d - case s.Flag('0') && !precisionSet: - // pad with zeroes unless precision also specified - zeroes = d - default: - // pad on the left with spaces - left = d - } - } - - // print number as [left pad][sign][prefix][zero pad][digits][right pad] - writeMultiple(s, " ", left) - writeMultiple(s, sign, 1) - writeMultiple(s, prefix, 1) - writeMultiple(s, "0", zeroes) - writeMultiple(s, digits, 1) - writeMultiple(s, " ", right) -} - -// scan sets z to the integer value corresponding to the longest possible prefix -// read from r representing a signed integer number in a given conversion base. -// It returns z, the actual conversion base used, and an error, if any. In the -// error case, the value of z is undefined but the returned value is nil. The -// syntax follows the syntax of integer literals in Go. -// -// The base argument must be 0 or a value from 2 through MaxBase. If the base -// is 0, the string prefix determines the actual conversion base. A prefix of -// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a -// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10. -// -func (z *Int) scan(r io.RuneScanner, base int) (*Int, int, error) { - // determine sign - ch, _, err := r.ReadRune() - if err != nil { - return nil, 0, err - } - neg := false - switch ch { - case '-': - neg = true - case '+': // nothing to do - default: - r.UnreadRune() - } - - // determine mantissa - z.abs, base, err = z.abs.scan(r, base) - if err != nil { - return nil, base, err - } - z.neg = len(z.abs) > 0 && neg // 0 has no sign - - return z, base, nil -} - -// Scan is a support routine for fmt.Scanner; it sets z to the value of -// the scanned number. It accepts the formats 'b' (binary), 'o' (octal), -// 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal). -func (z *Int) Scan(s fmt.ScanState, ch rune) error { - s.SkipSpace() // skip leading space characters - base := 0 - switch ch { - case 'b': - base = 2 - case 'o': - base = 8 - case 'd': - base = 10 - case 'x', 'X': - base = 16 - case 's', 'v': - // let scan determine the base - default: - return errors.New("Int.Scan: invalid verb") - } - _, _, err := z.scan(s, base) - return err -} - -// low32 returns the least significant 32 bits of z. -func low32(z nat) uint32 { - if len(z) == 0 { - return 0 - } - return uint32(z[0]) -} - -// low64 returns the least significant 64 bits of z. -func low64(z nat) uint64 { - if len(z) == 0 { - return 0 - } - v := uint64(z[0]) - if _W == 32 && len(z) > 1 { - v |= uint64(z[1]) << 32 - } - return v -} - -// Int64 returns the int64 representation of x. -// If x cannot be represented in an int64, the result is undefined. -func (x *Int) Int64() int64 { - v := int64(low64(x.abs)) - if x.neg { - v = -v - } - return v -} - -// Uint64 returns the uint64 representation of x. -// If x cannot be represented in a uint64, the result is undefined. -func (x *Int) Uint64() uint64 { - return low64(x.abs) -} - -// SetString sets z to the value of s, interpreted in the given base, -// and returns z and a boolean indicating success. If SetString fails, -// the value of z is undefined but the returned value is nil. -// -// The base argument must be 0 or a value from 2 through MaxBase. If the base -// is 0, the string prefix determines the actual conversion base. A prefix of -// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a -// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10. -// -func (z *Int) SetString(s string, base int) (*Int, bool) { - r := strings.NewReader(s) - _, _, err := z.scan(r, base) - if err != nil { - return nil, false - } - _, _, err = r.ReadRune() - if err != io.EOF { - return nil, false - } - return z, true // err == io.EOF => scan consumed all of s -} - -// SetBytes interprets buf as the bytes of a big-endian unsigned -// integer, sets z to that value, and returns z. -func (z *Int) SetBytes(buf []byte) *Int { - z.abs = z.abs.setBytes(buf) - z.neg = false - return z -} - -// Bytes returns the absolute value of x as a big-endian byte slice. -func (x *Int) Bytes() []byte { - buf := make([]byte, len(x.abs)*_S) - return buf[x.abs.bytes(buf):] -} - -// BitLen returns the length of the absolute value of x in bits. -// The bit length of 0 is 0. -func (x *Int) BitLen() int { - return x.abs.bitLen() -} - -// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z. -// If y <= 0, the result is 1 mod |m|; if m == nil or m == 0, z = x**y. -// See Knuth, volume 2, section 4.6.3. -func (z *Int) Exp(x, y, m *Int) *Int { - var yWords nat - if !y.neg { - yWords = y.abs - } - // y >= 0 - - var mWords nat - if m != nil { - mWords = m.abs // m.abs may be nil for m == 0 - } - - z.abs = z.abs.expNN(x.abs, yWords, mWords) - z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign - return z -} - -// GCD sets z to the greatest common divisor of a and b, which both must -// be > 0, and returns z. -// If x and y are not nil, GCD sets x and y such that z = a*x + b*y. -// If either a or b is <= 0, GCD sets z = x = y = 0. -func (z *Int) GCD(x, y, a, b *Int) *Int { - if a.Sign() <= 0 || b.Sign() <= 0 { - z.SetInt64(0) - if x != nil { - x.SetInt64(0) - } - if y != nil { - y.SetInt64(0) - } - return z - } - if x == nil && y == nil { - return z.binaryGCD(a, b) - } - - A := new(Int).Set(a) - B := new(Int).Set(b) - - X := new(Int) - Y := new(Int).SetInt64(1) - - lastX := new(Int).SetInt64(1) - lastY := new(Int) - - q := new(Int) - temp := new(Int) - - for len(B.abs) > 0 { - r := new(Int) - q, r = q.QuoRem(A, B, r) - - A, B = B, r - - temp.Set(X) - X.Mul(X, q) - X.neg = !X.neg - X.Add(X, lastX) - lastX.Set(temp) - - temp.Set(Y) - Y.Mul(Y, q) - Y.neg = !Y.neg - Y.Add(Y, lastY) - lastY.Set(temp) - } - - if x != nil { - *x = *lastX - } - - if y != nil { - *y = *lastY - } - - *z = *A - return z -} - -// binaryGCD sets z to the greatest common divisor of a and b, which both must -// be > 0, and returns z. -// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B. -func (z *Int) binaryGCD(a, b *Int) *Int { - u := z - v := new(Int) - - // use one Euclidean iteration to ensure that u and v are approx. the same size - switch { - case len(a.abs) > len(b.abs): - u.Set(b) - v.Rem(a, b) - case len(a.abs) < len(b.abs): - u.Set(a) - v.Rem(b, a) - default: - u.Set(a) - v.Set(b) - } - - // v might be 0 now - if len(v.abs) == 0 { - return u - } - // u > 0 && v > 0 - - // determine largest k such that u = u' << k, v = v' << k - k := u.abs.trailingZeroBits() - if vk := v.abs.trailingZeroBits(); vk < k { - k = vk - } - u.Rsh(u, k) - v.Rsh(v, k) - - // determine t (we know that u > 0) - t := new(Int) - if u.abs[0]&1 != 0 { - // u is odd - t.Neg(v) - } else { - t.Set(u) - } - - for len(t.abs) > 0 { - // reduce t - t.Rsh(t, t.abs.trailingZeroBits()) - if t.neg { - v, t = t, v - v.neg = len(v.abs) > 0 && !v.neg // 0 has no sign - } else { - u, t = t, u - } - t.Sub(u, v) - } - - return z.Lsh(u, k) -} - -// ProbablyPrime performs n Miller-Rabin tests to check whether x is prime. -// If it returns true, x is prime with probability 1 - 1/4^n. -// If it returns false, x is not prime. -func (x *Int) ProbablyPrime(n int) bool { - return !x.neg && x.abs.probablyPrime(n) -} - -// Rand sets z to a pseudo-random number in [0, n) and returns z. -func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int { - z.neg = false - if n.neg == true || len(n.abs) == 0 { - z.abs = nil - return z - } - z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen()) - return z -} - -// ModInverse sets z to the multiplicative inverse of g in the group ℤ/pℤ (where -// p is a prime) and returns z. -func (z *Int) ModInverse(g, p *Int) *Int { - var d Int - d.GCD(z, nil, g, p) - // x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking - // that modulo p results in g*x = 1, therefore x is the inverse element. - if z.neg { - z.Add(z, p) - } - return z -} - -// Lsh sets z = x << n and returns z. -func (z *Int) Lsh(x *Int, n uint) *Int { - z.abs = z.abs.shl(x.abs, n) - z.neg = x.neg - return z -} - -// Rsh sets z = x >> n and returns z. -func (z *Int) Rsh(x *Int, n uint) *Int { - if x.neg { - // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1) - t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0 - t = t.shr(t, n) - z.abs = t.add(t, natOne) - z.neg = true // z cannot be zero if x is negative - return z - } - - z.abs = z.abs.shr(x.abs, n) - z.neg = false - return z -} - -// Bit returns the value of the i'th bit of x. That is, it -// returns (x>>i)&1. The bit index i must be >= 0. -func (x *Int) Bit(i int) uint { - if i == 0 { - // optimization for common case: odd/even test of x - if len(x.abs) > 0 { - return uint(x.abs[0] & 1) // bit 0 is same for -x - } - return 0 - } - if i < 0 { - panic("negative bit index") - } - if x.neg { - t := nat(nil).sub(x.abs, natOne) - return t.bit(uint(i)) ^ 1 - } - - return x.abs.bit(uint(i)) -} - -// SetBit sets z to x, with x's i'th bit set to b (0 or 1). -// That is, if b is 1 SetBit sets z = x | (1 << i); -// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1, -// SetBit will panic. -func (z *Int) SetBit(x *Int, i int, b uint) *Int { - if i < 0 { - panic("negative bit index") - } - if x.neg { - t := z.abs.sub(x.abs, natOne) - t = t.setBit(t, uint(i), b^1) - z.abs = t.add(t, natOne) - z.neg = len(z.abs) > 0 - return z - } - z.abs = z.abs.setBit(x.abs, uint(i), b) - z.neg = false - return z -} - -// And sets z = x & y and returns z. -func (z *Int) And(x, y *Int) *Int { - if x.neg == y.neg { - if x.neg { - // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1) - x1 := nat(nil).sub(x.abs, natOne) - y1 := nat(nil).sub(y.abs, natOne) - z.abs = z.abs.add(z.abs.or(x1, y1), natOne) - z.neg = true // z cannot be zero if x and y are negative - return z - } - - // x & y == x & y - z.abs = z.abs.and(x.abs, y.abs) - z.neg = false - return z - } - - // x.neg != y.neg - if x.neg { - x, y = y, x // & is symmetric - } - - // x & (-y) == x & ^(y-1) == x &^ (y-1) - y1 := nat(nil).sub(y.abs, natOne) - z.abs = z.abs.andNot(x.abs, y1) - z.neg = false - return z -} - -// AndNot sets z = x &^ y and returns z. -func (z *Int) AndNot(x, y *Int) *Int { - if x.neg == y.neg { - if x.neg { - // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1) - x1 := nat(nil).sub(x.abs, natOne) - y1 := nat(nil).sub(y.abs, natOne) - z.abs = z.abs.andNot(y1, x1) - z.neg = false - return z - } - - // x &^ y == x &^ y - z.abs = z.abs.andNot(x.abs, y.abs) - z.neg = false - return z - } - - if x.neg { - // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1) - x1 := nat(nil).sub(x.abs, natOne) - z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne) - z.neg = true // z cannot be zero if x is negative and y is positive - return z - } - - // x &^ (-y) == x &^ ^(y-1) == x & (y-1) - y1 := nat(nil).add(y.abs, natOne) - z.abs = z.abs.and(x.abs, y1) - z.neg = false - return z -} - -// Or sets z = x | y and returns z. -func (z *Int) Or(x, y *Int) *Int { - if x.neg == y.neg { - if x.neg { - // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1) - x1 := nat(nil).sub(x.abs, natOne) - y1 := nat(nil).sub(y.abs, natOne) - z.abs = z.abs.add(z.abs.and(x1, y1), natOne) - z.neg = true // z cannot be zero if x and y are negative - return z - } - - // x | y == x | y - z.abs = z.abs.or(x.abs, y.abs) - z.neg = false - return z - } - - // x.neg != y.neg - if x.neg { - x, y = y, x // | is symmetric - } - - // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1) - y1 := nat(nil).sub(y.abs, natOne) - z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne) - z.neg = true // z cannot be zero if one of x or y is negative - return z -} - -// Xor sets z = x ^ y and returns z. -func (z *Int) Xor(x, y *Int) *Int { - if x.neg == y.neg { - if x.neg { - // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1) - x1 := nat(nil).sub(x.abs, natOne) - y1 := nat(nil).sub(y.abs, natOne) - z.abs = z.abs.xor(x1, y1) - z.neg = false - return z - } - - // x ^ y == x ^ y - z.abs = z.abs.xor(x.abs, y.abs) - z.neg = false - return z - } - - // x.neg != y.neg - if x.neg { - x, y = y, x // ^ is symmetric - } - - // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1) - y1 := nat(nil).sub(y.abs, natOne) - z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne) - z.neg = true // z cannot be zero if only one of x or y is negative - return z -} - -// Not sets z = ^x and returns z. -func (z *Int) Not(x *Int) *Int { - if x.neg { - // ^(-x) == ^(^(x-1)) == x-1 - z.abs = z.abs.sub(x.abs, natOne) - z.neg = false - return z - } - - // ^x == -x-1 == -(x+1) - z.abs = z.abs.add(x.abs, natOne) - z.neg = true // z cannot be zero if x is positive - return z -} - -// Gob codec version. Permits backward-compatible changes to the encoding. -const intGobVersion byte = 1 - -// GobEncode implements the gob.GobEncoder interface. -func (x *Int) GobEncode() ([]byte, error) { - if x == nil { - return nil, nil - } - buf := make([]byte, 1+len(x.abs)*_S) // extra byte for version and sign bit - i := x.abs.bytes(buf) - 1 // i >= 0 - b := intGobVersion << 1 // make space for sign bit - if x.neg { - b |= 1 - } - buf[i] = b - return buf[i:], nil -} - -// GobDecode implements the gob.GobDecoder interface. -func (z *Int) GobDecode(buf []byte) error { - if len(buf) == 0 { - // Other side sent a nil or default value. - *z = Int{} - return nil - } - b := buf[0] - if b>>1 != intGobVersion { - return errors.New(fmt.Sprintf("Int.GobDecode: encoding version %d not supported", b>>1)) - } - z.neg = b&1 != 0 - z.abs = z.abs.setBytes(buf[1:]) - return nil -} - -// MarshalJSON implements the json.Marshaler interface. -func (z *Int) MarshalJSON() ([]byte, error) { - // TODO(gri): get rid of the []byte/string conversions - return []byte(z.String()), nil -} - -// UnmarshalJSON implements the json.Unmarshaler interface. -func (z *Int) UnmarshalJSON(text []byte) error { - // TODO(gri): get rid of the []byte/string conversions - if _, ok := z.SetString(string(text), 0); !ok { - return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text) - } - return nil -} - -// MarshalText implements the encoding.TextMarshaler interface -func (z *Int) MarshalText() (text []byte, err error) { - return []byte(z.String()), nil -} - -// UnmarshalText implements the encoding.TextUnmarshaler interface -func (z *Int) UnmarshalText(text []byte) error { - if _, ok := z.SetString(string(text), 0); !ok { - return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text) - } - return nil -} diff --git a/src/pkg/math/big/int_test.go b/src/pkg/math/big/int_test.go deleted file mode 100644 index 299dc72fb..000000000 --- a/src/pkg/math/big/int_test.go +++ /dev/null @@ -1,1601 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package big - -import ( - "bytes" - "encoding/gob" - "encoding/hex" - "encoding/json" - "encoding/xml" - "fmt" - "math/rand" - "testing" - "testing/quick" -) - -func isNormalized(x *Int) bool { - if len(x.abs) == 0 { - return !x.neg - } - // len(x.abs) > 0 - return x.abs[len(x.abs)-1] != 0 -} - -type funZZ func(z, x, y *Int) *Int -type argZZ struct { - z, x, y *Int -} - -var sumZZ = []argZZ{ - {NewInt(0), NewInt(0), NewInt(0)}, - {NewInt(1), NewInt(1), NewInt(0)}, - {NewInt(1111111110), NewInt(123456789), NewInt(987654321)}, - {NewInt(-1), NewInt(-1), NewInt(0)}, - {NewInt(864197532), NewInt(-123456789), NewInt(987654321)}, - {NewInt(-1111111110), NewInt(-123456789), NewInt(-987654321)}, -} - -var prodZZ = []argZZ{ - {NewInt(0), NewInt(0), NewInt(0)}, - {NewInt(0), NewInt(1), NewInt(0)}, - {NewInt(1), NewInt(1), NewInt(1)}, - {NewInt(-991 * 991), NewInt(991), NewInt(-991)}, - // TODO(gri) add larger products -} - -func TestSignZ(t *testing.T) { - var zero Int - for _, a := range sumZZ { - s := a.z.Sign() - e := a.z.Cmp(&zero) - if s != e { - t.Errorf("got %d; want %d for z = %v", s, e, a.z) - } - } -} - -func TestSetZ(t *testing.T) { - for _, a := range sumZZ { - var z Int - z.Set(a.z) - if !isNormalized(&z) { - t.Errorf("%v is not normalized", z) - } - if (&z).Cmp(a.z) != 0 { - t.Errorf("got z = %v; want %v", z, a.z) - } - } -} - -func TestAbsZ(t *testing.T) { - var zero Int - for _, a := range sumZZ { - var z Int - z.Abs(a.z) - var e Int - e.Set(a.z) - if e.Cmp(&zero) < 0 { - e.Sub(&zero, &e) - } - if z.Cmp(&e) != 0 { - t.Errorf("got z = %v; want %v", z, e) - } - } -} - -func testFunZZ(t *testing.T, msg string, f funZZ, a argZZ) { - var z Int - f(&z, a.x, a.y) - if !isNormalized(&z) { - t.Errorf("%s%v is not normalized", msg, z) - } - if (&z).Cmp(a.z) != 0 { - t.Errorf("%s%+v\n\tgot z = %v; want %v", msg, a, &z, a.z) - } -} - -func TestSumZZ(t *testing.T) { - AddZZ := func(z, x, y *Int) *Int { return z.Add(x, y) } - SubZZ := func(z, x, y *Int) *Int { return z.Sub(x, y) } - for _, a := range sumZZ { - arg := a - testFunZZ(t, "AddZZ", AddZZ, arg) - - arg = argZZ{a.z, a.y, a.x} - testFunZZ(t, "AddZZ symmetric", AddZZ, arg) - - arg = argZZ{a.x, a.z, a.y} - testFunZZ(t, "SubZZ", SubZZ, arg) - - arg = argZZ{a.y, a.z, a.x} - testFunZZ(t, "SubZZ symmetric", SubZZ, arg) - } -} - -func TestProdZZ(t *testing.T) { - MulZZ := func(z, x, y *Int) *Int { return z.Mul(x, y) } - for _, a := range prodZZ { - arg := a - testFunZZ(t, "MulZZ", MulZZ, arg) - - arg = argZZ{a.z, a.y, a.x} - testFunZZ(t, "MulZZ symmetric", MulZZ, arg) - } -} - -// mulBytes returns x*y via grade school multiplication. Both inputs -// and the result are assumed to be in big-endian representation (to -// match the semantics of Int.Bytes and Int.SetBytes). -func mulBytes(x, y []byte) []byte { - z := make([]byte, len(x)+len(y)) - - // multiply - k0 := len(z) - 1 - for j := len(y) - 1; j >= 0; j-- { - d := int(y[j]) - if d != 0 { - k := k0 - carry := 0 - for i := len(x) - 1; i >= 0; i-- { - t := int(z[k]) + int(x[i])*d + carry - z[k], carry = byte(t), t>>8 - k-- - } - z[k] = byte(carry) - } - k0-- - } - - // normalize (remove leading 0's) - i := 0 - for i < len(z) && z[i] == 0 { - i++ - } - - return z[i:] -} - -func checkMul(a, b []byte) bool { - var x, y, z1 Int - x.SetBytes(a) - y.SetBytes(b) - z1.Mul(&x, &y) - - var z2 Int - z2.SetBytes(mulBytes(a, b)) - - return z1.Cmp(&z2) == 0 -} - -func TestMul(t *testing.T) { - if err := quick.Check(checkMul, nil); err != nil { - t.Error(err) - } -} - -var mulRangesZ = []struct { - a, b int64 - prod string -}{ - // entirely positive ranges are covered by mulRangesN - {-1, 1, "0"}, - {-2, -1, "2"}, - {-3, -2, "6"}, - {-3, -1, "-6"}, - {1, 3, "6"}, - {-10, -10, "-10"}, - {0, -1, "1"}, // empty range - {-1, -100, "1"}, // empty range - {-1, 1, "0"}, // range includes 0 - {-1e9, 0, "0"}, // range includes 0 - {-1e9, 1e9, "0"}, // range includes 0 - {-10, -1, "3628800"}, // 10! - {-20, -2, "-2432902008176640000"}, // -20! - {-99, -1, - "-933262154439441526816992388562667004907159682643816214685929" + - "638952175999932299156089414639761565182862536979208272237582" + - "511852109168640000000000000000000000", // -99! - }, -} - -func TestMulRangeZ(t *testing.T) { - var tmp Int - // test entirely positive ranges - for i, r := range mulRangesN { - prod := tmp.MulRange(int64(r.a), int64(r.b)).String() - if prod != r.prod { - t.Errorf("#%da: got %s; want %s", i, prod, r.prod) - } - } - // test other ranges - for i, r := range mulRangesZ { - prod := tmp.MulRange(r.a, r.b).String() - if prod != r.prod { - t.Errorf("#%db: got %s; want %s", i, prod, r.prod) - } - } -} - -var stringTests = []struct { - in string - out string - base int - val int64 - ok bool -}{ - {in: "", ok: false}, - {in: "a", ok: false}, - {in: "z", ok: false}, - {in: "+", ok: false}, - {in: "-", ok: false}, - {in: "0b", ok: false}, - {in: "0x", ok: false}, - {in: "2", base: 2, ok: false}, - {in: "0b2", base: 0, ok: false}, - {in: "08", ok: false}, - {in: "8", base: 8, ok: false}, - {in: "0xg", base: 0, ok: false}, - {in: "g", base: 16, ok: false}, - {"0", "0", 0, 0, true}, - {"0", "0", 10, 0, true}, - {"0", "0", 16, 0, true}, - {"+0", "0", 0, 0, true}, - {"-0", "0", 0, 0, true}, - {"10", "10", 0, 10, true}, - {"10", "10", 10, 10, true}, - {"10", "10", 16, 16, true}, - {"-10", "-10", 16, -16, true}, - {"+10", "10", 16, 16, true}, - {"0x10", "16", 0, 16, true}, - {in: "0x10", base: 16, ok: false}, - {"-0x10", "-16", 0, -16, true}, - {"+0x10", "16", 0, 16, true}, - {"00", "0", 0, 0, true}, - {"0", "0", 8, 0, true}, - {"07", "7", 0, 7, true}, - {"7", "7", 8, 7, true}, - {"023", "19", 0, 19, true}, - {"23", "23", 8, 19, true}, - {"cafebabe", "cafebabe", 16, 0xcafebabe, true}, - {"0b0", "0", 0, 0, true}, - {"-111", "-111", 2, -7, true}, - {"-0b111", "-7", 0, -7, true}, - {"0b1001010111", "599", 0, 0x257, true}, - {"1001010111", "1001010111", 2, 0x257, true}, -} - -func format(base int) string { - switch base { - case 2: - return "%b" - case 8: - return "%o" - case 16: - return "%x" - } - return "%d" -} - -func TestGetString(t *testing.T) { - z := new(Int) - for i, test := range stringTests { - if !test.ok { - continue - } - z.SetInt64(test.val) - - if test.base == 10 { - s := z.String() - if s != test.out { - t.Errorf("#%da got %s; want %s", i, s, test.out) - } - } - - s := fmt.Sprintf(format(test.base), z) - if s != test.out { - t.Errorf("#%db got %s; want %s", i, s, test.out) - } - } -} - -func TestSetString(t *testing.T) { - tmp := new(Int) - for i, test := range stringTests { - // initialize to a non-zero value so that issues with parsing - // 0 are detected - tmp.SetInt64(1234567890) - n1, ok1 := new(Int).SetString(test.in, test.base) - n2, ok2 := tmp.SetString(test.in, test.base) - expected := NewInt(test.val) - if ok1 != test.ok || ok2 != test.ok { - t.Errorf("#%d (input '%s') ok incorrect (should be %t)", i, test.in, test.ok) - continue - } - if !ok1 { - if n1 != nil { - t.Errorf("#%d (input '%s') n1 != nil", i, test.in) - } - continue - } - if !ok2 { - if n2 != nil { - t.Errorf("#%d (input '%s') n2 != nil", i, test.in) - } - continue - } - - if ok1 && !isNormalized(n1) { - t.Errorf("#%d (input '%s'): %v is not normalized", i, test.in, *n1) - } - if ok2 && !isNormalized(n2) { - t.Errorf("#%d (input '%s'): %v is not normalized", i, test.in, *n2) - } - - if n1.Cmp(expected) != 0 { - t.Errorf("#%d (input '%s') got: %s want: %d", i, test.in, n1, test.val) - } - if n2.Cmp(expected) != 0 { - t.Errorf("#%d (input '%s') got: %s want: %d", i, test.in, n2, test.val) - } - } -} - -var formatTests = []struct { - input string - format string - output string -}{ - {"<nil>", "%x", "<nil>"}, - {"<nil>", "%#x", "<nil>"}, - {"<nil>", "%#y", "%!y(big.Int=<nil>)"}, - - {"10", "%b", "1010"}, - {"10", "%o", "12"}, - {"10", "%d", "10"}, - {"10", "%v", "10"}, - {"10", "%x", "a"}, - {"10", "%X", "A"}, - {"-10", "%X", "-A"}, - {"10", "%y", "%!y(big.Int=10)"}, - {"-10", "%y", "%!y(big.Int=-10)"}, - - {"10", "%#b", "1010"}, - {"10", "%#o", "012"}, - {"10", "%#d", "10"}, - {"10", "%#v", "10"}, - {"10", "%#x", "0xa"}, - {"10", "%#X", "0XA"}, - {"-10", "%#X", "-0XA"}, - {"10", "%#y", "%!y(big.Int=10)"}, - {"-10", "%#y", "%!y(big.Int=-10)"}, - - {"1234", "%d", "1234"}, - {"1234", "%3d", "1234"}, - {"1234", "%4d", "1234"}, - {"-1234", "%d", "-1234"}, - {"1234", "% 5d", " 1234"}, - {"1234", "%+5d", "+1234"}, - {"1234", "%-5d", "1234 "}, - {"1234", "%x", "4d2"}, - {"1234", "%X", "4D2"}, - {"-1234", "%3x", "-4d2"}, - {"-1234", "%4x", "-4d2"}, - {"-1234", "%5x", " -4d2"}, - {"-1234", "%-5x", "-4d2 "}, - {"1234", "%03d", "1234"}, - {"1234", "%04d", "1234"}, - {"1234", "%05d", "01234"}, - {"1234", "%06d", "001234"}, - {"-1234", "%06d", "-01234"}, - {"1234", "%+06d", "+01234"}, - {"1234", "% 06d", " 01234"}, - {"1234", "%-6d", "1234 "}, - {"1234", "%-06d", "1234 "}, - {"-1234", "%-06d", "-1234 "}, - - {"1234", "%.3d", "1234"}, - {"1234", "%.4d", "1234"}, - {"1234", "%.5d", "01234"}, - {"1234", "%.6d", "001234"}, - {"-1234", "%.3d", "-1234"}, - {"-1234", "%.4d", "-1234"}, - {"-1234", "%.5d", "-01234"}, - {"-1234", "%.6d", "-001234"}, - - {"1234", "%8.3d", " 1234"}, - {"1234", "%8.4d", " 1234"}, - {"1234", "%8.5d", " 01234"}, - {"1234", "%8.6d", " 001234"}, - {"-1234", "%8.3d", " -1234"}, - {"-1234", "%8.4d", " -1234"}, - {"-1234", "%8.5d", " -01234"}, - {"-1234", "%8.6d", " -001234"}, - - {"1234", "%+8.3d", " +1234"}, - {"1234", "%+8.4d", " +1234"}, - {"1234", "%+8.5d", " +01234"}, - {"1234", "%+8.6d", " +001234"}, - {"-1234", "%+8.3d", " -1234"}, - {"-1234", "%+8.4d", " -1234"}, - {"-1234", "%+8.5d", " -01234"}, - {"-1234", "%+8.6d", " -001234"}, - - {"1234", "% 8.3d", " 1234"}, - {"1234", "% 8.4d", " 1234"}, - {"1234", "% 8.5d", " 01234"}, - {"1234", "% 8.6d", " 001234"}, - {"-1234", "% 8.3d", " -1234"}, - {"-1234", "% 8.4d", " -1234"}, - {"-1234", "% 8.5d", " -01234"}, - {"-1234", "% 8.6d", " -001234"}, - - {"1234", "%.3x", "4d2"}, - {"1234", "%.4x", "04d2"}, - {"1234", "%.5x", "004d2"}, - {"1234", "%.6x", "0004d2"}, - {"-1234", "%.3x", "-4d2"}, - {"-1234", "%.4x", "-04d2"}, - {"-1234", "%.5x", "-004d2"}, - {"-1234", "%.6x", "-0004d2"}, - - {"1234", "%8.3x", " 4d2"}, - {"1234", "%8.4x", " 04d2"}, - {"1234", "%8.5x", " 004d2"}, - {"1234", "%8.6x", " 0004d2"}, - {"-1234", "%8.3x", " -4d2"}, - {"-1234", "%8.4x", " -04d2"}, - {"-1234", "%8.5x", " -004d2"}, - {"-1234", "%8.6x", " -0004d2"}, - - {"1234", "%+8.3x", " +4d2"}, - {"1234", "%+8.4x", " +04d2"}, - {"1234", "%+8.5x", " +004d2"}, - {"1234", "%+8.6x", " +0004d2"}, - {"-1234", "%+8.3x", " -4d2"}, - {"-1234", "%+8.4x", " -04d2"}, - {"-1234", "%+8.5x", " -004d2"}, - {"-1234", "%+8.6x", " -0004d2"}, - - {"1234", "% 8.3x", " 4d2"}, - {"1234", "% 8.4x", " 04d2"}, - {"1234", "% 8.5x", " 004d2"}, - {"1234", "% 8.6x", " 0004d2"}, - {"1234", "% 8.7x", " 00004d2"}, - {"1234", "% 8.8x", " 000004d2"}, - {"-1234", "% 8.3x", " -4d2"}, - {"-1234", "% 8.4x", " -04d2"}, - {"-1234", "% 8.5x", " -004d2"}, - {"-1234", "% 8.6x", " -0004d2"}, - {"-1234", "% 8.7x", "-00004d2"}, - {"-1234", "% 8.8x", "-000004d2"}, - - {"1234", "%-8.3d", "1234 "}, - {"1234", "%-8.4d", "1234 "}, - {"1234", "%-8.5d", "01234 "}, - {"1234", "%-8.6d", "001234 "}, - {"1234", "%-8.7d", "0001234 "}, - {"1234", "%-8.8d", "00001234"}, - {"-1234", "%-8.3d", "-1234 "}, - {"-1234", "%-8.4d", "-1234 "}, - {"-1234", "%-8.5d", "-01234 "}, - {"-1234", "%-8.6d", "-001234 "}, - {"-1234", "%-8.7d", "-0001234"}, - {"-1234", "%-8.8d", "-00001234"}, - - {"16777215", "%b", "111111111111111111111111"}, // 2**24 - 1 - - {"0", "%.d", ""}, - {"0", "%.0d", ""}, - {"0", "%3.d", ""}, -} - -func TestFormat(t *testing.T) { - for i, test := range formatTests { - var x *Int - if test.input != "<nil>" { - var ok bool - x, ok = new(Int).SetString(test.input, 0) - if !ok { - t.Errorf("#%d failed reading input %s", i, test.input) - } - } - output := fmt.Sprintf(test.format, x) - if output != test.output { - t.Errorf("#%d got %q; want %q, {%q, %q, %q}", i, output, test.output, test.input, test.format, test.output) - } - } -} - -var scanTests = []struct { - input string - format string - output string - remaining int -}{ - {"1010", "%b", "10", 0}, - {"0b1010", "%v", "10", 0}, - {"12", "%o", "10", 0}, - {"012", "%v", "10", 0}, - {"10", "%d", "10", 0}, - {"10", "%v", "10", 0}, - {"a", "%x", "10", 0}, - {"0xa", "%v", "10", 0}, - {"A", "%X", "10", 0}, - {"-A", "%X", "-10", 0}, - {"+0b1011001", "%v", "89", 0}, - {"0xA", "%v", "10", 0}, - {"0 ", "%v", "0", 1}, - {"2+3", "%v", "2", 2}, - {"0XABC 12", "%v", "2748", 3}, -} - -func TestScan(t *testing.T) { - var buf bytes.Buffer - for i, test := range scanTests { - x := new(Int) - buf.Reset() - buf.WriteString(test.input) - if _, err := fmt.Fscanf(&buf, test.format, x); err != nil { - t.Errorf("#%d error: %s", i, err) - } - if x.String() != test.output { - t.Errorf("#%d got %s; want %s", i, x.String(), test.output) - } - if buf.Len() != test.remaining { - t.Errorf("#%d got %d bytes remaining; want %d", i, buf.Len(), test.remaining) - } - } -} - -// Examples from the Go Language Spec, section "Arithmetic operators" -var divisionSignsTests = []struct { - x, y int64 - q, r int64 // T-division - d, m int64 // Euclidian division -}{ - {5, 3, 1, 2, 1, 2}, - {-5, 3, -1, -2, -2, 1}, - {5, -3, -1, 2, -1, 2}, - {-5, -3, 1, -2, 2, 1}, - {1, 2, 0, 1, 0, 1}, - {8, 4, 2, 0, 2, 0}, -} - -func TestDivisionSigns(t *testing.T) { - for i, test := range divisionSignsTests { - x := NewInt(test.x) - y := NewInt(test.y) - q := NewInt(test.q) - r := NewInt(test.r) - d := NewInt(test.d) - m := NewInt(test.m) - - q1 := new(Int).Quo(x, y) - r1 := new(Int).Rem(x, y) - if !isNormalized(q1) { - t.Errorf("#%d Quo: %v is not normalized", i, *q1) - } - if !isNormalized(r1) { - t.Errorf("#%d Rem: %v is not normalized", i, *r1) - } - if q1.Cmp(q) != 0 || r1.Cmp(r) != 0 { - t.Errorf("#%d QuoRem: got (%s, %s), want (%s, %s)", i, q1, r1, q, r) - } - - q2, r2 := new(Int).QuoRem(x, y, new(Int)) - if !isNormalized(q2) { - t.Errorf("#%d Quo: %v is not normalized", i, *q2) - } - if !isNormalized(r2) { - t.Errorf("#%d Rem: %v is not normalized", i, *r2) - } - if q2.Cmp(q) != 0 || r2.Cmp(r) != 0 { - t.Errorf("#%d QuoRem: got (%s, %s), want (%s, %s)", i, q2, r2, q, r) - } - - d1 := new(Int).Div(x, y) - m1 := new(Int).Mod(x, y) - if !isNormalized(d1) { - t.Errorf("#%d Div: %v is not normalized", i, *d1) - } - if !isNormalized(m1) { - t.Errorf("#%d Mod: %v is not normalized", i, *m1) - } - if d1.Cmp(d) != 0 || m1.Cmp(m) != 0 { - t.Errorf("#%d DivMod: got (%s, %s), want (%s, %s)", i, d1, m1, d, m) - } - - d2, m2 := new(Int).DivMod(x, y, new(Int)) - if !isNormalized(d2) { - t.Errorf("#%d Div: %v is not normalized", i, *d2) - } - if !isNormalized(m2) { - t.Errorf("#%d Mod: %v is not normalized", i, *m2) - } - if d2.Cmp(d) != 0 || m2.Cmp(m) != 0 { - t.Errorf("#%d DivMod: got (%s, %s), want (%s, %s)", i, d2, m2, d, m) - } - } -} - -func checkSetBytes(b []byte) bool { - hex1 := hex.EncodeToString(new(Int).SetBytes(b).Bytes()) - hex2 := hex.EncodeToString(b) - - for len(hex1) < len(hex2) { - hex1 = "0" + hex1 - } - - for len(hex1) > len(hex2) { - hex2 = "0" + hex2 - } - - return hex1 == hex2 -} - -func TestSetBytes(t *testing.T) { - if err := quick.Check(checkSetBytes, nil); err != nil { - t.Error(err) - } -} - -func checkBytes(b []byte) bool { - b2 := new(Int).SetBytes(b).Bytes() - return bytes.Equal(b, b2) -} - -func TestBytes(t *testing.T) { - if err := quick.Check(checkSetBytes, nil); err != nil { - t.Error(err) - } -} - -func checkQuo(x, y []byte) bool { - u := new(Int).SetBytes(x) - v := new(Int).SetBytes(y) - - if len(v.abs) == 0 { - return true - } - - r := new(Int) - q, r := new(Int).QuoRem(u, v, r) - - if r.Cmp(v) >= 0 { - return false - } - - uprime := new(Int).Set(q) - uprime.Mul(uprime, v) - uprime.Add(uprime, r) - - return uprime.Cmp(u) == 0 -} - -var quoTests = []struct { - x, y string - q, r string -}{ - { - "476217953993950760840509444250624797097991362735329973741718102894495832294430498335824897858659711275234906400899559094370964723884706254265559534144986498357", - "9353930466774385905609975137998169297361893554149986716853295022578535724979483772383667534691121982974895531435241089241440253066816724367338287092081996", - "50911", - "1", - }, - { - "11510768301994997771168", - "1328165573307167369775", - "8", - "885443715537658812968", - }, -} - -func TestQuo(t *testing.T) { - if err := quick.Check(checkQuo, nil); err != nil { - t.Error(err) - } - - for i, test := range quoTests { - x, _ := new(Int).SetString(test.x, 10) - y, _ := new(Int).SetString(test.y, 10) - expectedQ, _ := new(Int).SetString(test.q, 10) - expectedR, _ := new(Int).SetString(test.r, 10) - - r := new(Int) - q, r := new(Int).QuoRem(x, y, r) - - if q.Cmp(expectedQ) != 0 || r.Cmp(expectedR) != 0 { - t.Errorf("#%d got (%s, %s) want (%s, %s)", i, q, r, expectedQ, expectedR) - } - } -} - -func TestQuoStepD6(t *testing.T) { - // See Knuth, Volume 2, section 4.3.1, exercise 21. This code exercises - // a code path which only triggers 1 in 10^{-19} cases. - - u := &Int{false, nat{0, 0, 1 + 1<<(_W-1), _M ^ (1 << (_W - 1))}} - v := &Int{false, nat{5, 2 + 1<<(_W-1), 1 << (_W - 1)}} - - r := new(Int) - q, r := new(Int).QuoRem(u, v, r) - const expectedQ64 = "18446744073709551613" - const expectedR64 = "3138550867693340382088035895064302439801311770021610913807" - const expectedQ32 = "4294967293" - const expectedR32 = "39614081266355540837921718287" - if q.String() != expectedQ64 && q.String() != expectedQ32 || - r.String() != expectedR64 && r.String() != expectedR32 { - t.Errorf("got (%s, %s) want (%s, %s) or (%s, %s)", q, r, expectedQ64, expectedR64, expectedQ32, expectedR32) - } -} - -var bitLenTests = []struct { - in string - out int -}{ - {"-1", 1}, - {"0", 0}, - {"1", 1}, - {"2", 2}, - {"4", 3}, - {"0xabc", 12}, - {"0x8000", 16}, - {"0x80000000", 32}, - {"0x800000000000", 48}, - {"0x8000000000000000", 64}, - {"0x80000000000000000000", 80}, - {"-0x4000000000000000000000", 87}, -} - -func TestBitLen(t *testing.T) { - for i, test := range bitLenTests { - x, ok := new(Int).SetString(test.in, 0) - if !ok { - t.Errorf("#%d test input invalid: %s", i, test.in) - continue - } - - if n := x.BitLen(); n != test.out { - t.Errorf("#%d got %d want %d", i, n, test.out) - } - } -} - -var expTests = []struct { - x, y, m string - out string -}{ - // y <= 0 - {"0", "0", "", "1"}, - {"1", "0", "", "1"}, - {"-10", "0", "", "1"}, - {"1234", "-1", "", "1"}, - - // m == 1 - {"0", "0", "1", "0"}, - {"1", "0", "1", "0"}, - {"-10", "0", "1", "0"}, - {"1234", "-1", "1", "0"}, - - // misc - {"5", "-7", "", "1"}, - {"-5", "-7", "", "1"}, - {"5", "0", "", "1"}, - {"-5", "0", "", "1"}, - {"5", "1", "", "5"}, - {"-5", "1", "", "-5"}, - {"-2", "3", "2", "0"}, - {"5", "2", "", "25"}, - {"1", "65537", "2", "1"}, - {"0x8000000000000000", "2", "", "0x40000000000000000000000000000000"}, - {"0x8000000000000000", "2", "6719", "4944"}, - {"0x8000000000000000", "3", "6719", "5447"}, - {"0x8000000000000000", "1000", "6719", "1603"}, - {"0x8000000000000000", "1000000", "6719", "3199"}, - {"0x8000000000000000", "-1000000", "6719", "1"}, - { - "2938462938472983472983659726349017249287491026512746239764525612965293865296239471239874193284792387498274256129746192347", - "298472983472983471903246121093472394872319615612417471234712061", - "29834729834729834729347290846729561262544958723956495615629569234729836259263598127342374289365912465901365498236492183464", - "23537740700184054162508175125554701713153216681790245129157191391322321508055833908509185839069455749219131480588829346291", - }, -} - -func TestExp(t *testing.T) { - for i, test := range expTests { - x, ok1 := new(Int).SetString(test.x, 0) - y, ok2 := new(Int).SetString(test.y, 0) - out, ok3 := new(Int).SetString(test.out, 0) - - var ok4 bool - var m *Int - - if len(test.m) == 0 { - m, ok4 = nil, true - } else { - m, ok4 = new(Int).SetString(test.m, 0) - } - - if !ok1 || !ok2 || !ok3 || !ok4 { - t.Errorf("#%d: error in input", i) - continue - } - - z1 := new(Int).Exp(x, y, m) - if !isNormalized(z1) { - t.Errorf("#%d: %v is not normalized", i, *z1) - } - if z1.Cmp(out) != 0 { - t.Errorf("#%d: got %s want %s", i, z1, out) - } - - if m == nil { - // the result should be the same as for m == 0; - // specifically, there should be no div-zero panic - m = &Int{abs: nat{}} // m != nil && len(m.abs) == 0 - z2 := new(Int).Exp(x, y, m) - if z2.Cmp(z1) != 0 { - t.Errorf("#%d: got %s want %s", i, z1, z2) - } - } - } -} - -func checkGcd(aBytes, bBytes []byte) bool { - x := new(Int) - y := new(Int) - a := new(Int).SetBytes(aBytes) - b := new(Int).SetBytes(bBytes) - - d := new(Int).GCD(x, y, a, b) - x.Mul(x, a) - y.Mul(y, b) - x.Add(x, y) - - return x.Cmp(d) == 0 -} - -var gcdTests = []struct { - d, x, y, a, b string -}{ - // a <= 0 || b <= 0 - {"0", "0", "0", "0", "0"}, - {"0", "0", "0", "0", "7"}, - {"0", "0", "0", "11", "0"}, - {"0", "0", "0", "-77", "35"}, - {"0", "0", "0", "64515", "-24310"}, - {"0", "0", "0", "-64515", "-24310"}, - - {"1", "-9", "47", "120", "23"}, - {"7", "1", "-2", "77", "35"}, - {"935", "-3", "8", "64515", "24310"}, - {"935000000000000000", "-3", "8", "64515000000000000000", "24310000000000000000"}, - {"1", "-221", "22059940471369027483332068679400581064239780177629666810348940098015901108344", "98920366548084643601728869055592650835572950932266967461790948584315647051443", "991"}, - - // test early exit (after one Euclidean iteration) in binaryGCD - {"1", "", "", "1", "98920366548084643601728869055592650835572950932266967461790948584315647051443"}, -} - -func testGcd(t *testing.T, d, x, y, a, b *Int) { - var X *Int - if x != nil { - X = new(Int) - } - var Y *Int - if y != nil { - Y = new(Int) - } - - D := new(Int).GCD(X, Y, a, b) - if D.Cmp(d) != 0 { - t.Errorf("GCD(%s, %s): got d = %s, want %s", a, b, D, d) - } - if x != nil && X.Cmp(x) != 0 { - t.Errorf("GCD(%s, %s): got x = %s, want %s", a, b, X, x) - } - if y != nil && Y.Cmp(y) != 0 { - t.Errorf("GCD(%s, %s): got y = %s, want %s", a, b, Y, y) - } - - // binaryGCD requires a > 0 && b > 0 - if a.Sign() <= 0 || b.Sign() <= 0 { - return - } - - D.binaryGCD(a, b) - if D.Cmp(d) != 0 { - t.Errorf("binaryGcd(%s, %s): got d = %s, want %s", a, b, D, d) - } -} - -func TestGcd(t *testing.T) { - for _, test := range gcdTests { - d, _ := new(Int).SetString(test.d, 0) - x, _ := new(Int).SetString(test.x, 0) - y, _ := new(Int).SetString(test.y, 0) - a, _ := new(Int).SetString(test.a, 0) - b, _ := new(Int).SetString(test.b, 0) - - testGcd(t, d, nil, nil, a, b) - testGcd(t, d, x, nil, a, b) - testGcd(t, d, nil, y, a, b) - testGcd(t, d, x, y, a, b) - } - - quick.Check(checkGcd, nil) -} - -var primes = []string{ - "2", - "3", - "5", - "7", - "11", - - "13756265695458089029", - "13496181268022124907", - "10953742525620032441", - "17908251027575790097", - - // http://code.google.com/p/go/issues/detail?id=638 - "18699199384836356663", - - "98920366548084643601728869055592650835572950932266967461790948584315647051443", - "94560208308847015747498523884063394671606671904944666360068158221458669711639", - - // http://primes.utm.edu/lists/small/small3.html - "449417999055441493994709297093108513015373787049558499205492347871729927573118262811508386655998299074566974373711472560655026288668094291699357843464363003144674940345912431129144354948751003607115263071543163", - "230975859993204150666423538988557839555560243929065415434980904258310530753006723857139742334640122533598517597674807096648905501653461687601339782814316124971547968912893214002992086353183070342498989426570593", - "5521712099665906221540423207019333379125265462121169655563495403888449493493629943498064604536961775110765377745550377067893607246020694972959780839151452457728855382113555867743022746090187341871655890805971735385789993", - "203956878356401977405765866929034577280193993314348263094772646453283062722701277632936616063144088173312372882677123879538709400158306567338328279154499698366071906766440037074217117805690872792848149112022286332144876183376326512083574821647933992961249917319836219304274280243803104015000563790123", -} - -var composites = []string{ - "21284175091214687912771199898307297748211672914763848041968395774954376176754", - "6084766654921918907427900243509372380954290099172559290432744450051395395951", - "84594350493221918389213352992032324280367711247940675652888030554255915464401", - "82793403787388584738507275144194252681", -} - -func TestProbablyPrime(t *testing.T) { - nreps := 20 - if testing.Short() { - nreps = 1 - } - for i, s := range primes { - p, _ := new(Int).SetString(s, 10) - if !p.ProbablyPrime(nreps) { - t.Errorf("#%d prime found to be non-prime (%s)", i, s) - } - } - - for i, s := range composites { - c, _ := new(Int).SetString(s, 10) - if c.ProbablyPrime(nreps) { - t.Errorf("#%d composite found to be prime (%s)", i, s) - } - if testing.Short() { - break - } - } -} - -type intShiftTest struct { - in string - shift uint - out string -} - -var rshTests = []intShiftTest{ - {"0", 0, "0"}, - {"-0", 0, "0"}, - {"0", 1, "0"}, - {"0", 2, "0"}, - {"1", 0, "1"}, - {"1", 1, "0"}, - {"1", 2, "0"}, - {"2", 0, "2"}, - {"2", 1, "1"}, - {"-1", 0, "-1"}, - {"-1", 1, "-1"}, - {"-1", 10, "-1"}, - {"-100", 2, "-25"}, - {"-100", 3, "-13"}, - {"-100", 100, "-1"}, - {"4294967296", 0, "4294967296"}, - {"4294967296", 1, "2147483648"}, - {"4294967296", 2, "1073741824"}, - {"18446744073709551616", 0, "18446744073709551616"}, - {"18446744073709551616", 1, "9223372036854775808"}, - {"18446744073709551616", 2, "4611686018427387904"}, - {"18446744073709551616", 64, "1"}, - {"340282366920938463463374607431768211456", 64, "18446744073709551616"}, - {"340282366920938463463374607431768211456", 128, "1"}, -} - -func TestRsh(t *testing.T) { - for i, test := range rshTests { - in, _ := new(Int).SetString(test.in, 10) - expected, _ := new(Int).SetString(test.out, 10) - out := new(Int).Rsh(in, test.shift) - - if !isNormalized(out) { - t.Errorf("#%d: %v is not normalized", i, *out) - } - if out.Cmp(expected) != 0 { - t.Errorf("#%d: got %s want %s", i, out, expected) - } - } -} - -func TestRshSelf(t *testing.T) { - for i, test := range rshTests { - z, _ := new(Int).SetString(test.in, 10) - expected, _ := new(Int).SetString(test.out, 10) - z.Rsh(z, test.shift) - - if !isNormalized(z) { - t.Errorf("#%d: %v is not normalized", i, *z) - } - if z.Cmp(expected) != 0 { - t.Errorf("#%d: got %s want %s", i, z, expected) - } - } -} - -var lshTests = []intShiftTest{ - {"0", 0, "0"}, - {"0", 1, "0"}, - {"0", 2, "0"}, - {"1", 0, "1"}, - {"1", 1, "2"}, - {"1", 2, "4"}, - {"2", 0, "2"}, - {"2", 1, "4"}, - {"2", 2, "8"}, - {"-87", 1, "-174"}, - {"4294967296", 0, "4294967296"}, - {"4294967296", 1, "8589934592"}, - {"4294967296", 2, "17179869184"}, - {"18446744073709551616", 0, "18446744073709551616"}, - {"9223372036854775808", 1, "18446744073709551616"}, - {"4611686018427387904", 2, "18446744073709551616"}, - {"1", 64, "18446744073709551616"}, - {"18446744073709551616", 64, "340282366920938463463374607431768211456"}, - {"1", 128, "340282366920938463463374607431768211456"}, -} - -func TestLsh(t *testing.T) { - for i, test := range lshTests { - in, _ := new(Int).SetString(test.in, 10) - expected, _ := new(Int).SetString(test.out, 10) - out := new(Int).Lsh(in, test.shift) - - if !isNormalized(out) { - t.Errorf("#%d: %v is not normalized", i, *out) - } - if out.Cmp(expected) != 0 { - t.Errorf("#%d: got %s want %s", i, out, expected) - } - } -} - -func TestLshSelf(t *testing.T) { - for i, test := range lshTests { - z, _ := new(Int).SetString(test.in, 10) - expected, _ := new(Int).SetString(test.out, 10) - z.Lsh(z, test.shift) - - if !isNormalized(z) { - t.Errorf("#%d: %v is not normalized", i, *z) - } - if z.Cmp(expected) != 0 { - t.Errorf("#%d: got %s want %s", i, z, expected) - } - } -} - -func TestLshRsh(t *testing.T) { - for i, test := range rshTests { - in, _ := new(Int).SetString(test.in, 10) - out := new(Int).Lsh(in, test.shift) - out = out.Rsh(out, test.shift) - - if !isNormalized(out) { - t.Errorf("#%d: %v is not normalized", i, *out) - } - if in.Cmp(out) != 0 { - t.Errorf("#%d: got %s want %s", i, out, in) - } - } - for i, test := range lshTests { - in, _ := new(Int).SetString(test.in, 10) - out := new(Int).Lsh(in, test.shift) - out.Rsh(out, test.shift) - - if !isNormalized(out) { - t.Errorf("#%d: %v is not normalized", i, *out) - } - if in.Cmp(out) != 0 { - t.Errorf("#%d: got %s want %s", i, out, in) - } - } -} - -var int64Tests = []int64{ - 0, - 1, - -1, - 4294967295, - -4294967295, - 4294967296, - -4294967296, - 9223372036854775807, - -9223372036854775807, - -9223372036854775808, -} - -func TestInt64(t *testing.T) { - for i, testVal := range int64Tests { - in := NewInt(testVal) - out := in.Int64() - - if out != testVal { - t.Errorf("#%d got %d want %d", i, out, testVal) - } - } -} - -var uint64Tests = []uint64{ - 0, - 1, - 4294967295, - 4294967296, - 8589934591, - 8589934592, - 9223372036854775807, - 9223372036854775808, - 18446744073709551615, // 1<<64 - 1 -} - -func TestUint64(t *testing.T) { - in := new(Int) - for i, testVal := range uint64Tests { - in.SetUint64(testVal) - out := in.Uint64() - - if out != testVal { - t.Errorf("#%d got %d want %d", i, out, testVal) - } - - str := fmt.Sprint(testVal) - strOut := in.String() - if strOut != str { - t.Errorf("#%d.String got %s want %s", i, strOut, str) - } - } -} - -var bitwiseTests = []struct { - x, y string - and, or, xor, andNot string -}{ - {"0x00", "0x00", "0x00", "0x00", "0x00", "0x00"}, - {"0x00", "0x01", "0x00", "0x01", "0x01", "0x00"}, - {"0x01", "0x00", "0x00", "0x01", "0x01", "0x01"}, - {"-0x01", "0x00", "0x00", "-0x01", "-0x01", "-0x01"}, - {"-0xaf", "-0x50", "-0xf0", "-0x0f", "0xe1", "0x41"}, - {"0x00", "-0x01", "0x00", "-0x01", "-0x01", "0x00"}, - {"0x01", "0x01", "0x01", "0x01", "0x00", "0x00"}, - {"-0x01", "-0x01", "-0x01", "-0x01", "0x00", "0x00"}, - {"0x07", "0x08", "0x00", "0x0f", "0x0f", "0x07"}, - {"0x05", "0x0f", "0x05", "0x0f", "0x0a", "0x00"}, - {"0x013ff6", "0x9a4e", "0x1a46", "0x01bffe", "0x01a5b8", "0x0125b0"}, - {"-0x013ff6", "0x9a4e", "0x800a", "-0x0125b2", "-0x01a5bc", "-0x01c000"}, - {"-0x013ff6", "-0x9a4e", "-0x01bffe", "-0x1a46", "0x01a5b8", "0x8008"}, - { - "0x1000009dc6e3d9822cba04129bcbe3401", - "0xb9bd7d543685789d57cb918e833af352559021483cdb05cc21fd", - "0x1000001186210100001000009048c2001", - "0xb9bd7d543685789d57cb918e8bfeff7fddb2ebe87dfbbdfe35fd", - "0xb9bd7d543685789d57ca918e8ae69d6fcdb2eae87df2b97215fc", - "0x8c40c2d8822caa04120b8321400", - }, - { - "0x1000009dc6e3d9822cba04129bcbe3401", - "-0xb9bd7d543685789d57cb918e833af352559021483cdb05cc21fd", - "0x8c40c2d8822caa04120b8321401", - "-0xb9bd7d543685789d57ca918e82229142459020483cd2014001fd", - "-0xb9bd7d543685789d57ca918e8ae69d6fcdb2eae87df2b97215fe", - "0x1000001186210100001000009048c2000", - }, - { - "-0x1000009dc6e3d9822cba04129bcbe3401", - "-0xb9bd7d543685789d57cb918e833af352559021483cdb05cc21fd", - "-0xb9bd7d543685789d57cb918e8bfeff7fddb2ebe87dfbbdfe35fd", - "-0x1000001186210100001000009048c2001", - "0xb9bd7d543685789d57ca918e8ae69d6fcdb2eae87df2b97215fc", - "0xb9bd7d543685789d57ca918e82229142459020483cd2014001fc", - }, -} - -type bitFun func(z, x, y *Int) *Int - -func testBitFun(t *testing.T, msg string, f bitFun, x, y *Int, exp string) { - expected := new(Int) - expected.SetString(exp, 0) - - out := f(new(Int), x, y) - if out.Cmp(expected) != 0 { - t.Errorf("%s: got %s want %s", msg, out, expected) - } -} - -func testBitFunSelf(t *testing.T, msg string, f bitFun, x, y *Int, exp string) { - self := new(Int) - self.Set(x) - expected := new(Int) - expected.SetString(exp, 0) - - self = f(self, self, y) - if self.Cmp(expected) != 0 { - t.Errorf("%s: got %s want %s", msg, self, expected) - } -} - -func altBit(x *Int, i int) uint { - z := new(Int).Rsh(x, uint(i)) - z = z.And(z, NewInt(1)) - if z.Cmp(new(Int)) != 0 { - return 1 - } - return 0 -} - -func altSetBit(z *Int, x *Int, i int, b uint) *Int { - one := NewInt(1) - m := one.Lsh(one, uint(i)) - switch b { - case 1: - return z.Or(x, m) - case 0: - return z.AndNot(x, m) - } - panic("set bit is not 0 or 1") -} - -func testBitset(t *testing.T, x *Int) { - n := x.BitLen() - z := new(Int).Set(x) - z1 := new(Int).Set(x) - for i := 0; i < n+10; i++ { - old := z.Bit(i) - old1 := altBit(z1, i) - if old != old1 { - t.Errorf("bitset: inconsistent value for Bit(%s, %d), got %v want %v", z1, i, old, old1) - } - z := new(Int).SetBit(z, i, 1) - z1 := altSetBit(new(Int), z1, i, 1) - if z.Bit(i) == 0 { - t.Errorf("bitset: bit %d of %s got 0 want 1", i, x) - } - if z.Cmp(z1) != 0 { - t.Errorf("bitset: inconsistent value after SetBit 1, got %s want %s", z, z1) - } - z.SetBit(z, i, 0) - altSetBit(z1, z1, i, 0) - if z.Bit(i) != 0 { - t.Errorf("bitset: bit %d of %s got 1 want 0", i, x) - } - if z.Cmp(z1) != 0 { - t.Errorf("bitset: inconsistent value after SetBit 0, got %s want %s", z, z1) - } - altSetBit(z1, z1, i, old) - z.SetBit(z, i, old) - if z.Cmp(z1) != 0 { - t.Errorf("bitset: inconsistent value after SetBit old, got %s want %s", z, z1) - } - } - if z.Cmp(x) != 0 { - t.Errorf("bitset: got %s want %s", z, x) - } -} - -var bitsetTests = []struct { - x string - i int - b uint -}{ - {"0", 0, 0}, - {"0", 200, 0}, - {"1", 0, 1}, - {"1", 1, 0}, - {"-1", 0, 1}, - {"-1", 200, 1}, - {"0x2000000000000000000000000000", 108, 0}, - {"0x2000000000000000000000000000", 109, 1}, - {"0x2000000000000000000000000000", 110, 0}, - {"-0x2000000000000000000000000001", 108, 1}, - {"-0x2000000000000000000000000001", 109, 0}, - {"-0x2000000000000000000000000001", 110, 1}, -} - -func TestBitSet(t *testing.T) { - for _, test := range bitwiseTests { - x := new(Int) - x.SetString(test.x, 0) - testBitset(t, x) - x = new(Int) - x.SetString(test.y, 0) - testBitset(t, x) - } - for i, test := range bitsetTests { - x := new(Int) - x.SetString(test.x, 0) - b := x.Bit(test.i) - if b != test.b { - t.Errorf("#%d got %v want %v", i, b, test.b) - } - } - z := NewInt(1) - z.SetBit(NewInt(0), 2, 1) - if z.Cmp(NewInt(4)) != 0 { - t.Errorf("destination leaked into result; got %s want 4", z) - } -} - -func BenchmarkBitset(b *testing.B) { - z := new(Int) - z.SetBit(z, 512, 1) - b.ResetTimer() - b.StartTimer() - for i := b.N - 1; i >= 0; i-- { - z.SetBit(z, i&512, 1) - } -} - -func BenchmarkBitsetNeg(b *testing.B) { - z := NewInt(-1) - z.SetBit(z, 512, 0) - b.ResetTimer() - b.StartTimer() - for i := b.N - 1; i >= 0; i-- { - z.SetBit(z, i&512, 0) - } -} - -func BenchmarkBitsetOrig(b *testing.B) { - z := new(Int) - altSetBit(z, z, 512, 1) - b.ResetTimer() - b.StartTimer() - for i := b.N - 1; i >= 0; i-- { - altSetBit(z, z, i&512, 1) - } -} - -func BenchmarkBitsetNegOrig(b *testing.B) { - z := NewInt(-1) - altSetBit(z, z, 512, 0) - b.ResetTimer() - b.StartTimer() - for i := b.N - 1; i >= 0; i-- { - altSetBit(z, z, i&512, 0) - } -} - -func TestBitwise(t *testing.T) { - x := new(Int) - y := new(Int) - for _, test := range bitwiseTests { - x.SetString(test.x, 0) - y.SetString(test.y, 0) - - testBitFun(t, "and", (*Int).And, x, y, test.and) - testBitFunSelf(t, "and", (*Int).And, x, y, test.and) - testBitFun(t, "andNot", (*Int).AndNot, x, y, test.andNot) - testBitFunSelf(t, "andNot", (*Int).AndNot, x, y, test.andNot) - testBitFun(t, "or", (*Int).Or, x, y, test.or) - testBitFunSelf(t, "or", (*Int).Or, x, y, test.or) - testBitFun(t, "xor", (*Int).Xor, x, y, test.xor) - testBitFunSelf(t, "xor", (*Int).Xor, x, y, test.xor) - } -} - -var notTests = []struct { - in string - out string -}{ - {"0", "-1"}, - {"1", "-2"}, - {"7", "-8"}, - {"0", "-1"}, - {"-81910", "81909"}, - { - "298472983472983471903246121093472394872319615612417471234712061", - "-298472983472983471903246121093472394872319615612417471234712062", - }, -} - -func TestNot(t *testing.T) { - in := new(Int) - out := new(Int) - expected := new(Int) - for i, test := range notTests { - in.SetString(test.in, 10) - expected.SetString(test.out, 10) - out = out.Not(in) - if out.Cmp(expected) != 0 { - t.Errorf("#%d: got %s want %s", i, out, expected) - } - out = out.Not(out) - if out.Cmp(in) != 0 { - t.Errorf("#%d: got %s want %s", i, out, in) - } - } -} - -var modInverseTests = []struct { - element string - prime string -}{ - {"1", "7"}, - {"1", "13"}, - {"239487239847", "2410312426921032588552076022197566074856950548502459942654116941958108831682612228890093858261341614673227141477904012196503648957050582631942730706805009223062734745341073406696246014589361659774041027169249453200378729434170325843778659198143763193776859869524088940195577346119843545301547043747207749969763750084308926339295559968882457872412993810129130294592999947926365264059284647209730384947211681434464714438488520940127459844288859336526896320919633919"}, -} - -func TestModInverse(t *testing.T) { - var element, prime Int - one := NewInt(1) - for i, test := range modInverseTests { - (&element).SetString(test.element, 10) - (&prime).SetString(test.prime, 10) - inverse := new(Int).ModInverse(&element, &prime) - inverse.Mul(inverse, &element) - inverse.Mod(inverse, &prime) - if inverse.Cmp(one) != 0 { - t.Errorf("#%d: failed (e·e^(-1)=%s)", i, inverse) - } - } -} - -var encodingTests = []string{ - "-539345864568634858364538753846587364875430589374589", - "-678645873", - "-100", - "-2", - "-1", - "0", - "1", - "2", - "10", - "42", - "1234567890", - "298472983472983471903246121093472394872319615612417471234712061", -} - -func TestIntGobEncoding(t *testing.T) { - var medium bytes.Buffer - enc := gob.NewEncoder(&medium) - dec := gob.NewDecoder(&medium) - for _, test := range encodingTests { - medium.Reset() // empty buffer for each test case (in case of failures) - var tx Int - tx.SetString(test, 10) - if err := enc.Encode(&tx); err != nil { - t.Errorf("encoding of %s failed: %s", &tx, err) - } - var rx Int - if err := dec.Decode(&rx); err != nil { - t.Errorf("decoding of %s failed: %s", &tx, err) - } - if rx.Cmp(&tx) != 0 { - t.Errorf("transmission of %s failed: got %s want %s", &tx, &rx, &tx) - } - } -} - -// Sending a nil Int pointer (inside a slice) on a round trip through gob should yield a zero. -// TODO: top-level nils. -func TestGobEncodingNilIntInSlice(t *testing.T) { - buf := new(bytes.Buffer) - enc := gob.NewEncoder(buf) - dec := gob.NewDecoder(buf) - - var in = make([]*Int, 1) - err := enc.Encode(&in) - if err != nil { - t.Errorf("gob encode failed: %q", err) - } - var out []*Int - err = dec.Decode(&out) - if err != nil { - t.Fatalf("gob decode failed: %q", err) - } - if len(out) != 1 { - t.Fatalf("wrong len; want 1 got %d", len(out)) - } - var zero Int - if out[0].Cmp(&zero) != 0 { - t.Errorf("transmission of (*Int)(nill) failed: got %s want 0", out) - } -} - -func TestIntJSONEncoding(t *testing.T) { - for _, test := range encodingTests { - var tx Int - tx.SetString(test, 10) - b, err := json.Marshal(&tx) - if err != nil { - t.Errorf("marshaling of %s failed: %s", &tx, err) - } - var rx Int - if err := json.Unmarshal(b, &rx); err != nil { - t.Errorf("unmarshaling of %s failed: %s", &tx, err) - } - if rx.Cmp(&tx) != 0 { - t.Errorf("JSON encoding of %s failed: got %s want %s", &tx, &rx, &tx) - } - } -} - -var intVals = []string{ - "-141592653589793238462643383279502884197169399375105820974944592307816406286", - "-1415926535897932384626433832795028841971", - "-141592653589793", - "-1", - "0", - "1", - "141592653589793", - "1415926535897932384626433832795028841971", - "141592653589793238462643383279502884197169399375105820974944592307816406286", -} - -func TestIntJSONEncodingTextMarshaller(t *testing.T) { - for _, num := range intVals { - var tx Int - tx.SetString(num, 0) - b, err := json.Marshal(&tx) - if err != nil { - t.Errorf("marshaling of %s failed: %s", &tx, err) - continue - } - var rx Int - if err := json.Unmarshal(b, &rx); err != nil { - t.Errorf("unmarshaling of %s failed: %s", &tx, err) - continue - } - if rx.Cmp(&tx) != 0 { - t.Errorf("JSON encoding of %s failed: got %s want %s", &tx, &rx, &tx) - } - } -} - -func TestIntXMLEncodingTextMarshaller(t *testing.T) { - for _, num := range intVals { - var tx Int - tx.SetString(num, 0) - b, err := xml.Marshal(&tx) - if err != nil { - t.Errorf("marshaling of %s failed: %s", &tx, err) - continue - } - var rx Int - if err := xml.Unmarshal(b, &rx); err != nil { - t.Errorf("unmarshaling of %s failed: %s", &tx, err) - continue - } - if rx.Cmp(&tx) != 0 { - t.Errorf("XML encoding of %s failed: got %s want %s", &tx, &rx, &tx) - } - } -} - -func TestIssue2607(t *testing.T) { - // This code sequence used to hang. - n := NewInt(10) - n.Rand(rand.New(rand.NewSource(9)), n) -} diff --git a/src/pkg/math/big/nat.go b/src/pkg/math/big/nat.go deleted file mode 100644 index 16a87f5c5..000000000 --- a/src/pkg/math/big/nat.go +++ /dev/null @@ -1,1508 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package big implements multi-precision arithmetic (big numbers). -// The following numeric types are supported: -// -// - Int signed integers -// - Rat rational numbers -// -// Methods are typically of the form: -// -// func (z *Int) Op(x, y *Int) *Int (similar for *Rat) -// -// and implement operations z = x Op y with the result as receiver; if it -// is one of the operands it may be overwritten (and its memory reused). -// To enable chaining of operations, the result is also returned. Methods -// returning a result other than *Int or *Rat take one of the operands as -// the receiver. -// -package big - -// This file contains operations on unsigned multi-precision integers. -// These are the building blocks for the operations on signed integers -// and rationals. - -import ( - "errors" - "io" - "math" - "math/rand" - "sync" -) - -// An unsigned integer x of the form -// -// x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0] -// -// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n, -// with the digits x[i] as the slice elements. -// -// A number is normalized if the slice contains no leading 0 digits. -// During arithmetic operations, denormalized values may occur but are -// always normalized before returning the final result. The normalized -// representation of 0 is the empty or nil slice (length = 0). -// -type nat []Word - -var ( - natOne = nat{1} - natTwo = nat{2} - natTen = nat{10} -) - -func (z nat) clear() { - for i := range z { - z[i] = 0 - } -} - -func (z nat) norm() nat { - i := len(z) - for i > 0 && z[i-1] == 0 { - i-- - } - return z[0:i] -} - -func (z nat) make(n int) nat { - if n <= cap(z) { - return z[0:n] // reuse z - } - // Choosing a good value for e has significant performance impact - // because it increases the chance that a value can be reused. - const e = 4 // extra capacity - return make(nat, n, n+e) -} - -func (z nat) setWord(x Word) nat { - if x == 0 { - return z.make(0) - } - z = z.make(1) - z[0] = x - return z -} - -func (z nat) setUint64(x uint64) nat { - // single-digit values - if w := Word(x); uint64(w) == x { - return z.setWord(w) - } - - // compute number of words n required to represent x - n := 0 - for t := x; t > 0; t >>= _W { - n++ - } - - // split x into n words - z = z.make(n) - for i := range z { - z[i] = Word(x & _M) - x >>= _W - } - - return z -} - -func (z nat) set(x nat) nat { - z = z.make(len(x)) - copy(z, x) - return z -} - -func (z nat) add(x, y nat) nat { - m := len(x) - n := len(y) - - switch { - case m < n: - return z.add(y, x) - case m == 0: - // n == 0 because m >= n; result is 0 - return z.make(0) - case n == 0: - // result is x - return z.set(x) - } - // m > 0 - - z = z.make(m + 1) - c := addVV(z[0:n], x, y) - if m > n { - c = addVW(z[n:m], x[n:], c) - } - z[m] = c - - return z.norm() -} - -func (z nat) sub(x, y nat) nat { - m := len(x) - n := len(y) - - switch { - case m < n: - panic("underflow") - case m == 0: - // n == 0 because m >= n; result is 0 - return z.make(0) - case n == 0: - // result is x - return z.set(x) - } - // m > 0 - - z = z.make(m) - c := subVV(z[0:n], x, y) - if m > n { - c = subVW(z[n:], x[n:], c) - } - if c != 0 { - panic("underflow") - } - - return z.norm() -} - -func (x nat) cmp(y nat) (r int) { - m := len(x) - n := len(y) - if m != n || m == 0 { - switch { - case m < n: - r = -1 - case m > n: - r = 1 - } - return - } - - i := m - 1 - for i > 0 && x[i] == y[i] { - i-- - } - - switch { - case x[i] < y[i]: - r = -1 - case x[i] > y[i]: - r = 1 - } - return -} - -func (z nat) mulAddWW(x nat, y, r Word) nat { - m := len(x) - if m == 0 || y == 0 { - return z.setWord(r) // result is r - } - // m > 0 - - z = z.make(m + 1) - z[m] = mulAddVWW(z[0:m], x, y, r) - - return z.norm() -} - -// basicMul multiplies x and y and leaves the result in z. -// The (non-normalized) result is placed in z[0 : len(x) + len(y)]. -func basicMul(z, x, y nat) { - z[0 : len(x)+len(y)].clear() // initialize z - for i, d := range y { - if d != 0 { - z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d) - } - } -} - -// Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks. -// Factored out for readability - do not use outside karatsuba. -func karatsubaAdd(z, x nat, n int) { - if c := addVV(z[0:n], z, x); c != 0 { - addVW(z[n:n+n>>1], z[n:], c) - } -} - -// Like karatsubaAdd, but does subtract. -func karatsubaSub(z, x nat, n int) { - if c := subVV(z[0:n], z, x); c != 0 { - subVW(z[n:n+n>>1], z[n:], c) - } -} - -// Operands that are shorter than karatsubaThreshold are multiplied using -// "grade school" multiplication; for longer operands the Karatsuba algorithm -// is used. -var karatsubaThreshold int = 40 // computed by calibrate.go - -// karatsuba multiplies x and y and leaves the result in z. -// Both x and y must have the same length n and n must be a -// power of 2. The result vector z must have len(z) >= 6*n. -// The (non-normalized) result is placed in z[0 : 2*n]. -func karatsuba(z, x, y nat) { - n := len(y) - - // Switch to basic multiplication if numbers are odd or small. - // (n is always even if karatsubaThreshold is even, but be - // conservative) - if n&1 != 0 || n < karatsubaThreshold || n < 2 { - basicMul(z, x, y) - return - } - // n&1 == 0 && n >= karatsubaThreshold && n >= 2 - - // Karatsuba multiplication is based on the observation that - // for two numbers x and y with: - // - // x = x1*b + x0 - // y = y1*b + y0 - // - // the product x*y can be obtained with 3 products z2, z1, z0 - // instead of 4: - // - // x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0 - // = z2*b*b + z1*b + z0 - // - // with: - // - // xd = x1 - x0 - // yd = y0 - y1 - // - // z1 = xd*yd + z2 + z0 - // = (x1-x0)*(y0 - y1) + z2 + z0 - // = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0 - // = x1*y0 - z2 - z0 + x0*y1 + z2 + z0 - // = x1*y0 + x0*y1 - - // split x, y into "digits" - n2 := n >> 1 // n2 >= 1 - x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0 - y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0 - - // z is used for the result and temporary storage: - // - // 6*n 5*n 4*n 3*n 2*n 1*n 0*n - // z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ] - // - // For each recursive call of karatsuba, an unused slice of - // z is passed in that has (at least) half the length of the - // caller's z. - - // compute z0 and z2 with the result "in place" in z - karatsuba(z, x0, y0) // z0 = x0*y0 - karatsuba(z[n:], x1, y1) // z2 = x1*y1 - - // compute xd (or the negative value if underflow occurs) - s := 1 // sign of product xd*yd - xd := z[2*n : 2*n+n2] - if subVV(xd, x1, x0) != 0 { // x1-x0 - s = -s - subVV(xd, x0, x1) // x0-x1 - } - - // compute yd (or the negative value if underflow occurs) - yd := z[2*n+n2 : 3*n] - if subVV(yd, y0, y1) != 0 { // y0-y1 - s = -s - subVV(yd, y1, y0) // y1-y0 - } - - // p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0 - // p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0 - p := z[n*3:] - karatsuba(p, xd, yd) - - // save original z2:z0 - // (ok to use upper half of z since we're done recursing) - r := z[n*4:] - copy(r, z[:n*2]) - - // add up all partial products - // - // 2*n n 0 - // z = [ z2 | z0 ] - // + [ z0 ] - // + [ z2 ] - // + [ p ] - // - karatsubaAdd(z[n2:], r, n) - karatsubaAdd(z[n2:], r[n:], n) - if s > 0 { - karatsubaAdd(z[n2:], p, n) - } else { - karatsubaSub(z[n2:], p, n) - } -} - -// alias returns true if x and y share the same base array. -func alias(x, y nat) bool { - return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1] -} - -// addAt implements z += x<<(_W*i); z must be long enough. -// (we don't use nat.add because we need z to stay the same -// slice, and we don't need to normalize z after each addition) -func addAt(z, x nat, i int) { - if n := len(x); n > 0 { - if c := addVV(z[i:i+n], z[i:], x); c != 0 { - j := i + n - if j < len(z) { - addVW(z[j:], z[j:], c) - } - } - } -} - -func max(x, y int) int { - if x > y { - return x - } - return y -} - -// karatsubaLen computes an approximation to the maximum k <= n such that -// k = p<<i for a number p <= karatsubaThreshold and an i >= 0. Thus, the -// result is the largest number that can be divided repeatedly by 2 before -// becoming about the value of karatsubaThreshold. -func karatsubaLen(n int) int { - i := uint(0) - for n > karatsubaThreshold { - n >>= 1 - i++ - } - return n << i -} - -func (z nat) mul(x, y nat) nat { - m := len(x) - n := len(y) - - switch { - case m < n: - return z.mul(y, x) - case m == 0 || n == 0: - return z.make(0) - case n == 1: - return z.mulAddWW(x, y[0], 0) - } - // m >= n > 1 - - // determine if z can be reused - if alias(z, x) || alias(z, y) { - z = nil // z is an alias for x or y - cannot reuse - } - - // use basic multiplication if the numbers are small - if n < karatsubaThreshold { - z = z.make(m + n) - basicMul(z, x, y) - return z.norm() - } - // m >= n && n >= karatsubaThreshold && n >= 2 - - // determine Karatsuba length k such that - // - // x = xh*b + x0 (0 <= x0 < b) - // y = yh*b + y0 (0 <= y0 < b) - // b = 1<<(_W*k) ("base" of digits xi, yi) - // - k := karatsubaLen(n) - // k <= n - - // multiply x0 and y0 via Karatsuba - x0 := x[0:k] // x0 is not normalized - y0 := y[0:k] // y0 is not normalized - z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y - karatsuba(z, x0, y0) - z = z[0 : m+n] // z has final length but may be incomplete - z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m) - - // If xh != 0 or yh != 0, add the missing terms to z. For - // - // xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b) - // yh = y1*b (0 <= y1 < b) - // - // the missing terms are - // - // x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0 - // - // since all the yi for i > 1 are 0 by choice of k: If any of them - // were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would - // be a larger valid threshold contradicting the assumption about k. - // - if k < n || m != n { - var t nat - - // add x0*y1*b - x0 := x0.norm() - y1 := y[k:] // y1 is normalized because y is - t = t.mul(x0, y1) // update t so we don't lose t's underlying array - addAt(z, t, k) - - // add xi*y0<<i, xi*y1*b<<(i+k) - y0 := y0.norm() - for i := k; i < len(x); i += k { - xi := x[i:] - if len(xi) > k { - xi = xi[:k] - } - xi = xi.norm() - t = t.mul(xi, y0) - addAt(z, t, i) - t = t.mul(xi, y1) - addAt(z, t, i+k) - } - } - - return z.norm() -} - -// mulRange computes the product of all the unsigned integers in the -// range [a, b] inclusively. If a > b (empty range), the result is 1. -func (z nat) mulRange(a, b uint64) nat { - switch { - case a == 0: - // cut long ranges short (optimization) - return z.setUint64(0) - case a > b: - return z.setUint64(1) - case a == b: - return z.setUint64(a) - case a+1 == b: - return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b)) - } - m := (a + b) / 2 - return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b)) -} - -// q = (x-r)/y, with 0 <= r < y -func (z nat) divW(x nat, y Word) (q nat, r Word) { - m := len(x) - switch { - case y == 0: - panic("division by zero") - case y == 1: - q = z.set(x) // result is x - return - case m == 0: - q = z.make(0) // result is 0 - return - } - // m > 0 - z = z.make(m) - r = divWVW(z, 0, x, y) - q = z.norm() - return -} - -func (z nat) div(z2, u, v nat) (q, r nat) { - if len(v) == 0 { - panic("division by zero") - } - - if u.cmp(v) < 0 { - q = z.make(0) - r = z2.set(u) - return - } - - if len(v) == 1 { - var r2 Word - q, r2 = z.divW(u, v[0]) - r = z2.setWord(r2) - return - } - - q, r = z.divLarge(z2, u, v) - return -} - -// q = (uIn-r)/v, with 0 <= r < y -// Uses z as storage for q, and u as storage for r if possible. -// See Knuth, Volume 2, section 4.3.1, Algorithm D. -// Preconditions: -// len(v) >= 2 -// len(uIn) >= len(v) -func (z nat) divLarge(u, uIn, v nat) (q, r nat) { - n := len(v) - m := len(uIn) - n - - // determine if z can be reused - // TODO(gri) should find a better solution - this if statement - // is very costly (see e.g. time pidigits -s -n 10000) - if alias(z, uIn) || alias(z, v) { - z = nil // z is an alias for uIn or v - cannot reuse - } - q = z.make(m + 1) - - qhatv := make(nat, n+1) - if alias(u, uIn) || alias(u, v) { - u = nil // u is an alias for uIn or v - cannot reuse - } - u = u.make(len(uIn) + 1) - u.clear() - - // D1. - shift := leadingZeros(v[n-1]) - if shift > 0 { - // do not modify v, it may be used by another goroutine simultaneously - v1 := make(nat, n) - shlVU(v1, v, shift) - v = v1 - } - u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift) - - // D2. - for j := m; j >= 0; j-- { - // D3. - qhat := Word(_M) - if u[j+n] != v[n-1] { - var rhat Word - qhat, rhat = divWW(u[j+n], u[j+n-1], v[n-1]) - - // x1 | x2 = q̂v_{n-2} - x1, x2 := mulWW(qhat, v[n-2]) - // test if q̂v_{n-2} > br̂ + u_{j+n-2} - for greaterThan(x1, x2, rhat, u[j+n-2]) { - qhat-- - prevRhat := rhat - rhat += v[n-1] - // v[n-1] >= 0, so this tests for overflow. - if rhat < prevRhat { - break - } - x1, x2 = mulWW(qhat, v[n-2]) - } - } - - // D4. - qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0) - - c := subVV(u[j:j+len(qhatv)], u[j:], qhatv) - if c != 0 { - c := addVV(u[j:j+n], u[j:], v) - u[j+n] += c - qhat-- - } - - q[j] = qhat - } - - q = q.norm() - shrVU(u, u, shift) - r = u.norm() - - return q, r -} - -// Length of x in bits. x must be normalized. -func (x nat) bitLen() int { - if i := len(x) - 1; i >= 0 { - return i*_W + bitLen(x[i]) - } - return 0 -} - -// MaxBase is the largest number base accepted for string conversions. -const MaxBase = 'z' - 'a' + 10 + 1 // = hexValue('z') + 1 - -func hexValue(ch rune) Word { - d := int(MaxBase + 1) // illegal base - switch { - case '0' <= ch && ch <= '9': - d = int(ch - '0') - case 'a' <= ch && ch <= 'z': - d = int(ch - 'a' + 10) - case 'A' <= ch && ch <= 'Z': - d = int(ch - 'A' + 10) - } - return Word(d) -} - -// scan sets z to the natural number corresponding to the longest possible prefix -// read from r representing an unsigned integer in a given conversion base. -// It returns z, the actual conversion base used, and an error, if any. In the -// error case, the value of z is undefined. The syntax follows the syntax of -// unsigned integer literals in Go. -// -// The base argument must be 0 or a value from 2 through MaxBase. If the base -// is 0, the string prefix determines the actual conversion base. A prefix of -// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a -// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10. -// -func (z nat) scan(r io.RuneScanner, base int) (nat, int, error) { - // reject illegal bases - if base < 0 || base == 1 || MaxBase < base { - return z, 0, errors.New("illegal number base") - } - - // one char look-ahead - ch, _, err := r.ReadRune() - if err != nil { - return z, 0, err - } - - // determine base if necessary - b := Word(base) - if base == 0 { - b = 10 - if ch == '0' { - switch ch, _, err = r.ReadRune(); err { - case nil: - b = 8 - switch ch { - case 'x', 'X': - b = 16 - case 'b', 'B': - b = 2 - } - if b == 2 || b == 16 { - if ch, _, err = r.ReadRune(); err != nil { - return z, 0, err - } - } - case io.EOF: - return z.make(0), 10, nil - default: - return z, 10, err - } - } - } - - // convert string - // - group as many digits d as possible together into a "super-digit" dd with "super-base" bb - // - only when bb does not fit into a word anymore, do a full number mulAddWW using bb and dd - z = z.make(0) - bb := Word(1) - dd := Word(0) - for max := _M / b; ; { - d := hexValue(ch) - if d >= b { - r.UnreadRune() // ch does not belong to number anymore - break - } - - if bb <= max { - bb *= b - dd = dd*b + d - } else { - // bb * b would overflow - z = z.mulAddWW(z, bb, dd) - bb = b - dd = d - } - - if ch, _, err = r.ReadRune(); err != nil { - if err != io.EOF { - return z, int(b), err - } - break - } - } - - switch { - case bb > 1: - // there was at least one mantissa digit - z = z.mulAddWW(z, bb, dd) - case base == 0 && b == 8: - // there was only the octal prefix 0 (possibly followed by digits > 7); - // return base 10, not 8 - return z, 10, nil - case base != 0 || b != 8: - // there was neither a mantissa digit nor the octal prefix 0 - return z, int(b), errors.New("syntax error scanning number") - } - - return z.norm(), int(b), nil -} - -// Character sets for string conversion. -const ( - lowercaseDigits = "0123456789abcdefghijklmnopqrstuvwxyz" - uppercaseDigits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" -) - -// decimalString returns a decimal representation of x. -// It calls x.string with the charset "0123456789". -func (x nat) decimalString() string { - return x.string(lowercaseDigits[0:10]) -} - -// string converts x to a string using digits from a charset; a digit with -// value d is represented by charset[d]. The conversion base is determined -// by len(charset), which must be >= 2 and <= 256. -func (x nat) string(charset string) string { - b := Word(len(charset)) - - // special cases - switch { - case b < 2 || MaxBase > 256: - panic("illegal base") - case len(x) == 0: - return string(charset[0]) - } - - // allocate buffer for conversion - i := int(float64(x.bitLen())/math.Log2(float64(b))) + 1 // off by one at most - s := make([]byte, i) - - // convert power of two and non power of two bases separately - if b == b&-b { - // shift is base-b digit size in bits - shift := trailingZeroBits(b) // shift > 0 because b >= 2 - mask := Word(1)<<shift - 1 - w := x[0] - nbits := uint(_W) // number of unprocessed bits in w - - // convert less-significant words - for k := 1; k < len(x); k++ { - // convert full digits - for nbits >= shift { - i-- - s[i] = charset[w&mask] - w >>= shift - nbits -= shift - } - - // convert any partial leading digit and advance to next word - if nbits == 0 { - // no partial digit remaining, just advance - w = x[k] - nbits = _W - } else { - // partial digit in current (k-1) and next (k) word - w |= x[k] << nbits - i-- - s[i] = charset[w&mask] - - // advance - w = x[k] >> (shift - nbits) - nbits = _W - (shift - nbits) - } - } - - // convert digits of most-significant word (omit leading zeros) - for nbits >= 0 && w != 0 { - i-- - s[i] = charset[w&mask] - w >>= shift - nbits -= shift - } - - } else { - // determine "big base"; i.e., the largest possible value bb - // that is a power of base b and still fits into a Word - // (as in 10^19 for 19 decimal digits in a 64bit Word) - bb := b // big base is b**ndigits - ndigits := 1 // number of base b digits - for max := Word(_M / b); bb <= max; bb *= b { - ndigits++ // maximize ndigits where bb = b**ndigits, bb <= _M - } - - // construct table of successive squares of bb*leafSize to use in subdivisions - // result (table != nil) <=> (len(x) > leafSize > 0) - table := divisors(len(x), b, ndigits, bb) - - // preserve x, create local copy for use by convertWords - q := nat(nil).set(x) - - // convert q to string s in base b - q.convertWords(s, charset, b, ndigits, bb, table) - - // strip leading zeros - // (x != 0; thus s must contain at least one non-zero digit - // and the loop will terminate) - i = 0 - for zero := charset[0]; s[i] == zero; { - i++ - } - } - - return string(s[i:]) -} - -// Convert words of q to base b digits in s. If q is large, it is recursively "split in half" -// by nat/nat division using tabulated divisors. Otherwise, it is converted iteratively using -// repeated nat/Word division. -// -// The iterative method processes n Words by n divW() calls, each of which visits every Word in the -// incrementally shortened q for a total of n + (n-1) + (n-2) ... + 2 + 1, or n(n+1)/2 divW()'s. -// Recursive conversion divides q by its approximate square root, yielding two parts, each half -// the size of q. Using the iterative method on both halves means 2 * (n/2)(n/2 + 1)/2 divW()'s -// plus the expensive long div(). Asymptotically, the ratio is favorable at 1/2 the divW()'s, and -// is made better by splitting the subblocks recursively. Best is to split blocks until one more -// split would take longer (because of the nat/nat div()) than the twice as many divW()'s of the -// iterative approach. This threshold is represented by leafSize. Benchmarking of leafSize in the -// range 2..64 shows that values of 8 and 16 work well, with a 4x speedup at medium lengths and -// ~30x for 20000 digits. Use nat_test.go's BenchmarkLeafSize tests to optimize leafSize for -// specific hardware. -// -func (q nat) convertWords(s []byte, charset string, b Word, ndigits int, bb Word, table []divisor) { - // split larger blocks recursively - if table != nil { - // len(q) > leafSize > 0 - var r nat - index := len(table) - 1 - for len(q) > leafSize { - // find divisor close to sqrt(q) if possible, but in any case < q - maxLength := q.bitLen() // ~= log2 q, or at of least largest possible q of this bit length - minLength := maxLength >> 1 // ~= log2 sqrt(q) - for index > 0 && table[index-1].nbits > minLength { - index-- // desired - } - if table[index].nbits >= maxLength && table[index].bbb.cmp(q) >= 0 { - index-- - if index < 0 { - panic("internal inconsistency") - } - } - - // split q into the two digit number (q'*bbb + r) to form independent subblocks - q, r = q.div(r, q, table[index].bbb) - - // convert subblocks and collect results in s[:h] and s[h:] - h := len(s) - table[index].ndigits - r.convertWords(s[h:], charset, b, ndigits, bb, table[0:index]) - s = s[:h] // == q.convertWords(s, charset, b, ndigits, bb, table[0:index+1]) - } - } - - // having split any large blocks now process the remaining (small) block iteratively - i := len(s) - var r Word - if b == 10 { - // hard-coding for 10 here speeds this up by 1.25x (allows for / and % by constants) - for len(q) > 0 { - // extract least significant, base bb "digit" - q, r = q.divW(q, bb) - for j := 0; j < ndigits && i > 0; j++ { - i-- - // avoid % computation since r%10 == r - int(r/10)*10; - // this appears to be faster for BenchmarkString10000Base10 - // and smaller strings (but a bit slower for larger ones) - t := r / 10 - s[i] = charset[r-t<<3-t-t] // TODO(gri) replace w/ t*10 once compiler produces better code - r = t - } - } - } else { - for len(q) > 0 { - // extract least significant, base bb "digit" - q, r = q.divW(q, bb) - for j := 0; j < ndigits && i > 0; j++ { - i-- - s[i] = charset[r%b] - r /= b - } - } - } - - // prepend high-order zeroes - zero := charset[0] - for i > 0 { // while need more leading zeroes - i-- - s[i] = zero - } -} - -// Split blocks greater than leafSize Words (or set to 0 to disable recursive conversion) -// Benchmark and configure leafSize using: go test -bench="Leaf" -// 8 and 16 effective on 3.0 GHz Xeon "Clovertown" CPU (128 byte cache lines) -// 8 and 16 effective on 2.66 GHz Core 2 Duo "Penryn" CPU -var leafSize int = 8 // number of Word-size binary values treat as a monolithic block - -type divisor struct { - bbb nat // divisor - nbits int // bit length of divisor (discounting leading zeroes) ~= log2(bbb) - ndigits int // digit length of divisor in terms of output base digits -} - -var cacheBase10 struct { - sync.Mutex - table [64]divisor // cached divisors for base 10 -} - -// expWW computes x**y -func (z nat) expWW(x, y Word) nat { - return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil) -} - -// construct table of powers of bb*leafSize to use in subdivisions -func divisors(m int, b Word, ndigits int, bb Word) []divisor { - // only compute table when recursive conversion is enabled and x is large - if leafSize == 0 || m <= leafSize { - return nil - } - - // determine k where (bb**leafSize)**(2**k) >= sqrt(x) - k := 1 - for words := leafSize; words < m>>1 && k < len(cacheBase10.table); words <<= 1 { - k++ - } - - // reuse and extend existing table of divisors or create new table as appropriate - var table []divisor // for b == 10, table overlaps with cacheBase10.table - if b == 10 { - cacheBase10.Lock() - table = cacheBase10.table[0:k] // reuse old table for this conversion - } else { - table = make([]divisor, k) // create new table for this conversion - } - - // extend table - if table[k-1].ndigits == 0 { - // add new entries as needed - var larger nat - for i := 0; i < k; i++ { - if table[i].ndigits == 0 { - if i == 0 { - table[0].bbb = nat(nil).expWW(bb, Word(leafSize)) - table[0].ndigits = ndigits * leafSize - } else { - table[i].bbb = nat(nil).mul(table[i-1].bbb, table[i-1].bbb) - table[i].ndigits = 2 * table[i-1].ndigits - } - - // optimization: exploit aggregated extra bits in macro blocks - larger = nat(nil).set(table[i].bbb) - for mulAddVWW(larger, larger, b, 0) == 0 { - table[i].bbb = table[i].bbb.set(larger) - table[i].ndigits++ - } - - table[i].nbits = table[i].bbb.bitLen() - } - } - } - - if b == 10 { - cacheBase10.Unlock() - } - - return table -} - -const deBruijn32 = 0x077CB531 - -var deBruijn32Lookup = []byte{ - 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, - 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9, -} - -const deBruijn64 = 0x03f79d71b4ca8b09 - -var deBruijn64Lookup = []byte{ - 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, - 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, - 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, - 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6, -} - -// trailingZeroBits returns the number of consecutive least significant zero -// bits of x. -func trailingZeroBits(x Word) uint { - // x & -x leaves only the right-most bit set in the word. Let k be the - // index of that bit. Since only a single bit is set, the value is two - // to the power of k. Multiplying by a power of two is equivalent to - // left shifting, in this case by k bits. The de Bruijn constant is - // such that all six bit, consecutive substrings are distinct. - // Therefore, if we have a left shifted version of this constant we can - // find by how many bits it was shifted by looking at which six bit - // substring ended up at the top of the word. - // (Knuth, volume 4, section 7.3.1) - switch _W { - case 32: - return uint(deBruijn32Lookup[((x&-x)*deBruijn32)>>27]) - case 64: - return uint(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58]) - default: - panic("unknown word size") - } -} - -// trailingZeroBits returns the number of consecutive least significant zero -// bits of x. -func (x nat) trailingZeroBits() uint { - if len(x) == 0 { - return 0 - } - var i uint - for x[i] == 0 { - i++ - } - // x[i] != 0 - return i*_W + trailingZeroBits(x[i]) -} - -// z = x << s -func (z nat) shl(x nat, s uint) nat { - m := len(x) - if m == 0 { - return z.make(0) - } - // m > 0 - - n := m + int(s/_W) - z = z.make(n + 1) - z[n] = shlVU(z[n-m:n], x, s%_W) - z[0 : n-m].clear() - - return z.norm() -} - -// z = x >> s -func (z nat) shr(x nat, s uint) nat { - m := len(x) - n := m - int(s/_W) - if n <= 0 { - return z.make(0) - } - // n > 0 - - z = z.make(n) - shrVU(z, x[m-n:], s%_W) - - return z.norm() -} - -func (z nat) setBit(x nat, i uint, b uint) nat { - j := int(i / _W) - m := Word(1) << (i % _W) - n := len(x) - switch b { - case 0: - z = z.make(n) - copy(z, x) - if j >= n { - // no need to grow - return z - } - z[j] &^= m - return z.norm() - case 1: - if j >= n { - z = z.make(j + 1) - z[n:].clear() - } else { - z = z.make(n) - } - copy(z, x) - z[j] |= m - // no need to normalize - return z - } - panic("set bit is not 0 or 1") -} - -func (z nat) bit(i uint) uint { - j := int(i / _W) - if j >= len(z) { - return 0 - } - return uint(z[j] >> (i % _W) & 1) -} - -func (z nat) and(x, y nat) nat { - m := len(x) - n := len(y) - if m > n { - m = n - } - // m <= n - - z = z.make(m) - for i := 0; i < m; i++ { - z[i] = x[i] & y[i] - } - - return z.norm() -} - -func (z nat) andNot(x, y nat) nat { - m := len(x) - n := len(y) - if n > m { - n = m - } - // m >= n - - z = z.make(m) - for i := 0; i < n; i++ { - z[i] = x[i] &^ y[i] - } - copy(z[n:m], x[n:m]) - - return z.norm() -} - -func (z nat) or(x, y nat) nat { - m := len(x) - n := len(y) - s := x - if m < n { - n, m = m, n - s = y - } - // m >= n - - z = z.make(m) - for i := 0; i < n; i++ { - z[i] = x[i] | y[i] - } - copy(z[n:m], s[n:m]) - - return z.norm() -} - -func (z nat) xor(x, y nat) nat { - m := len(x) - n := len(y) - s := x - if m < n { - n, m = m, n - s = y - } - // m >= n - - z = z.make(m) - for i := 0; i < n; i++ { - z[i] = x[i] ^ y[i] - } - copy(z[n:m], s[n:m]) - - return z.norm() -} - -// greaterThan returns true iff (x1<<_W + x2) > (y1<<_W + y2) -func greaterThan(x1, x2, y1, y2 Word) bool { - return x1 > y1 || x1 == y1 && x2 > y2 -} - -// modW returns x % d. -func (x nat) modW(d Word) (r Word) { - // TODO(agl): we don't actually need to store the q value. - var q nat - q = q.make(len(x)) - return divWVW(q, 0, x, d) -} - -// random creates a random integer in [0..limit), using the space in z if -// possible. n is the bit length of limit. -func (z nat) random(rand *rand.Rand, limit nat, n int) nat { - if alias(z, limit) { - z = nil // z is an alias for limit - cannot reuse - } - z = z.make(len(limit)) - - bitLengthOfMSW := uint(n % _W) - if bitLengthOfMSW == 0 { - bitLengthOfMSW = _W - } - mask := Word((1 << bitLengthOfMSW) - 1) - - for { - switch _W { - case 32: - for i := range z { - z[i] = Word(rand.Uint32()) - } - case 64: - for i := range z { - z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32 - } - default: - panic("unknown word size") - } - z[len(limit)-1] &= mask - if z.cmp(limit) < 0 { - break - } - } - - return z.norm() -} - -// If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m; -// otherwise it sets z to x**y. The result is the value of z. -func (z nat) expNN(x, y, m nat) nat { - if alias(z, x) || alias(z, y) { - // We cannot allow in-place modification of x or y. - z = nil - } - - // x**y mod 1 == 0 - if len(m) == 1 && m[0] == 1 { - return z.setWord(0) - } - // m == 0 || m > 1 - - // x**0 == 1 - if len(y) == 0 { - return z.setWord(1) - } - // y > 0 - - if len(m) != 0 { - // We likely end up being as long as the modulus. - z = z.make(len(m)) - } - z = z.set(x) - - // If the base is non-trivial and the exponent is large, we use - // 4-bit, windowed exponentiation. This involves precomputing 14 values - // (x^2...x^15) but then reduces the number of multiply-reduces by a - // third. Even for a 32-bit exponent, this reduces the number of - // operations. - if len(x) > 1 && len(y) > 1 && len(m) > 0 { - return z.expNNWindowed(x, y, m) - } - - v := y[len(y)-1] // v > 0 because y is normalized and y > 0 - shift := leadingZeros(v) + 1 - v <<= shift - var q nat - - const mask = 1 << (_W - 1) - - // We walk through the bits of the exponent one by one. Each time we - // see a bit, we square, thus doubling the power. If the bit is a one, - // we also multiply by x, thus adding one to the power. - - w := _W - int(shift) - // zz and r are used to avoid allocating in mul and div as - // otherwise the arguments would alias. - var zz, r nat - for j := 0; j < w; j++ { - zz = zz.mul(z, z) - zz, z = z, zz - - if v&mask != 0 { - zz = zz.mul(z, x) - zz, z = z, zz - } - - if len(m) != 0 { - zz, r = zz.div(r, z, m) - zz, r, q, z = q, z, zz, r - } - - v <<= 1 - } - - for i := len(y) - 2; i >= 0; i-- { - v = y[i] - - for j := 0; j < _W; j++ { - zz = zz.mul(z, z) - zz, z = z, zz - - if v&mask != 0 { - zz = zz.mul(z, x) - zz, z = z, zz - } - - if len(m) != 0 { - zz, r = zz.div(r, z, m) - zz, r, q, z = q, z, zz, r - } - - v <<= 1 - } - } - - return z.norm() -} - -// expNNWindowed calculates x**y mod m using a fixed, 4-bit window. -func (z nat) expNNWindowed(x, y, m nat) nat { - // zz and r are used to avoid allocating in mul and div as otherwise - // the arguments would alias. - var zz, r nat - - const n = 4 - // powers[i] contains x^i. - var powers [1 << n]nat - powers[0] = natOne - powers[1] = x - for i := 2; i < 1<<n; i += 2 { - p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1] - *p = p.mul(*p2, *p2) - zz, r = zz.div(r, *p, m) - *p, r = r, *p - *p1 = p1.mul(*p, x) - zz, r = zz.div(r, *p1, m) - *p1, r = r, *p1 - } - - z = z.setWord(1) - - for i := len(y) - 1; i >= 0; i-- { - yi := y[i] - for j := 0; j < _W; j += n { - if i != len(y)-1 || j != 0 { - // Unrolled loop for significant performance - // gain. Use go test -bench=".*" in crypto/rsa - // to check performance before making changes. - zz = zz.mul(z, z) - zz, z = z, zz - zz, r = zz.div(r, z, m) - z, r = r, z - - zz = zz.mul(z, z) - zz, z = z, zz - zz, r = zz.div(r, z, m) - z, r = r, z - - zz = zz.mul(z, z) - zz, z = z, zz - zz, r = zz.div(r, z, m) - z, r = r, z - - zz = zz.mul(z, z) - zz, z = z, zz - zz, r = zz.div(r, z, m) - z, r = r, z - } - - zz = zz.mul(z, powers[yi>>(_W-n)]) - zz, z = z, zz - zz, r = zz.div(r, z, m) - z, r = r, z - - yi <<= n - } - } - - return z.norm() -} - -// probablyPrime performs reps Miller-Rabin tests to check whether n is prime. -// If it returns true, n is prime with probability 1 - 1/4^reps. -// If it returns false, n is not prime. -func (n nat) probablyPrime(reps int) bool { - if len(n) == 0 { - return false - } - - if len(n) == 1 { - if n[0] < 2 { - return false - } - - if n[0]%2 == 0 { - return n[0] == 2 - } - - // We have to exclude these cases because we reject all - // multiples of these numbers below. - switch n[0] { - case 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53: - return true - } - } - - const primesProduct32 = 0xC0CFD797 // Π {p ∈ primes, 2 < p <= 29} - const primesProduct64 = 0xE221F97C30E94E1D // Π {p ∈ primes, 2 < p <= 53} - - var r Word - switch _W { - case 32: - r = n.modW(primesProduct32) - case 64: - r = n.modW(primesProduct64 & _M) - default: - panic("Unknown word size") - } - - if r%3 == 0 || r%5 == 0 || r%7 == 0 || r%11 == 0 || - r%13 == 0 || r%17 == 0 || r%19 == 0 || r%23 == 0 || r%29 == 0 { - return false - } - - if _W == 64 && (r%31 == 0 || r%37 == 0 || r%41 == 0 || - r%43 == 0 || r%47 == 0 || r%53 == 0) { - return false - } - - nm1 := nat(nil).sub(n, natOne) - // determine q, k such that nm1 = q << k - k := nm1.trailingZeroBits() - q := nat(nil).shr(nm1, k) - - nm3 := nat(nil).sub(nm1, natTwo) - rand := rand.New(rand.NewSource(int64(n[0]))) - - var x, y, quotient nat - nm3Len := nm3.bitLen() - -NextRandom: - for i := 0; i < reps; i++ { - x = x.random(rand, nm3, nm3Len) - x = x.add(x, natTwo) - y = y.expNN(x, q, n) - if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 { - continue - } - for j := uint(1); j < k; j++ { - y = y.mul(y, y) - quotient, y = quotient.div(y, y, n) - if y.cmp(nm1) == 0 { - continue NextRandom - } - if y.cmp(natOne) == 0 { - return false - } - } - return false - } - - return true -} - -// bytes writes the value of z into buf using big-endian encoding. -// len(buf) must be >= len(z)*_S. The value of z is encoded in the -// slice buf[i:]. The number i of unused bytes at the beginning of -// buf is returned as result. -func (z nat) bytes(buf []byte) (i int) { - i = len(buf) - for _, d := range z { - for j := 0; j < _S; j++ { - i-- - buf[i] = byte(d) - d >>= 8 - } - } - - for i < len(buf) && buf[i] == 0 { - i++ - } - - return -} - -// setBytes interprets buf as the bytes of a big-endian unsigned -// integer, sets z to that value, and returns z. -func (z nat) setBytes(buf []byte) nat { - z = z.make((len(buf) + _S - 1) / _S) - - k := 0 - s := uint(0) - var d Word - for i := len(buf); i > 0; i-- { - d |= Word(buf[i-1]) << s - if s += 8; s == _S*8 { - z[k] = d - k++ - s = 0 - d = 0 - } - } - if k < len(z) { - z[k] = d - } - - return z.norm() -} diff --git a/src/pkg/math/big/nat_test.go b/src/pkg/math/big/nat_test.go deleted file mode 100644 index a2ae53385..000000000 --- a/src/pkg/math/big/nat_test.go +++ /dev/null @@ -1,771 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package big - -import ( - "io" - "runtime" - "strings" - "testing" -) - -var cmpTests = []struct { - x, y nat - r int -}{ - {nil, nil, 0}, - {nil, nat(nil), 0}, - {nat(nil), nil, 0}, - {nat(nil), nat(nil), 0}, - {nat{0}, nat{0}, 0}, - {nat{0}, nat{1}, -1}, - {nat{1}, nat{0}, 1}, - {nat{1}, nat{1}, 0}, - {nat{0, _M}, nat{1}, 1}, - {nat{1}, nat{0, _M}, -1}, - {nat{1, _M}, nat{0, _M}, 1}, - {nat{0, _M}, nat{1, _M}, -1}, - {nat{16, 571956, 8794, 68}, nat{837, 9146, 1, 754489}, -1}, - {nat{34986, 41, 105, 1957}, nat{56, 7458, 104, 1957}, 1}, -} - -func TestCmp(t *testing.T) { - for i, a := range cmpTests { - r := a.x.cmp(a.y) - if r != a.r { - t.Errorf("#%d got r = %v; want %v", i, r, a.r) - } - } -} - -type funNN func(z, x, y nat) nat -type argNN struct { - z, x, y nat -} - -var sumNN = []argNN{ - {}, - {nat{1}, nil, nat{1}}, - {nat{1111111110}, nat{123456789}, nat{987654321}}, - {nat{0, 0, 0, 1}, nil, nat{0, 0, 0, 1}}, - {nat{0, 0, 0, 1111111110}, nat{0, 0, 0, 123456789}, nat{0, 0, 0, 987654321}}, - {nat{0, 0, 0, 1}, nat{0, 0, _M}, nat{0, 0, 1}}, -} - -var prodNN = []argNN{ - {}, - {nil, nil, nil}, - {nil, nat{991}, nil}, - {nat{991}, nat{991}, nat{1}}, - {nat{991 * 991}, nat{991}, nat{991}}, - {nat{0, 0, 991 * 991}, nat{0, 991}, nat{0, 991}}, - {nat{1 * 991, 2 * 991, 3 * 991, 4 * 991}, nat{1, 2, 3, 4}, nat{991}}, - {nat{4, 11, 20, 30, 20, 11, 4}, nat{1, 2, 3, 4}, nat{4, 3, 2, 1}}, - // 3^100 * 3^28 = 3^128 - { - natFromString("11790184577738583171520872861412518665678211592275841109096961"), - natFromString("515377520732011331036461129765621272702107522001"), - natFromString("22876792454961"), - }, - // z = 111....1 (70000 digits) - // x = 10^(99*700) + ... + 10^1400 + 10^700 + 1 - // y = 111....1 (700 digits, larger than Karatsuba threshold on 32-bit and 64-bit) - { - natFromString(strings.Repeat("1", 70000)), - natFromString("1" + strings.Repeat(strings.Repeat("0", 699)+"1", 99)), - natFromString(strings.Repeat("1", 700)), - }, - // z = 111....1 (20000 digits) - // x = 10^10000 + 1 - // y = 111....1 (10000 digits) - { - natFromString(strings.Repeat("1", 20000)), - natFromString("1" + strings.Repeat("0", 9999) + "1"), - natFromString(strings.Repeat("1", 10000)), - }, -} - -func natFromString(s string) nat { - x, _, err := nat(nil).scan(strings.NewReader(s), 0) - if err != nil { - panic(err) - } - return x -} - -func TestSet(t *testing.T) { - for _, a := range sumNN { - z := nat(nil).set(a.z) - if z.cmp(a.z) != 0 { - t.Errorf("got z = %v; want %v", z, a.z) - } - } -} - -func testFunNN(t *testing.T, msg string, f funNN, a argNN) { - z := f(nil, a.x, a.y) - if z.cmp(a.z) != 0 { - t.Errorf("%s%+v\n\tgot z = %v; want %v", msg, a, z, a.z) - } -} - -func TestFunNN(t *testing.T) { - for _, a := range sumNN { - arg := a - testFunNN(t, "add", nat.add, arg) - - arg = argNN{a.z, a.y, a.x} - testFunNN(t, "add symmetric", nat.add, arg) - - arg = argNN{a.x, a.z, a.y} - testFunNN(t, "sub", nat.sub, arg) - - arg = argNN{a.y, a.z, a.x} - testFunNN(t, "sub symmetric", nat.sub, arg) - } - - for _, a := range prodNN { - arg := a - testFunNN(t, "mul", nat.mul, arg) - - arg = argNN{a.z, a.y, a.x} - testFunNN(t, "mul symmetric", nat.mul, arg) - } -} - -var mulRangesN = []struct { - a, b uint64 - prod string -}{ - {0, 0, "0"}, - {1, 1, "1"}, - {1, 2, "2"}, - {1, 3, "6"}, - {10, 10, "10"}, - {0, 100, "0"}, - {0, 1e9, "0"}, - {1, 0, "1"}, // empty range - {100, 1, "1"}, // empty range - {1, 10, "3628800"}, // 10! - {1, 20, "2432902008176640000"}, // 20! - {1, 100, - "933262154439441526816992388562667004907159682643816214685929" + - "638952175999932299156089414639761565182862536979208272237582" + - "51185210916864000000000000000000000000", // 100! - }, -} - -func TestMulRangeN(t *testing.T) { - for i, r := range mulRangesN { - prod := nat(nil).mulRange(r.a, r.b).decimalString() - if prod != r.prod { - t.Errorf("#%d: got %s; want %s", i, prod, r.prod) - } - } -} - -// allocBytes returns the number of bytes allocated by invoking f. -func allocBytes(f func()) uint64 { - var stats runtime.MemStats - runtime.ReadMemStats(&stats) - t := stats.TotalAlloc - f() - runtime.ReadMemStats(&stats) - return stats.TotalAlloc - t -} - -// TestMulUnbalanced tests that multiplying numbers of different lengths -// does not cause deep recursion and in turn allocate too much memory. -// Test case for issue 3807. -func TestMulUnbalanced(t *testing.T) { - defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(1)) - x := rndNat(50000) - y := rndNat(40) - allocSize := allocBytes(func() { - nat(nil).mul(x, y) - }) - inputSize := uint64(len(x)+len(y)) * _S - if ratio := allocSize / uint64(inputSize); ratio > 10 { - t.Errorf("multiplication uses too much memory (%d > %d times the size of inputs)", allocSize, ratio) - } -} - -func rndNat(n int) nat { - return nat(rndV(n)).norm() -} - -func BenchmarkMul(b *testing.B) { - mulx := rndNat(1e4) - muly := rndNat(1e4) - b.ResetTimer() - for i := 0; i < b.N; i++ { - var z nat - z.mul(mulx, muly) - } -} - -func toString(x nat, charset string) string { - base := len(charset) - - // special cases - switch { - case base < 2: - panic("illegal base") - case len(x) == 0: - return string(charset[0]) - } - - // allocate buffer for conversion - i := x.bitLen()/log2(Word(base)) + 1 // +1: round up - s := make([]byte, i) - - // don't destroy x - q := nat(nil).set(x) - - // convert - for len(q) > 0 { - i-- - var r Word - q, r = q.divW(q, Word(base)) - s[i] = charset[r] - } - - return string(s[i:]) -} - -var strTests = []struct { - x nat // nat value to be converted - c string // conversion charset - s string // expected result -}{ - {nil, "01", "0"}, - {nat{1}, "01", "1"}, - {nat{0xc5}, "01", "11000101"}, - {nat{03271}, lowercaseDigits[0:8], "3271"}, - {nat{10}, lowercaseDigits[0:10], "10"}, - {nat{1234567890}, uppercaseDigits[0:10], "1234567890"}, - {nat{0xdeadbeef}, lowercaseDigits[0:16], "deadbeef"}, - {nat{0xdeadbeef}, uppercaseDigits[0:16], "DEADBEEF"}, - {nat{0x229be7}, lowercaseDigits[0:17], "1a2b3c"}, - {nat{0x309663e6}, uppercaseDigits[0:32], "O9COV6"}, -} - -func TestString(t *testing.T) { - for _, a := range strTests { - s := a.x.string(a.c) - if s != a.s { - t.Errorf("string%+v\n\tgot s = %s; want %s", a, s, a.s) - } - - x, b, err := nat(nil).scan(strings.NewReader(a.s), len(a.c)) - if x.cmp(a.x) != 0 { - t.Errorf("scan%+v\n\tgot z = %v; want %v", a, x, a.x) - } - if b != len(a.c) { - t.Errorf("scan%+v\n\tgot b = %d; want %d", a, b, len(a.c)) - } - if err != nil { - t.Errorf("scan%+v\n\tgot error = %s", a, err) - } - } -} - -var natScanTests = []struct { - s string // string to be scanned - base int // input base - x nat // expected nat - b int // expected base - ok bool // expected success - next rune // next character (or 0, if at EOF) -}{ - // error: illegal base - {base: -1}, - {base: 1}, - {base: 37}, - - // error: no mantissa - {}, - {s: "?"}, - {base: 10}, - {base: 36}, - {s: "?", base: 10}, - {s: "0x"}, - {s: "345", base: 2}, - - // no errors - {"0", 0, nil, 10, true, 0}, - {"0", 10, nil, 10, true, 0}, - {"0", 36, nil, 36, true, 0}, - {"1", 0, nat{1}, 10, true, 0}, - {"1", 10, nat{1}, 10, true, 0}, - {"0 ", 0, nil, 10, true, ' '}, - {"08", 0, nil, 10, true, '8'}, - {"018", 0, nat{1}, 8, true, '8'}, - {"0b1", 0, nat{1}, 2, true, 0}, - {"0b11000101", 0, nat{0xc5}, 2, true, 0}, - {"03271", 0, nat{03271}, 8, true, 0}, - {"10ab", 0, nat{10}, 10, true, 'a'}, - {"1234567890", 0, nat{1234567890}, 10, true, 0}, - {"xyz", 36, nat{(33*36+34)*36 + 35}, 36, true, 0}, - {"xyz?", 36, nat{(33*36+34)*36 + 35}, 36, true, '?'}, - {"0x", 16, nil, 16, true, 'x'}, - {"0xdeadbeef", 0, nat{0xdeadbeef}, 16, true, 0}, - {"0XDEADBEEF", 0, nat{0xdeadbeef}, 16, true, 0}, -} - -func TestScanBase(t *testing.T) { - for _, a := range natScanTests { - r := strings.NewReader(a.s) - x, b, err := nat(nil).scan(r, a.base) - if err == nil && !a.ok { - t.Errorf("scan%+v\n\texpected error", a) - } - if err != nil { - if a.ok { - t.Errorf("scan%+v\n\tgot error = %s", a, err) - } - continue - } - if x.cmp(a.x) != 0 { - t.Errorf("scan%+v\n\tgot z = %v; want %v", a, x, a.x) - } - if b != a.b { - t.Errorf("scan%+v\n\tgot b = %d; want %d", a, b, a.base) - } - next, _, err := r.ReadRune() - if err == io.EOF { - next = 0 - err = nil - } - if err == nil && next != a.next { - t.Errorf("scan%+v\n\tgot next = %q; want %q", a, next, a.next) - } - } -} - -var pi = "3" + - "14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651" + - "32823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461" + - "28475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920" + - "96282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179" + - "31051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798" + - "60943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901" + - "22495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837" + - "29780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083" + - "81420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909" + - "21642019893809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913151" + - "55748572424541506959508295331168617278558890750983817546374649393192550604009277016711390098488240128583616035" + - "63707660104710181942955596198946767837449448255379774726847104047534646208046684259069491293313677028989152104" + - "75216205696602405803815019351125338243003558764024749647326391419927260426992279678235478163600934172164121992" + - "45863150302861829745557067498385054945885869269956909272107975093029553211653449872027559602364806654991198818" + - "34797753566369807426542527862551818417574672890977772793800081647060016145249192173217214772350141441973568548" + - "16136115735255213347574184946843852332390739414333454776241686251898356948556209921922218427255025425688767179" + - "04946016534668049886272327917860857843838279679766814541009538837863609506800642251252051173929848960841284886" + - "26945604241965285022210661186306744278622039194945047123713786960956364371917287467764657573962413890865832645" + - "99581339047802759009946576407895126946839835259570982582262052248940772671947826848260147699090264013639443745" + - "53050682034962524517493996514314298091906592509372216964615157098583874105978859597729754989301617539284681382" + - "68683868942774155991855925245953959431049972524680845987273644695848653836736222626099124608051243884390451244" + - "13654976278079771569143599770012961608944169486855584840635342207222582848864815845602850601684273945226746767" + - "88952521385225499546667278239864565961163548862305774564980355936345681743241125150760694794510965960940252288" + - "79710893145669136867228748940560101503308617928680920874760917824938589009714909675985261365549781893129784821" + - "68299894872265880485756401427047755513237964145152374623436454285844479526586782105114135473573952311342716610" + - "21359695362314429524849371871101457654035902799344037420073105785390621983874478084784896833214457138687519435" + - "06430218453191048481005370614680674919278191197939952061419663428754440643745123718192179998391015919561814675" + - "14269123974894090718649423196156794520809514655022523160388193014209376213785595663893778708303906979207734672" + - "21825625996615014215030680384477345492026054146659252014974428507325186660021324340881907104863317346496514539" + - "05796268561005508106658796998163574736384052571459102897064140110971206280439039759515677157700420337869936007" + - "23055876317635942187312514712053292819182618612586732157919841484882916447060957527069572209175671167229109816" + - "90915280173506712748583222871835209353965725121083579151369882091444210067510334671103141267111369908658516398" + - "31501970165151168517143765761835155650884909989859982387345528331635507647918535893226185489632132933089857064" + - "20467525907091548141654985946163718027098199430992448895757128289059232332609729971208443357326548938239119325" + - "97463667305836041428138830320382490375898524374417029132765618093773444030707469211201913020330380197621101100" + - "44929321516084244485963766983895228684783123552658213144957685726243344189303968642624341077322697802807318915" + - "44110104468232527162010526522721116603966655730925471105578537634668206531098965269186205647693125705863566201" + - "85581007293606598764861179104533488503461136576867532494416680396265797877185560845529654126654085306143444318" + - "58676975145661406800700237877659134401712749470420562230538994561314071127000407854733269939081454664645880797" + - "27082668306343285878569830523580893306575740679545716377525420211495576158140025012622859413021647155097925923" + - "09907965473761255176567513575178296664547791745011299614890304639947132962107340437518957359614589019389713111" + - "79042978285647503203198691514028708085990480109412147221317947647772622414254854540332157185306142288137585043" + - "06332175182979866223717215916077166925474873898665494945011465406284336639379003976926567214638530673609657120" + - "91807638327166416274888800786925602902284721040317211860820419000422966171196377921337575114959501566049631862" + - "94726547364252308177036751590673502350728354056704038674351362222477158915049530984448933309634087807693259939" + - "78054193414473774418426312986080998886874132604721569516239658645730216315981931951673538129741677294786724229" + - "24654366800980676928238280689964004824354037014163149658979409243237896907069779422362508221688957383798623001" + - "59377647165122893578601588161755782973523344604281512627203734314653197777416031990665541876397929334419521541" + - "34189948544473456738316249934191318148092777710386387734317720754565453220777092120190516609628049092636019759" + - "88281613323166636528619326686336062735676303544776280350450777235547105859548702790814356240145171806246436267" + - "94561275318134078330336254232783944975382437205835311477119926063813346776879695970309833913077109870408591337" - -// Test case for BenchmarkScanPi. -func TestScanPi(t *testing.T) { - var x nat - z, _, err := x.scan(strings.NewReader(pi), 10) - if err != nil { - t.Errorf("scanning pi: %s", err) - } - if s := z.decimalString(); s != pi { - t.Errorf("scanning pi: got %s", s) - } -} - -func TestScanPiParallel(t *testing.T) { - const n = 2 - c := make(chan int) - for i := 0; i < n; i++ { - go func() { - TestScanPi(t) - c <- 0 - }() - } - for i := 0; i < n; i++ { - <-c - } -} - -func BenchmarkScanPi(b *testing.B) { - for i := 0; i < b.N; i++ { - var x nat - x.scan(strings.NewReader(pi), 10) - } -} - -func BenchmarkStringPiParallel(b *testing.B) { - var x nat - x, _, _ = x.scan(strings.NewReader(pi), 0) - if x.decimalString() != pi { - panic("benchmark incorrect: conversion failed") - } - b.RunParallel(func(pb *testing.PB) { - for pb.Next() { - x.decimalString() - } - }) -} - -func BenchmarkScan10Base2(b *testing.B) { ScanHelper(b, 2, 10, 10) } -func BenchmarkScan100Base2(b *testing.B) { ScanHelper(b, 2, 10, 100) } -func BenchmarkScan1000Base2(b *testing.B) { ScanHelper(b, 2, 10, 1000) } -func BenchmarkScan10000Base2(b *testing.B) { ScanHelper(b, 2, 10, 10000) } -func BenchmarkScan100000Base2(b *testing.B) { ScanHelper(b, 2, 10, 100000) } - -func BenchmarkScan10Base8(b *testing.B) { ScanHelper(b, 8, 10, 10) } -func BenchmarkScan100Base8(b *testing.B) { ScanHelper(b, 8, 10, 100) } -func BenchmarkScan1000Base8(b *testing.B) { ScanHelper(b, 8, 10, 1000) } -func BenchmarkScan10000Base8(b *testing.B) { ScanHelper(b, 8, 10, 10000) } -func BenchmarkScan100000Base8(b *testing.B) { ScanHelper(b, 8, 10, 100000) } - -func BenchmarkScan10Base10(b *testing.B) { ScanHelper(b, 10, 10, 10) } -func BenchmarkScan100Base10(b *testing.B) { ScanHelper(b, 10, 10, 100) } -func BenchmarkScan1000Base10(b *testing.B) { ScanHelper(b, 10, 10, 1000) } -func BenchmarkScan10000Base10(b *testing.B) { ScanHelper(b, 10, 10, 10000) } -func BenchmarkScan100000Base10(b *testing.B) { ScanHelper(b, 10, 10, 100000) } - -func BenchmarkScan10Base16(b *testing.B) { ScanHelper(b, 16, 10, 10) } -func BenchmarkScan100Base16(b *testing.B) { ScanHelper(b, 16, 10, 100) } -func BenchmarkScan1000Base16(b *testing.B) { ScanHelper(b, 16, 10, 1000) } -func BenchmarkScan10000Base16(b *testing.B) { ScanHelper(b, 16, 10, 10000) } -func BenchmarkScan100000Base16(b *testing.B) { ScanHelper(b, 16, 10, 100000) } - -func ScanHelper(b *testing.B, base int, x, y Word) { - b.StopTimer() - var z nat - z = z.expWW(x, y) - - var s string - s = z.string(lowercaseDigits[0:base]) - if t := toString(z, lowercaseDigits[0:base]); t != s { - b.Fatalf("scanning: got %s; want %s", s, t) - } - b.StartTimer() - - for i := 0; i < b.N; i++ { - z.scan(strings.NewReader(s), base) - } -} - -func BenchmarkString10Base2(b *testing.B) { StringHelper(b, 2, 10, 10) } -func BenchmarkString100Base2(b *testing.B) { StringHelper(b, 2, 10, 100) } -func BenchmarkString1000Base2(b *testing.B) { StringHelper(b, 2, 10, 1000) } -func BenchmarkString10000Base2(b *testing.B) { StringHelper(b, 2, 10, 10000) } -func BenchmarkString100000Base2(b *testing.B) { StringHelper(b, 2, 10, 100000) } - -func BenchmarkString10Base8(b *testing.B) { StringHelper(b, 8, 10, 10) } -func BenchmarkString100Base8(b *testing.B) { StringHelper(b, 8, 10, 100) } -func BenchmarkString1000Base8(b *testing.B) { StringHelper(b, 8, 10, 1000) } -func BenchmarkString10000Base8(b *testing.B) { StringHelper(b, 8, 10, 10000) } -func BenchmarkString100000Base8(b *testing.B) { StringHelper(b, 8, 10, 100000) } - -func BenchmarkString10Base10(b *testing.B) { StringHelper(b, 10, 10, 10) } -func BenchmarkString100Base10(b *testing.B) { StringHelper(b, 10, 10, 100) } -func BenchmarkString1000Base10(b *testing.B) { StringHelper(b, 10, 10, 1000) } -func BenchmarkString10000Base10(b *testing.B) { StringHelper(b, 10, 10, 10000) } -func BenchmarkString100000Base10(b *testing.B) { StringHelper(b, 10, 10, 100000) } - -func BenchmarkString10Base16(b *testing.B) { StringHelper(b, 16, 10, 10) } -func BenchmarkString100Base16(b *testing.B) { StringHelper(b, 16, 10, 100) } -func BenchmarkString1000Base16(b *testing.B) { StringHelper(b, 16, 10, 1000) } -func BenchmarkString10000Base16(b *testing.B) { StringHelper(b, 16, 10, 10000) } -func BenchmarkString100000Base16(b *testing.B) { StringHelper(b, 16, 10, 100000) } - -func StringHelper(b *testing.B, base int, x, y Word) { - b.StopTimer() - var z nat - z = z.expWW(x, y) - z.string(lowercaseDigits[0:base]) // warm divisor cache - b.StartTimer() - - for i := 0; i < b.N; i++ { - _ = z.string(lowercaseDigits[0:base]) - } -} - -func BenchmarkLeafSize0(b *testing.B) { LeafSizeHelper(b, 10, 0) } // test without splitting -func BenchmarkLeafSize1(b *testing.B) { LeafSizeHelper(b, 10, 1) } -func BenchmarkLeafSize2(b *testing.B) { LeafSizeHelper(b, 10, 2) } -func BenchmarkLeafSize3(b *testing.B) { LeafSizeHelper(b, 10, 3) } -func BenchmarkLeafSize4(b *testing.B) { LeafSizeHelper(b, 10, 4) } -func BenchmarkLeafSize5(b *testing.B) { LeafSizeHelper(b, 10, 5) } -func BenchmarkLeafSize6(b *testing.B) { LeafSizeHelper(b, 10, 6) } -func BenchmarkLeafSize7(b *testing.B) { LeafSizeHelper(b, 10, 7) } -func BenchmarkLeafSize8(b *testing.B) { LeafSizeHelper(b, 10, 8) } -func BenchmarkLeafSize9(b *testing.B) { LeafSizeHelper(b, 10, 9) } -func BenchmarkLeafSize10(b *testing.B) { LeafSizeHelper(b, 10, 10) } -func BenchmarkLeafSize11(b *testing.B) { LeafSizeHelper(b, 10, 11) } -func BenchmarkLeafSize12(b *testing.B) { LeafSizeHelper(b, 10, 12) } -func BenchmarkLeafSize13(b *testing.B) { LeafSizeHelper(b, 10, 13) } -func BenchmarkLeafSize14(b *testing.B) { LeafSizeHelper(b, 10, 14) } -func BenchmarkLeafSize15(b *testing.B) { LeafSizeHelper(b, 10, 15) } -func BenchmarkLeafSize16(b *testing.B) { LeafSizeHelper(b, 10, 16) } -func BenchmarkLeafSize32(b *testing.B) { LeafSizeHelper(b, 10, 32) } // try some large lengths -func BenchmarkLeafSize64(b *testing.B) { LeafSizeHelper(b, 10, 64) } - -func LeafSizeHelper(b *testing.B, base Word, size int) { - b.StopTimer() - originalLeafSize := leafSize - resetTable(cacheBase10.table[:]) - leafSize = size - b.StartTimer() - - for d := 1; d <= 10000; d *= 10 { - b.StopTimer() - var z nat - z = z.expWW(base, Word(d)) // build target number - _ = z.string(lowercaseDigits[0:base]) // warm divisor cache - b.StartTimer() - - for i := 0; i < b.N; i++ { - _ = z.string(lowercaseDigits[0:base]) - } - } - - b.StopTimer() - resetTable(cacheBase10.table[:]) - leafSize = originalLeafSize - b.StartTimer() -} - -func resetTable(table []divisor) { - if table != nil && table[0].bbb != nil { - for i := 0; i < len(table); i++ { - table[i].bbb = nil - table[i].nbits = 0 - table[i].ndigits = 0 - } - } -} - -func TestStringPowers(t *testing.T) { - var b, p Word - for b = 2; b <= 16; b++ { - for p = 0; p <= 512; p++ { - x := nat(nil).expWW(b, p) - xs := x.string(lowercaseDigits[0:b]) - xs2 := toString(x, lowercaseDigits[0:b]) - if xs != xs2 { - t.Errorf("failed at %d ** %d in base %d: %s != %s", b, p, b, xs, xs2) - } - } - if b >= 3 && testing.Short() { - break - } - } -} - -func TestLeadingZeros(t *testing.T) { - var x Word = _B >> 1 - for i := 0; i <= _W; i++ { - if int(leadingZeros(x)) != i { - t.Errorf("failed at %x: got %d want %d", x, leadingZeros(x), i) - } - x >>= 1 - } -} - -type shiftTest struct { - in nat - shift uint - out nat -} - -var leftShiftTests = []shiftTest{ - {nil, 0, nil}, - {nil, 1, nil}, - {natOne, 0, natOne}, - {natOne, 1, natTwo}, - {nat{1 << (_W - 1)}, 1, nat{0}}, - {nat{1 << (_W - 1), 0}, 1, nat{0, 1}}, -} - -func TestShiftLeft(t *testing.T) { - for i, test := range leftShiftTests { - var z nat - z = z.shl(test.in, test.shift) - for j, d := range test.out { - if j >= len(z) || z[j] != d { - t.Errorf("#%d: got: %v want: %v", i, z, test.out) - break - } - } - } -} - -var rightShiftTests = []shiftTest{ - {nil, 0, nil}, - {nil, 1, nil}, - {natOne, 0, natOne}, - {natOne, 1, nil}, - {natTwo, 1, natOne}, - {nat{0, 1}, 1, nat{1 << (_W - 1)}}, - {nat{2, 1, 1}, 1, nat{1<<(_W-1) + 1, 1 << (_W - 1)}}, -} - -func TestShiftRight(t *testing.T) { - for i, test := range rightShiftTests { - var z nat - z = z.shr(test.in, test.shift) - for j, d := range test.out { - if j >= len(z) || z[j] != d { - t.Errorf("#%d: got: %v want: %v", i, z, test.out) - break - } - } - } -} - -type modWTest struct { - in string - dividend string - out string -} - -var modWTests32 = []modWTest{ - {"23492635982634928349238759823742", "252341", "220170"}, -} - -var modWTests64 = []modWTest{ - {"6527895462947293856291561095690465243862946", "524326975699234", "375066989628668"}, -} - -func runModWTests(t *testing.T, tests []modWTest) { - for i, test := range tests { - in, _ := new(Int).SetString(test.in, 10) - d, _ := new(Int).SetString(test.dividend, 10) - out, _ := new(Int).SetString(test.out, 10) - - r := in.abs.modW(d.abs[0]) - if r != out.abs[0] { - t.Errorf("#%d failed: got %d want %s", i, r, out) - } - } -} - -func TestModW(t *testing.T) { - if _W >= 32 { - runModWTests(t, modWTests32) - } - if _W >= 64 { - runModWTests(t, modWTests64) - } -} - -func TestTrailingZeroBits(t *testing.T) { - x := Word(1) - for i := uint(0); i <= _W; i++ { - n := trailingZeroBits(x) - if n != i%_W { - t.Errorf("got trailingZeroBits(%#x) = %d; want %d", x, n, i%_W) - } - x <<= 1 - } - - y := nat(nil).set(natOne) - for i := uint(0); i <= 3*_W; i++ { - n := y.trailingZeroBits() - if n != i { - t.Errorf("got 0x%s.trailingZeroBits() = %d; want %d", y.string(lowercaseDigits[0:16]), n, i) - } - y = y.shl(y, 1) - } -} - -var expNNTests = []struct { - x, y, m string - out string -}{ - {"0", "0", "0", "1"}, - {"0", "0", "1", "0"}, - {"1", "1", "1", "0"}, - {"2", "1", "1", "0"}, - {"2", "2", "1", "0"}, - {"10", "100000000000", "1", "0"}, - {"0x8000000000000000", "2", "", "0x40000000000000000000000000000000"}, - {"0x8000000000000000", "2", "6719", "4944"}, - {"0x8000000000000000", "3", "6719", "5447"}, - {"0x8000000000000000", "1000", "6719", "1603"}, - {"0x8000000000000000", "1000000", "6719", "3199"}, - { - "2938462938472983472983659726349017249287491026512746239764525612965293865296239471239874193284792387498274256129746192347", - "298472983472983471903246121093472394872319615612417471234712061", - "29834729834729834729347290846729561262544958723956495615629569234729836259263598127342374289365912465901365498236492183464", - "23537740700184054162508175125554701713153216681790245129157191391322321508055833908509185839069455749219131480588829346291", - }, -} - -func TestExpNN(t *testing.T) { - for i, test := range expNNTests { - x, _, _ := nat(nil).scan(strings.NewReader(test.x), 0) - y, _, _ := nat(nil).scan(strings.NewReader(test.y), 0) - out, _, _ := nat(nil).scan(strings.NewReader(test.out), 0) - - var m nat - - if len(test.m) > 0 { - m, _, _ = nat(nil).scan(strings.NewReader(test.m), 0) - } - - z := nat(nil).expNN(x, y, m) - if z.cmp(out) != 0 { - t.Errorf("#%d got %s want %s", i, z.decimalString(), out.decimalString()) - } - } -} - -func ExpHelper(b *testing.B, x, y Word) { - var z nat - for i := 0; i < b.N; i++ { - z.expWW(x, y) - } -} - -func BenchmarkExp3Power0x10(b *testing.B) { ExpHelper(b, 3, 0x10) } -func BenchmarkExp3Power0x40(b *testing.B) { ExpHelper(b, 3, 0x40) } -func BenchmarkExp3Power0x100(b *testing.B) { ExpHelper(b, 3, 0x100) } -func BenchmarkExp3Power0x400(b *testing.B) { ExpHelper(b, 3, 0x400) } -func BenchmarkExp3Power0x1000(b *testing.B) { ExpHelper(b, 3, 0x1000) } -func BenchmarkExp3Power0x4000(b *testing.B) { ExpHelper(b, 3, 0x4000) } -func BenchmarkExp3Power0x10000(b *testing.B) { ExpHelper(b, 3, 0x10000) } -func BenchmarkExp3Power0x40000(b *testing.B) { ExpHelper(b, 3, 0x40000) } -func BenchmarkExp3Power0x100000(b *testing.B) { ExpHelper(b, 3, 0x100000) } -func BenchmarkExp3Power0x400000(b *testing.B) { ExpHelper(b, 3, 0x400000) } diff --git a/src/pkg/math/big/rat.go b/src/pkg/math/big/rat.go deleted file mode 100644 index e6ab0bb48..000000000 --- a/src/pkg/math/big/rat.go +++ /dev/null @@ -1,713 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// This file implements multi-precision rational numbers. - -package big - -import ( - "encoding/binary" - "errors" - "fmt" - "math" - "strings" -) - -// A Rat represents a quotient a/b of arbitrary precision. -// The zero value for a Rat represents the value 0. -type Rat struct { - // To make zero values for Rat work w/o initialization, - // a zero value of b (len(b) == 0) acts like b == 1. - // a.neg determines the sign of the Rat, b.neg is ignored. - a, b Int -} - -// NewRat creates a new Rat with numerator a and denominator b. -func NewRat(a, b int64) *Rat { - return new(Rat).SetFrac64(a, b) -} - -// SetFloat64 sets z to exactly f and returns z. -// If f is not finite, SetFloat returns nil. -func (z *Rat) SetFloat64(f float64) *Rat { - const expMask = 1<<11 - 1 - bits := math.Float64bits(f) - mantissa := bits & (1<<52 - 1) - exp := int((bits >> 52) & expMask) - switch exp { - case expMask: // non-finite - return nil - case 0: // denormal - exp -= 1022 - default: // normal - mantissa |= 1 << 52 - exp -= 1023 - } - - shift := 52 - exp - - // Optimization (?): partially pre-normalise. - for mantissa&1 == 0 && shift > 0 { - mantissa >>= 1 - shift-- - } - - z.a.SetUint64(mantissa) - z.a.neg = f < 0 - z.b.Set(intOne) - if shift > 0 { - z.b.Lsh(&z.b, uint(shift)) - } else { - z.a.Lsh(&z.a, uint(-shift)) - } - return z.norm() -} - -// quotToFloat32 returns the non-negative float32 value -// nearest to the quotient a/b, using round-to-even in -// halfway cases. It does not mutate its arguments. -// Preconditions: b is non-zero; a and b have no common factors. -func quotToFloat32(a, b nat) (f float32, exact bool) { - const ( - // float size in bits - Fsize = 32 - - // mantissa - Msize = 23 - Msize1 = Msize + 1 // incl. implicit 1 - Msize2 = Msize1 + 1 - - // exponent - Esize = Fsize - Msize1 - Ebias = 1<<(Esize-1) - 1 - Emin = 1 - Ebias - Emax = Ebias - ) - - // TODO(adonovan): specialize common degenerate cases: 1.0, integers. - alen := a.bitLen() - if alen == 0 { - return 0, true - } - blen := b.bitLen() - if blen == 0 { - panic("division by zero") - } - - // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1) - // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B). - // This is 2 or 3 more than the float32 mantissa field width of Msize: - // - the optional extra bit is shifted away in step 3 below. - // - the high-order 1 is omitted in "normal" representation; - // - the low-order 1 will be used during rounding then discarded. - exp := alen - blen - var a2, b2 nat - a2 = a2.set(a) - b2 = b2.set(b) - if shift := Msize2 - exp; shift > 0 { - a2 = a2.shl(a2, uint(shift)) - } else if shift < 0 { - b2 = b2.shl(b2, uint(-shift)) - } - - // 2. Compute quotient and remainder (q, r). NB: due to the - // extra shift, the low-order bit of q is logically the - // high-order bit of r. - var q nat - q, r := q.div(a2, a2, b2) // (recycle a2) - mantissa := low32(q) - haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half - - // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1 - // (in effect---we accomplish this incrementally). - if mantissa>>Msize2 == 1 { - if mantissa&1 == 1 { - haveRem = true - } - mantissa >>= 1 - exp++ - } - if mantissa>>Msize1 != 1 { - panic(fmt.Sprintf("expected exactly %d bits of result", Msize2)) - } - - // 4. Rounding. - if Emin-Msize <= exp && exp <= Emin { - // Denormal case; lose 'shift' bits of precision. - shift := uint(Emin - (exp - 1)) // [1..Esize1) - lostbits := mantissa & (1<<shift - 1) - haveRem = haveRem || lostbits != 0 - mantissa >>= shift - exp = 2 - Ebias // == exp + shift - } - // Round q using round-half-to-even. - exact = !haveRem - if mantissa&1 != 0 { - exact = false - if haveRem || mantissa&2 != 0 { - if mantissa++; mantissa >= 1<<Msize2 { - // Complete rollover 11...1 => 100...0, so shift is safe - mantissa >>= 1 - exp++ - } - } - } - mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1. - - f = float32(math.Ldexp(float64(mantissa), exp-Msize1)) - if math.IsInf(float64(f), 0) { - exact = false - } - return -} - -// quotToFloat64 returns the non-negative float64 value -// nearest to the quotient a/b, using round-to-even in -// halfway cases. It does not mutate its arguments. -// Preconditions: b is non-zero; a and b have no common factors. -func quotToFloat64(a, b nat) (f float64, exact bool) { - const ( - // float size in bits - Fsize = 64 - - // mantissa - Msize = 52 - Msize1 = Msize + 1 // incl. implicit 1 - Msize2 = Msize1 + 1 - - // exponent - Esize = Fsize - Msize1 - Ebias = 1<<(Esize-1) - 1 - Emin = 1 - Ebias - Emax = Ebias - ) - - // TODO(adonovan): specialize common degenerate cases: 1.0, integers. - alen := a.bitLen() - if alen == 0 { - return 0, true - } - blen := b.bitLen() - if blen == 0 { - panic("division by zero") - } - - // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1) - // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B). - // This is 2 or 3 more than the float64 mantissa field width of Msize: - // - the optional extra bit is shifted away in step 3 below. - // - the high-order 1 is omitted in "normal" representation; - // - the low-order 1 will be used during rounding then discarded. - exp := alen - blen - var a2, b2 nat - a2 = a2.set(a) - b2 = b2.set(b) - if shift := Msize2 - exp; shift > 0 { - a2 = a2.shl(a2, uint(shift)) - } else if shift < 0 { - b2 = b2.shl(b2, uint(-shift)) - } - - // 2. Compute quotient and remainder (q, r). NB: due to the - // extra shift, the low-order bit of q is logically the - // high-order bit of r. - var q nat - q, r := q.div(a2, a2, b2) // (recycle a2) - mantissa := low64(q) - haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half - - // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1 - // (in effect---we accomplish this incrementally). - if mantissa>>Msize2 == 1 { - if mantissa&1 == 1 { - haveRem = true - } - mantissa >>= 1 - exp++ - } - if mantissa>>Msize1 != 1 { - panic(fmt.Sprintf("expected exactly %d bits of result", Msize2)) - } - - // 4. Rounding. - if Emin-Msize <= exp && exp <= Emin { - // Denormal case; lose 'shift' bits of precision. - shift := uint(Emin - (exp - 1)) // [1..Esize1) - lostbits := mantissa & (1<<shift - 1) - haveRem = haveRem || lostbits != 0 - mantissa >>= shift - exp = 2 - Ebias // == exp + shift - } - // Round q using round-half-to-even. - exact = !haveRem - if mantissa&1 != 0 { - exact = false - if haveRem || mantissa&2 != 0 { - if mantissa++; mantissa >= 1<<Msize2 { - // Complete rollover 11...1 => 100...0, so shift is safe - mantissa >>= 1 - exp++ - } - } - } - mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1. - - f = math.Ldexp(float64(mantissa), exp-Msize1) - if math.IsInf(f, 0) { - exact = false - } - return -} - -// Float32 returns the nearest float32 value for x and a bool indicating -// whether f represents x exactly. If the magnitude of x is too large to -// be represented by a float32, f is an infinity and exact is false. -// The sign of f always matches the sign of x, even if f == 0. -func (x *Rat) Float32() (f float32, exact bool) { - b := x.b.abs - if len(b) == 0 { - b = b.set(natOne) // materialize denominator - } - f, exact = quotToFloat32(x.a.abs, b) - if x.a.neg { - f = -f - } - return -} - -// Float64 returns the nearest float64 value for x and a bool indicating -// whether f represents x exactly. If the magnitude of x is too large to -// be represented by a float64, f is an infinity and exact is false. -// The sign of f always matches the sign of x, even if f == 0. -func (x *Rat) Float64() (f float64, exact bool) { - b := x.b.abs - if len(b) == 0 { - b = b.set(natOne) // materialize denominator - } - f, exact = quotToFloat64(x.a.abs, b) - if x.a.neg { - f = -f - } - return -} - -// SetFrac sets z to a/b and returns z. -func (z *Rat) SetFrac(a, b *Int) *Rat { - z.a.neg = a.neg != b.neg - babs := b.abs - if len(babs) == 0 { - panic("division by zero") - } - if &z.a == b || alias(z.a.abs, babs) { - babs = nat(nil).set(babs) // make a copy - } - z.a.abs = z.a.abs.set(a.abs) - z.b.abs = z.b.abs.set(babs) - return z.norm() -} - -// SetFrac64 sets z to a/b and returns z. -func (z *Rat) SetFrac64(a, b int64) *Rat { - z.a.SetInt64(a) - if b == 0 { - panic("division by zero") - } - if b < 0 { - b = -b - z.a.neg = !z.a.neg - } - z.b.abs = z.b.abs.setUint64(uint64(b)) - return z.norm() -} - -// SetInt sets z to x (by making a copy of x) and returns z. -func (z *Rat) SetInt(x *Int) *Rat { - z.a.Set(x) - z.b.abs = z.b.abs.make(0) - return z -} - -// SetInt64 sets z to x and returns z. -func (z *Rat) SetInt64(x int64) *Rat { - z.a.SetInt64(x) - z.b.abs = z.b.abs.make(0) - return z -} - -// Set sets z to x (by making a copy of x) and returns z. -func (z *Rat) Set(x *Rat) *Rat { - if z != x { - z.a.Set(&x.a) - z.b.Set(&x.b) - } - return z -} - -// Abs sets z to |x| (the absolute value of x) and returns z. -func (z *Rat) Abs(x *Rat) *Rat { - z.Set(x) - z.a.neg = false - return z -} - -// Neg sets z to -x and returns z. -func (z *Rat) Neg(x *Rat) *Rat { - z.Set(x) - z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign - return z -} - -// Inv sets z to 1/x and returns z. -func (z *Rat) Inv(x *Rat) *Rat { - if len(x.a.abs) == 0 { - panic("division by zero") - } - z.Set(x) - a := z.b.abs - if len(a) == 0 { - a = a.set(natOne) // materialize numerator - } - b := z.a.abs - if b.cmp(natOne) == 0 { - b = b.make(0) // normalize denominator - } - z.a.abs, z.b.abs = a, b // sign doesn't change - return z -} - -// Sign returns: -// -// -1 if x < 0 -// 0 if x == 0 -// +1 if x > 0 -// -func (x *Rat) Sign() int { - return x.a.Sign() -} - -// IsInt returns true if the denominator of x is 1. -func (x *Rat) IsInt() bool { - return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0 -} - -// Num returns the numerator of x; it may be <= 0. -// The result is a reference to x's numerator; it -// may change if a new value is assigned to x, and vice versa. -// The sign of the numerator corresponds to the sign of x. -func (x *Rat) Num() *Int { - return &x.a -} - -// Denom returns the denominator of x; it is always > 0. -// The result is a reference to x's denominator; it -// may change if a new value is assigned to x, and vice versa. -func (x *Rat) Denom() *Int { - x.b.neg = false // the result is always >= 0 - if len(x.b.abs) == 0 { - x.b.abs = x.b.abs.set(natOne) // materialize denominator - } - return &x.b -} - -func (z *Rat) norm() *Rat { - switch { - case len(z.a.abs) == 0: - // z == 0 - normalize sign and denominator - z.a.neg = false - z.b.abs = z.b.abs.make(0) - case len(z.b.abs) == 0: - // z is normalized int - nothing to do - case z.b.abs.cmp(natOne) == 0: - // z is int - normalize denominator - z.b.abs = z.b.abs.make(0) - default: - neg := z.a.neg - z.a.neg = false - z.b.neg = false - if f := NewInt(0).binaryGCD(&z.a, &z.b); f.Cmp(intOne) != 0 { - z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs) - z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs) - if z.b.abs.cmp(natOne) == 0 { - // z is int - normalize denominator - z.b.abs = z.b.abs.make(0) - } - } - z.a.neg = neg - } - return z -} - -// mulDenom sets z to the denominator product x*y (by taking into -// account that 0 values for x or y must be interpreted as 1) and -// returns z. -func mulDenom(z, x, y nat) nat { - switch { - case len(x) == 0: - return z.set(y) - case len(y) == 0: - return z.set(x) - } - return z.mul(x, y) -} - -// scaleDenom computes x*f. -// If f == 0 (zero value of denominator), the result is (a copy of) x. -func scaleDenom(x *Int, f nat) *Int { - var z Int - if len(f) == 0 { - return z.Set(x) - } - z.abs = z.abs.mul(x.abs, f) - z.neg = x.neg - return &z -} - -// Cmp compares x and y and returns: -// -// -1 if x < y -// 0 if x == y -// +1 if x > y -// -func (x *Rat) Cmp(y *Rat) int { - return scaleDenom(&x.a, y.b.abs).Cmp(scaleDenom(&y.a, x.b.abs)) -} - -// Add sets z to the sum x+y and returns z. -func (z *Rat) Add(x, y *Rat) *Rat { - a1 := scaleDenom(&x.a, y.b.abs) - a2 := scaleDenom(&y.a, x.b.abs) - z.a.Add(a1, a2) - z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) - return z.norm() -} - -// Sub sets z to the difference x-y and returns z. -func (z *Rat) Sub(x, y *Rat) *Rat { - a1 := scaleDenom(&x.a, y.b.abs) - a2 := scaleDenom(&y.a, x.b.abs) - z.a.Sub(a1, a2) - z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) - return z.norm() -} - -// Mul sets z to the product x*y and returns z. -func (z *Rat) Mul(x, y *Rat) *Rat { - z.a.Mul(&x.a, &y.a) - z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) - return z.norm() -} - -// Quo sets z to the quotient x/y and returns z. -// If y == 0, a division-by-zero run-time panic occurs. -func (z *Rat) Quo(x, y *Rat) *Rat { - if len(y.a.abs) == 0 { - panic("division by zero") - } - a := scaleDenom(&x.a, y.b.abs) - b := scaleDenom(&y.a, x.b.abs) - z.a.abs = a.abs - z.b.abs = b.abs - z.a.neg = a.neg != b.neg - return z.norm() -} - -func ratTok(ch rune) bool { - return strings.IndexRune("+-/0123456789.eE", ch) >= 0 -} - -// Scan is a support routine for fmt.Scanner. It accepts the formats -// 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent. -func (z *Rat) Scan(s fmt.ScanState, ch rune) error { - tok, err := s.Token(true, ratTok) - if err != nil { - return err - } - if strings.IndexRune("efgEFGv", ch) < 0 { - return errors.New("Rat.Scan: invalid verb") - } - if _, ok := z.SetString(string(tok)); !ok { - return errors.New("Rat.Scan: invalid syntax") - } - return nil -} - -// SetString sets z to the value of s and returns z and a boolean indicating -// success. s can be given as a fraction "a/b" or as a floating-point number -// optionally followed by an exponent. If the operation failed, the value of -// z is undefined but the returned value is nil. -func (z *Rat) SetString(s string) (*Rat, bool) { - if len(s) == 0 { - return nil, false - } - - // check for a quotient - sep := strings.Index(s, "/") - if sep >= 0 { - if _, ok := z.a.SetString(s[0:sep], 10); !ok { - return nil, false - } - s = s[sep+1:] - var err error - if z.b.abs, _, err = z.b.abs.scan(strings.NewReader(s), 10); err != nil { - return nil, false - } - return z.norm(), true - } - - // check for a decimal point - sep = strings.Index(s, ".") - // check for an exponent - e := strings.IndexAny(s, "eE") - var exp Int - if e >= 0 { - if e < sep { - // The E must come after the decimal point. - return nil, false - } - if _, ok := exp.SetString(s[e+1:], 10); !ok { - return nil, false - } - s = s[0:e] - } - if sep >= 0 { - s = s[0:sep] + s[sep+1:] - exp.Sub(&exp, NewInt(int64(len(s)-sep))) - } - - if _, ok := z.a.SetString(s, 10); !ok { - return nil, false - } - powTen := nat(nil).expNN(natTen, exp.abs, nil) - if exp.neg { - z.b.abs = powTen - z.norm() - } else { - z.a.abs = z.a.abs.mul(z.a.abs, powTen) - z.b.abs = z.b.abs.make(0) - } - - return z, true -} - -// String returns a string representation of x in the form "a/b" (even if b == 1). -func (x *Rat) String() string { - s := "/1" - if len(x.b.abs) != 0 { - s = "/" + x.b.abs.decimalString() - } - return x.a.String() + s -} - -// RatString returns a string representation of x in the form "a/b" if b != 1, -// and in the form "a" if b == 1. -func (x *Rat) RatString() string { - if x.IsInt() { - return x.a.String() - } - return x.String() -} - -// FloatString returns a string representation of x in decimal form with prec -// digits of precision after the decimal point and the last digit rounded. -func (x *Rat) FloatString(prec int) string { - if x.IsInt() { - s := x.a.String() - if prec > 0 { - s += "." + strings.Repeat("0", prec) - } - return s - } - // x.b.abs != 0 - - q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs) - - p := natOne - if prec > 0 { - p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil) - } - - r = r.mul(r, p) - r, r2 := r.div(nat(nil), r, x.b.abs) - - // see if we need to round up - r2 = r2.add(r2, r2) - if x.b.abs.cmp(r2) <= 0 { - r = r.add(r, natOne) - if r.cmp(p) >= 0 { - q = nat(nil).add(q, natOne) - r = nat(nil).sub(r, p) - } - } - - s := q.decimalString() - if x.a.neg { - s = "-" + s - } - - if prec > 0 { - rs := r.decimalString() - leadingZeros := prec - len(rs) - s += "." + strings.Repeat("0", leadingZeros) + rs - } - - return s -} - -// Gob codec version. Permits backward-compatible changes to the encoding. -const ratGobVersion byte = 1 - -// GobEncode implements the gob.GobEncoder interface. -func (x *Rat) GobEncode() ([]byte, error) { - if x == nil { - return nil, nil - } - buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b.abs))*_S) // extra bytes for version and sign bit (1), and numerator length (4) - i := x.b.abs.bytes(buf) - j := x.a.abs.bytes(buf[0:i]) - n := i - j - if int(uint32(n)) != n { - // this should never happen - return nil, errors.New("Rat.GobEncode: numerator too large") - } - binary.BigEndian.PutUint32(buf[j-4:j], uint32(n)) - j -= 1 + 4 - b := ratGobVersion << 1 // make space for sign bit - if x.a.neg { - b |= 1 - } - buf[j] = b - return buf[j:], nil -} - -// GobDecode implements the gob.GobDecoder interface. -func (z *Rat) GobDecode(buf []byte) error { - if len(buf) == 0 { - // Other side sent a nil or default value. - *z = Rat{} - return nil - } - b := buf[0] - if b>>1 != ratGobVersion { - return errors.New(fmt.Sprintf("Rat.GobDecode: encoding version %d not supported", b>>1)) - } - const j = 1 + 4 - i := j + binary.BigEndian.Uint32(buf[j-4:j]) - z.a.neg = b&1 != 0 - z.a.abs = z.a.abs.setBytes(buf[j:i]) - z.b.abs = z.b.abs.setBytes(buf[i:]) - return nil -} - -// MarshalText implements the encoding.TextMarshaler interface -func (r *Rat) MarshalText() (text []byte, err error) { - return []byte(r.RatString()), nil -} - -// UnmarshalText implements the encoding.TextUnmarshaler interface -func (r *Rat) UnmarshalText(text []byte) error { - if _, ok := r.SetString(string(text)); !ok { - return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Rat", text) - } - return nil -} diff --git a/src/pkg/math/big/rat_test.go b/src/pkg/math/big/rat_test.go deleted file mode 100644 index 598eac8cc..000000000 --- a/src/pkg/math/big/rat_test.go +++ /dev/null @@ -1,1159 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package big - -import ( - "bytes" - "encoding/gob" - "encoding/json" - "encoding/xml" - "fmt" - "math" - "strconv" - "strings" - "testing" -) - -func TestZeroRat(t *testing.T) { - var x, y, z Rat - y.SetFrac64(0, 42) - - if x.Cmp(&y) != 0 { - t.Errorf("x and y should be both equal and zero") - } - - if s := x.String(); s != "0/1" { - t.Errorf("got x = %s, want 0/1", s) - } - - if s := x.RatString(); s != "0" { - t.Errorf("got x = %s, want 0", s) - } - - z.Add(&x, &y) - if s := z.RatString(); s != "0" { - t.Errorf("got x+y = %s, want 0", s) - } - - z.Sub(&x, &y) - if s := z.RatString(); s != "0" { - t.Errorf("got x-y = %s, want 0", s) - } - - z.Mul(&x, &y) - if s := z.RatString(); s != "0" { - t.Errorf("got x*y = %s, want 0", s) - } - - // check for division by zero - defer func() { - if s := recover(); s == nil || s.(string) != "division by zero" { - panic(s) - } - }() - z.Quo(&x, &y) -} - -var setStringTests = []struct { - in, out string - ok bool -}{ - {"0", "0", true}, - {"-0", "0", true}, - {"1", "1", true}, - {"-1", "-1", true}, - {"1.", "1", true}, - {"1e0", "1", true}, - {"1.e1", "10", true}, - {in: "1e", ok: false}, - {in: "1.e", ok: false}, - {in: "1e+14e-5", ok: false}, - {in: "1e4.5", ok: false}, - {in: "r", ok: false}, - {in: "a/b", ok: false}, - {in: "a.b", ok: false}, - {"-0.1", "-1/10", true}, - {"-.1", "-1/10", true}, - {"2/4", "1/2", true}, - {".25", "1/4", true}, - {"-1/5", "-1/5", true}, - {"8129567.7690E14", "812956776900000000000", true}, - {"78189e+4", "781890000", true}, - {"553019.8935e+8", "55301989350000", true}, - {"98765432109876543210987654321e-10", "98765432109876543210987654321/10000000000", true}, - {"9877861857500000E-7", "3951144743/4", true}, - {"2169378.417e-3", "2169378417/1000000", true}, - {"884243222337379604041632732738665534", "884243222337379604041632732738665534", true}, - {"53/70893980658822810696", "53/70893980658822810696", true}, - {"106/141787961317645621392", "53/70893980658822810696", true}, - {"204211327800791583.81095", "4084226556015831676219/20000", true}, -} - -func TestRatSetString(t *testing.T) { - for i, test := range setStringTests { - x, ok := new(Rat).SetString(test.in) - - if ok { - if !test.ok { - t.Errorf("#%d SetString(%q) expected failure", i, test.in) - } else if x.RatString() != test.out { - t.Errorf("#%d SetString(%q) got %s want %s", i, test.in, x.RatString(), test.out) - } - } else if x != nil { - t.Errorf("#%d SetString(%q) got %p want nil", i, test.in, x) - } - } -} - -func TestRatScan(t *testing.T) { - var buf bytes.Buffer - for i, test := range setStringTests { - x := new(Rat) - buf.Reset() - buf.WriteString(test.in) - - _, err := fmt.Fscanf(&buf, "%v", x) - if err == nil != test.ok { - if test.ok { - t.Errorf("#%d error: %s", i, err) - } else { - t.Errorf("#%d expected error", i) - } - continue - } - if err == nil && x.RatString() != test.out { - t.Errorf("#%d got %s want %s", i, x.RatString(), test.out) - } - } -} - -var floatStringTests = []struct { - in string - prec int - out string -}{ - {"0", 0, "0"}, - {"0", 4, "0.0000"}, - {"1", 0, "1"}, - {"1", 2, "1.00"}, - {"-1", 0, "-1"}, - {".25", 2, "0.25"}, - {".25", 1, "0.3"}, - {".25", 3, "0.250"}, - {"-1/3", 3, "-0.333"}, - {"-2/3", 4, "-0.6667"}, - {"0.96", 1, "1.0"}, - {"0.999", 2, "1.00"}, - {"0.9", 0, "1"}, - {".25", -1, "0"}, - {".55", -1, "1"}, -} - -func TestFloatString(t *testing.T) { - for i, test := range floatStringTests { - x, _ := new(Rat).SetString(test.in) - - if x.FloatString(test.prec) != test.out { - t.Errorf("#%d got %s want %s", i, x.FloatString(test.prec), test.out) - } - } -} - -func TestRatSign(t *testing.T) { - zero := NewRat(0, 1) - for _, a := range setStringTests { - x, ok := new(Rat).SetString(a.in) - if !ok { - continue - } - s := x.Sign() - e := x.Cmp(zero) - if s != e { - t.Errorf("got %d; want %d for z = %v", s, e, &x) - } - } -} - -var ratCmpTests = []struct { - rat1, rat2 string - out int -}{ - {"0", "0/1", 0}, - {"1/1", "1", 0}, - {"-1", "-2/2", 0}, - {"1", "0", 1}, - {"0/1", "1/1", -1}, - {"-5/1434770811533343057144", "-5/1434770811533343057145", -1}, - {"49832350382626108453/8964749413", "49832350382626108454/8964749413", -1}, - {"-37414950961700930/7204075375675961", "37414950961700930/7204075375675961", -1}, - {"37414950961700930/7204075375675961", "74829901923401860/14408150751351922", 0}, -} - -func TestRatCmp(t *testing.T) { - for i, test := range ratCmpTests { - x, _ := new(Rat).SetString(test.rat1) - y, _ := new(Rat).SetString(test.rat2) - - out := x.Cmp(y) - if out != test.out { - t.Errorf("#%d got out = %v; want %v", i, out, test.out) - } - } -} - -func TestIsInt(t *testing.T) { - one := NewInt(1) - for _, a := range setStringTests { - x, ok := new(Rat).SetString(a.in) - if !ok { - continue - } - i := x.IsInt() - e := x.Denom().Cmp(one) == 0 - if i != e { - t.Errorf("got IsInt(%v) == %v; want %v", x, i, e) - } - } -} - -func TestRatAbs(t *testing.T) { - zero := new(Rat) - for _, a := range setStringTests { - x, ok := new(Rat).SetString(a.in) - if !ok { - continue - } - e := new(Rat).Set(x) - if e.Cmp(zero) < 0 { - e.Sub(zero, e) - } - z := new(Rat).Abs(x) - if z.Cmp(e) != 0 { - t.Errorf("got Abs(%v) = %v; want %v", x, z, e) - } - } -} - -func TestRatNeg(t *testing.T) { - zero := new(Rat) - for _, a := range setStringTests { - x, ok := new(Rat).SetString(a.in) - if !ok { - continue - } - e := new(Rat).Sub(zero, x) - z := new(Rat).Neg(x) - if z.Cmp(e) != 0 { - t.Errorf("got Neg(%v) = %v; want %v", x, z, e) - } - } -} - -func TestRatInv(t *testing.T) { - zero := new(Rat) - for _, a := range setStringTests { - x, ok := new(Rat).SetString(a.in) - if !ok { - continue - } - if x.Cmp(zero) == 0 { - continue // avoid division by zero - } - e := new(Rat).SetFrac(x.Denom(), x.Num()) - z := new(Rat).Inv(x) - if z.Cmp(e) != 0 { - t.Errorf("got Inv(%v) = %v; want %v", x, z, e) - } - } -} - -type ratBinFun func(z, x, y *Rat) *Rat -type ratBinArg struct { - x, y, z string -} - -func testRatBin(t *testing.T, i int, name string, f ratBinFun, a ratBinArg) { - x, _ := new(Rat).SetString(a.x) - y, _ := new(Rat).SetString(a.y) - z, _ := new(Rat).SetString(a.z) - out := f(new(Rat), x, y) - - if out.Cmp(z) != 0 { - t.Errorf("%s #%d got %s want %s", name, i, out, z) - } -} - -var ratBinTests = []struct { - x, y string - sum, prod string -}{ - {"0", "0", "0", "0"}, - {"0", "1", "1", "0"}, - {"-1", "0", "-1", "0"}, - {"-1", "1", "0", "-1"}, - {"1", "1", "2", "1"}, - {"1/2", "1/2", "1", "1/4"}, - {"1/4", "1/3", "7/12", "1/12"}, - {"2/5", "-14/3", "-64/15", "-28/15"}, - {"4707/49292519774798173060", "-3367/70976135186689855734", "84058377121001851123459/1749296273614329067191168098769082663020", "-1760941/388732505247628681598037355282018369560"}, - {"-61204110018146728334/3", "-31052192278051565633/2", "-215564796870448153567/6", "950260896245257153059642991192710872711/3"}, - {"-854857841473707320655/4237645934602118692642972629634714039", "-18/31750379913563777419", "-27/133467566250814981", "15387441146526731771790/134546868362786310073779084329032722548987800600710485341"}, - {"618575745270541348005638912139/19198433543745179392300736", "-19948846211000086/637313996471", "27674141753240653/30123979153216", "-6169936206128396568797607742807090270137721977/6117715203873571641674006593837351328"}, - {"-3/26206484091896184128", "5/2848423294177090248", "15310893822118706237/9330894968229805033368778458685147968", "-5/24882386581946146755650075889827061248"}, - {"26946729/330400702820", "41563965/225583428284", "1238218672302860271/4658307703098666660055", "224002580204097/14906584649915733312176"}, - {"-8259900599013409474/7", "-84829337473700364773/56707961321161574960", "-468402123685491748914621885145127724451/396955729248131024720", "350340947706464153265156004876107029701/198477864624065512360"}, - {"575775209696864/1320203974639986246357", "29/712593081308", "410331716733912717985762465/940768218243776489278275419794956", "808/45524274987585732633"}, - {"1786597389946320496771/2066653520653241", "6269770/1992362624741777", "3559549865190272133656109052308126637/4117523232840525481453983149257", "8967230/3296219033"}, - {"-36459180403360509753/32150500941194292113930", "9381566963714/9633539", "301622077145533298008420642898530153/309723104686531919656937098270", "-3784609207827/3426986245"}, -} - -func TestRatBin(t *testing.T) { - for i, test := range ratBinTests { - arg := ratBinArg{test.x, test.y, test.sum} - testRatBin(t, i, "Add", (*Rat).Add, arg) - - arg = ratBinArg{test.y, test.x, test.sum} - testRatBin(t, i, "Add symmetric", (*Rat).Add, arg) - - arg = ratBinArg{test.sum, test.x, test.y} - testRatBin(t, i, "Sub", (*Rat).Sub, arg) - - arg = ratBinArg{test.sum, test.y, test.x} - testRatBin(t, i, "Sub symmetric", (*Rat).Sub, arg) - - arg = ratBinArg{test.x, test.y, test.prod} - testRatBin(t, i, "Mul", (*Rat).Mul, arg) - - arg = ratBinArg{test.y, test.x, test.prod} - testRatBin(t, i, "Mul symmetric", (*Rat).Mul, arg) - - if test.x != "0" { - arg = ratBinArg{test.prod, test.x, test.y} - testRatBin(t, i, "Quo", (*Rat).Quo, arg) - } - - if test.y != "0" { - arg = ratBinArg{test.prod, test.y, test.x} - testRatBin(t, i, "Quo symmetric", (*Rat).Quo, arg) - } - } -} - -func TestIssue820(t *testing.T) { - x := NewRat(3, 1) - y := NewRat(2, 1) - z := y.Quo(x, y) - q := NewRat(3, 2) - if z.Cmp(q) != 0 { - t.Errorf("got %s want %s", z, q) - } - - y = NewRat(3, 1) - x = NewRat(2, 1) - z = y.Quo(x, y) - q = NewRat(2, 3) - if z.Cmp(q) != 0 { - t.Errorf("got %s want %s", z, q) - } - - x = NewRat(3, 1) - z = x.Quo(x, x) - q = NewRat(3, 3) - if z.Cmp(q) != 0 { - t.Errorf("got %s want %s", z, q) - } -} - -var setFrac64Tests = []struct { - a, b int64 - out string -}{ - {0, 1, "0"}, - {0, -1, "0"}, - {1, 1, "1"}, - {-1, 1, "-1"}, - {1, -1, "-1"}, - {-1, -1, "1"}, - {-9223372036854775808, -9223372036854775808, "1"}, -} - -func TestRatSetFrac64Rat(t *testing.T) { - for i, test := range setFrac64Tests { - x := new(Rat).SetFrac64(test.a, test.b) - if x.RatString() != test.out { - t.Errorf("#%d got %s want %s", i, x.RatString(), test.out) - } - } -} - -func TestRatGobEncoding(t *testing.T) { - var medium bytes.Buffer - enc := gob.NewEncoder(&medium) - dec := gob.NewDecoder(&medium) - for _, test := range encodingTests { - medium.Reset() // empty buffer for each test case (in case of failures) - var tx Rat - tx.SetString(test + ".14159265") - if err := enc.Encode(&tx); err != nil { - t.Errorf("encoding of %s failed: %s", &tx, err) - } - var rx Rat - if err := dec.Decode(&rx); err != nil { - t.Errorf("decoding of %s failed: %s", &tx, err) - } - if rx.Cmp(&tx) != 0 { - t.Errorf("transmission of %s failed: got %s want %s", &tx, &rx, &tx) - } - } -} - -// Sending a nil Rat pointer (inside a slice) on a round trip through gob should yield a zero. -// TODO: top-level nils. -func TestGobEncodingNilRatInSlice(t *testing.T) { - buf := new(bytes.Buffer) - enc := gob.NewEncoder(buf) - dec := gob.NewDecoder(buf) - - var in = make([]*Rat, 1) - err := enc.Encode(&in) - if err != nil { - t.Errorf("gob encode failed: %q", err) - } - var out []*Rat - err = dec.Decode(&out) - if err != nil { - t.Fatalf("gob decode failed: %q", err) - } - if len(out) != 1 { - t.Fatalf("wrong len; want 1 got %d", len(out)) - } - var zero Rat - if out[0].Cmp(&zero) != 0 { - t.Errorf("transmission of (*Int)(nill) failed: got %s want 0", out) - } -} - -var ratNums = []string{ - "-141592653589793238462643383279502884197169399375105820974944592307816406286", - "-1415926535897932384626433832795028841971", - "-141592653589793", - "-1", - "0", - "1", - "141592653589793", - "1415926535897932384626433832795028841971", - "141592653589793238462643383279502884197169399375105820974944592307816406286", -} - -var ratDenoms = []string{ - "1", - "718281828459045", - "7182818284590452353602874713526624977572", - "718281828459045235360287471352662497757247093699959574966967627724076630353", -} - -func TestRatJSONEncoding(t *testing.T) { - for _, num := range ratNums { - for _, denom := range ratDenoms { - var tx Rat - tx.SetString(num + "/" + denom) - b, err := json.Marshal(&tx) - if err != nil { - t.Errorf("marshaling of %s failed: %s", &tx, err) - continue - } - var rx Rat - if err := json.Unmarshal(b, &rx); err != nil { - t.Errorf("unmarshaling of %s failed: %s", &tx, err) - continue - } - if rx.Cmp(&tx) != 0 { - t.Errorf("JSON encoding of %s failed: got %s want %s", &tx, &rx, &tx) - } - } - } -} - -func TestRatXMLEncoding(t *testing.T) { - for _, num := range ratNums { - for _, denom := range ratDenoms { - var tx Rat - tx.SetString(num + "/" + denom) - b, err := xml.Marshal(&tx) - if err != nil { - t.Errorf("marshaling of %s failed: %s", &tx, err) - continue - } - var rx Rat - if err := xml.Unmarshal(b, &rx); err != nil { - t.Errorf("unmarshaling of %s failed: %s", &tx, err) - continue - } - if rx.Cmp(&tx) != 0 { - t.Errorf("XML encoding of %s failed: got %s want %s", &tx, &rx, &tx) - } - } - } -} - -func TestIssue2379(t *testing.T) { - // 1) no aliasing - q := NewRat(3, 2) - x := new(Rat) - x.SetFrac(NewInt(3), NewInt(2)) - if x.Cmp(q) != 0 { - t.Errorf("1) got %s want %s", x, q) - } - - // 2) aliasing of numerator - x = NewRat(2, 3) - x.SetFrac(NewInt(3), x.Num()) - if x.Cmp(q) != 0 { - t.Errorf("2) got %s want %s", x, q) - } - - // 3) aliasing of denominator - x = NewRat(2, 3) - x.SetFrac(x.Denom(), NewInt(2)) - if x.Cmp(q) != 0 { - t.Errorf("3) got %s want %s", x, q) - } - - // 4) aliasing of numerator and denominator - x = NewRat(2, 3) - x.SetFrac(x.Denom(), x.Num()) - if x.Cmp(q) != 0 { - t.Errorf("4) got %s want %s", x, q) - } - - // 5) numerator and denominator are the same - q = NewRat(1, 1) - x = new(Rat) - n := NewInt(7) - x.SetFrac(n, n) - if x.Cmp(q) != 0 { - t.Errorf("5) got %s want %s", x, q) - } -} - -func TestIssue3521(t *testing.T) { - a := new(Int) - b := new(Int) - a.SetString("64375784358435883458348587", 0) - b.SetString("4789759874531", 0) - - // 0) a raw zero value has 1 as denominator - zero := new(Rat) - one := NewInt(1) - if zero.Denom().Cmp(one) != 0 { - t.Errorf("0) got %s want %s", zero.Denom(), one) - } - - // 1a) a zero value remains zero independent of denominator - x := new(Rat) - x.Denom().Set(new(Int).Neg(b)) - if x.Cmp(zero) != 0 { - t.Errorf("1a) got %s want %s", x, zero) - } - - // 1b) a zero value may have a denominator != 0 and != 1 - x.Num().Set(a) - qab := new(Rat).SetFrac(a, b) - if x.Cmp(qab) != 0 { - t.Errorf("1b) got %s want %s", x, qab) - } - - // 2a) an integral value becomes a fraction depending on denominator - x.SetFrac64(10, 2) - x.Denom().SetInt64(3) - q53 := NewRat(5, 3) - if x.Cmp(q53) != 0 { - t.Errorf("2a) got %s want %s", x, q53) - } - - // 2b) an integral value becomes a fraction depending on denominator - x = NewRat(10, 2) - x.Denom().SetInt64(3) - if x.Cmp(q53) != 0 { - t.Errorf("2b) got %s want %s", x, q53) - } - - // 3) changing the numerator/denominator of a Rat changes the Rat - x.SetFrac(a, b) - a = x.Num() - b = x.Denom() - a.SetInt64(5) - b.SetInt64(3) - if x.Cmp(q53) != 0 { - t.Errorf("3) got %s want %s", x, q53) - } -} - -// Test inputs to Rat.SetString. The prefix "long:" causes the test -// to be skipped in --test.short mode. (The threshold is about 500us.) -var float64inputs = []string{ - // Constants plundered from strconv/testfp.txt. - - // Table 1: Stress Inputs for Conversion to 53-bit Binary, < 1/2 ULP - "5e+125", - "69e+267", - "999e-026", - "7861e-034", - "75569e-254", - "928609e-261", - "9210917e+080", - "84863171e+114", - "653777767e+273", - "5232604057e-298", - "27235667517e-109", - "653532977297e-123", - "3142213164987e-294", - "46202199371337e-072", - "231010996856685e-073", - "9324754620109615e+212", - "78459735791271921e+049", - "272104041512242479e+200", - "6802601037806061975e+198", - "20505426358836677347e-221", - "836168422905420598437e-234", - "4891559871276714924261e+222", - - // Table 2: Stress Inputs for Conversion to 53-bit Binary, > 1/2 ULP - "9e-265", - "85e-037", - "623e+100", - "3571e+263", - "81661e+153", - "920657e-023", - "4603285e-024", - "87575437e-309", - "245540327e+122", - "6138508175e+120", - "83356057653e+193", - "619534293513e+124", - "2335141086879e+218", - "36167929443327e-159", - "609610927149051e-255", - "3743626360493413e-165", - "94080055902682397e-242", - "899810892172646163e+283", - "7120190517612959703e+120", - "25188282901709339043e-252", - "308984926168550152811e-052", - "6372891218502368041059e+064", - - // Table 14: Stress Inputs for Conversion to 24-bit Binary, <1/2 ULP - "5e-20", - "67e+14", - "985e+15", - "7693e-42", - "55895e-16", - "996622e-44", - "7038531e-32", - "60419369e-46", - "702990899e-20", - "6930161142e-48", - "25933168707e+13", - "596428896559e+20", - - // Table 15: Stress Inputs for Conversion to 24-bit Binary, >1/2 ULP - "3e-23", - "57e+18", - "789e-35", - "2539e-18", - "76173e+28", - "887745e-11", - "5382571e-37", - "82381273e-35", - "750486563e-38", - "3752432815e-39", - "75224575729e-45", - "459926601011e+15", - - // Constants plundered from strconv/atof_test.go. - - "0", - "1", - "+1", - "1e23", - "1E23", - "100000000000000000000000", - "1e-100", - "123456700", - "99999999999999974834176", - "100000000000000000000001", - "100000000000000008388608", - "100000000000000016777215", - "100000000000000016777216", - "-1", - "-0.1", - "-0", // NB: exception made for this input - "1e-20", - "625e-3", - - // largest float64 - "1.7976931348623157e308", - "-1.7976931348623157e308", - // next float64 - too large - "1.7976931348623159e308", - "-1.7976931348623159e308", - // the border is ...158079 - // borderline - okay - "1.7976931348623158e308", - "-1.7976931348623158e308", - // borderline - too large - "1.797693134862315808e308", - "-1.797693134862315808e308", - - // a little too large - "1e308", - "2e308", - "1e309", - - // way too large - "1e310", - "-1e310", - "1e400", - "-1e400", - "long:1e400000", - "long:-1e400000", - - // denormalized - "1e-305", - "1e-306", - "1e-307", - "1e-308", - "1e-309", - "1e-310", - "1e-322", - // smallest denormal - "5e-324", - "4e-324", - "3e-324", - // too small - "2e-324", - // way too small - "1e-350", - "long:1e-400000", - // way too small, negative - "-1e-350", - "long:-1e-400000", - - // try to overflow exponent - // [Disabled: too slow and memory-hungry with rationals.] - // "1e-4294967296", - // "1e+4294967296", - // "1e-18446744073709551616", - // "1e+18446744073709551616", - - // http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/ - "2.2250738585072012e-308", - // http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/ - "2.2250738585072011e-308", - - // A very large number (initially wrongly parsed by the fast algorithm). - "4.630813248087435e+307", - - // A different kind of very large number. - "22.222222222222222", - "long:2." + strings.Repeat("2", 4000) + "e+1", - - // Exactly halfway between 1 and math.Nextafter(1, 2). - // Round to even (down). - "1.00000000000000011102230246251565404236316680908203125", - // Slightly lower; still round down. - "1.00000000000000011102230246251565404236316680908203124", - // Slightly higher; round up. - "1.00000000000000011102230246251565404236316680908203126", - // Slightly higher, but you have to read all the way to the end. - "long:1.00000000000000011102230246251565404236316680908203125" + strings.Repeat("0", 10000) + "1", - - // Smallest denormal, 2^(-1022-52) - "4.940656458412465441765687928682213723651e-324", - // Half of smallest denormal, 2^(-1022-53) - "2.470328229206232720882843964341106861825e-324", - // A little more than the exact half of smallest denormal - // 2^-1075 + 2^-1100. (Rounds to 1p-1074.) - "2.470328302827751011111470718709768633275e-324", - // The exact halfway between smallest normal and largest denormal: - // 2^-1022 - 2^-1075. (Rounds to 2^-1022.) - "2.225073858507201136057409796709131975935e-308", - - "1152921504606846975", // 1<<60 - 1 - "-1152921504606846975", // -(1<<60 - 1) - "1152921504606846977", // 1<<60 + 1 - "-1152921504606846977", // -(1<<60 + 1) - - "1/3", -} - -// isFinite reports whether f represents a finite rational value. -// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0). -func isFinite(f float64) bool { - return math.Abs(f) <= math.MaxFloat64 -} - -func TestFloat32SpecialCases(t *testing.T) { - for _, input := range float64inputs { - if strings.HasPrefix(input, "long:") { - if testing.Short() { - continue - } - input = input[len("long:"):] - } - - r, ok := new(Rat).SetString(input) - if !ok { - t.Errorf("Rat.SetString(%q) failed", input) - continue - } - f, exact := r.Float32() - - // 1. Check string -> Rat -> float32 conversions are - // consistent with strconv.ParseFloat. - // Skip this check if the input uses "a/b" rational syntax. - if !strings.Contains(input, "/") { - e64, _ := strconv.ParseFloat(input, 32) - e := float32(e64) - - // Careful: negative Rats too small for - // float64 become -0, but Rat obviously cannot - // preserve the sign from SetString("-0"). - switch { - case math.Float32bits(e) == math.Float32bits(f): - // Ok: bitwise equal. - case f == 0 && r.Num().BitLen() == 0: - // Ok: Rat(0) is equivalent to both +/- float64(0). - default: - t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e) - } - } - - if !isFinite(float64(f)) { - continue - } - - // 2. Check f is best approximation to r. - if !checkIsBestApprox32(t, f, r) { - // Append context information. - t.Errorf("(input was %q)", input) - } - - // 3. Check f->R->f roundtrip is non-lossy. - checkNonLossyRoundtrip32(t, f) - - // 4. Check exactness using slow algorithm. - if wasExact := new(Rat).SetFloat64(float64(f)).Cmp(r) == 0; wasExact != exact { - t.Errorf("Rat.SetString(%q).Float32().exact = %t, want %t", input, exact, wasExact) - } - } -} - -func TestFloat64SpecialCases(t *testing.T) { - for _, input := range float64inputs { - if strings.HasPrefix(input, "long:") { - if testing.Short() { - continue - } - input = input[len("long:"):] - } - - r, ok := new(Rat).SetString(input) - if !ok { - t.Errorf("Rat.SetString(%q) failed", input) - continue - } - f, exact := r.Float64() - - // 1. Check string -> Rat -> float64 conversions are - // consistent with strconv.ParseFloat. - // Skip this check if the input uses "a/b" rational syntax. - if !strings.Contains(input, "/") { - e, _ := strconv.ParseFloat(input, 64) - - // Careful: negative Rats too small for - // float64 become -0, but Rat obviously cannot - // preserve the sign from SetString("-0"). - switch { - case math.Float64bits(e) == math.Float64bits(f): - // Ok: bitwise equal. - case f == 0 && r.Num().BitLen() == 0: - // Ok: Rat(0) is equivalent to both +/- float64(0). - default: - t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e) - } - } - - if !isFinite(f) { - continue - } - - // 2. Check f is best approximation to r. - if !checkIsBestApprox64(t, f, r) { - // Append context information. - t.Errorf("(input was %q)", input) - } - - // 3. Check f->R->f roundtrip is non-lossy. - checkNonLossyRoundtrip64(t, f) - - // 4. Check exactness using slow algorithm. - if wasExact := new(Rat).SetFloat64(f).Cmp(r) == 0; wasExact != exact { - t.Errorf("Rat.SetString(%q).Float64().exact = %t, want %t", input, exact, wasExact) - } - } -} - -func TestFloat32Distribution(t *testing.T) { - // Generate a distribution of (sign, mantissa, exp) values - // broader than the float32 range, and check Rat.Float32() - // always picks the closest float32 approximation. - var add = []int64{ - 0, - 1, - 3, - 5, - 7, - 9, - 11, - } - var winc, einc = uint64(1), 1 // soak test (~1.5s on x86-64) - if testing.Short() { - winc, einc = 5, 15 // quick test (~60ms on x86-64) - } - - for _, sign := range "+-" { - for _, a := range add { - for wid := uint64(0); wid < 30; wid += winc { - b := 1<<wid + a - if sign == '-' { - b = -b - } - for exp := -150; exp < 150; exp += einc { - num, den := NewInt(b), NewInt(1) - if exp > 0 { - num.Lsh(num, uint(exp)) - } else { - den.Lsh(den, uint(-exp)) - } - r := new(Rat).SetFrac(num, den) - f, _ := r.Float32() - - if !checkIsBestApprox32(t, f, r) { - // Append context information. - t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)", - b, exp, f, f, math.Ldexp(float64(b), exp), r) - } - - checkNonLossyRoundtrip32(t, f) - } - } - } - } -} - -func TestFloat64Distribution(t *testing.T) { - // Generate a distribution of (sign, mantissa, exp) values - // broader than the float64 range, and check Rat.Float64() - // always picks the closest float64 approximation. - var add = []int64{ - 0, - 1, - 3, - 5, - 7, - 9, - 11, - } - var winc, einc = uint64(1), 1 // soak test (~75s on x86-64) - if testing.Short() { - winc, einc = 10, 500 // quick test (~12ms on x86-64) - } - - for _, sign := range "+-" { - for _, a := range add { - for wid := uint64(0); wid < 60; wid += winc { - b := 1<<wid + a - if sign == '-' { - b = -b - } - for exp := -1100; exp < 1100; exp += einc { - num, den := NewInt(b), NewInt(1) - if exp > 0 { - num.Lsh(num, uint(exp)) - } else { - den.Lsh(den, uint(-exp)) - } - r := new(Rat).SetFrac(num, den) - f, _ := r.Float64() - - if !checkIsBestApprox64(t, f, r) { - // Append context information. - t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)", - b, exp, f, f, math.Ldexp(float64(b), exp), r) - } - - checkNonLossyRoundtrip64(t, f) - } - } - } - } -} - -// TestSetFloat64NonFinite checks that SetFloat64 of a non-finite value -// returns nil. -func TestSetFloat64NonFinite(t *testing.T) { - for _, f := range []float64{math.NaN(), math.Inf(+1), math.Inf(-1)} { - var r Rat - if r2 := r.SetFloat64(f); r2 != nil { - t.Errorf("SetFloat64(%g) was %v, want nil", f, r2) - } - } -} - -// checkNonLossyRoundtrip32 checks that a float->Rat->float roundtrip is -// non-lossy for finite f. -func checkNonLossyRoundtrip32(t *testing.T, f float32) { - if !isFinite(float64(f)) { - return - } - r := new(Rat).SetFloat64(float64(f)) - if r == nil { - t.Errorf("Rat.SetFloat64(float64(%g) (%b)) == nil", f, f) - return - } - f2, exact := r.Float32() - if f != f2 || !exact { - t.Errorf("Rat.SetFloat64(float64(%g)).Float32() = %g (%b), %v, want %g (%b), %v; delta = %b", - f, f2, f2, exact, f, f, true, f2-f) - } -} - -// checkNonLossyRoundtrip64 checks that a float->Rat->float roundtrip is -// non-lossy for finite f. -func checkNonLossyRoundtrip64(t *testing.T, f float64) { - if !isFinite(f) { - return - } - r := new(Rat).SetFloat64(f) - if r == nil { - t.Errorf("Rat.SetFloat64(%g (%b)) == nil", f, f) - return - } - f2, exact := r.Float64() - if f != f2 || !exact { - t.Errorf("Rat.SetFloat64(%g).Float64() = %g (%b), %v, want %g (%b), %v; delta = %b", - f, f2, f2, exact, f, f, true, f2-f) - } -} - -// delta returns the absolute difference between r and f. -func delta(r *Rat, f float64) *Rat { - d := new(Rat).Sub(r, new(Rat).SetFloat64(f)) - return d.Abs(d) -} - -// checkIsBestApprox32 checks that f is the best possible float32 -// approximation of r. -// Returns true on success. -func checkIsBestApprox32(t *testing.T, f float32, r *Rat) bool { - if math.Abs(float64(f)) >= math.MaxFloat32 { - // Cannot check +Inf, -Inf, nor the float next to them (MaxFloat32). - // But we have tests for these special cases. - return true - } - - // r must be strictly between f0 and f1, the floats bracketing f. - f0 := math.Nextafter32(f, float32(math.Inf(-1))) - f1 := math.Nextafter32(f, float32(math.Inf(+1))) - - // For f to be correct, r must be closer to f than to f0 or f1. - df := delta(r, float64(f)) - df0 := delta(r, float64(f0)) - df1 := delta(r, float64(f1)) - if df.Cmp(df0) > 0 { - t.Errorf("Rat(%v).Float32() = %g (%b), but previous float32 %g (%b) is closer", r, f, f, f0, f0) - return false - } - if df.Cmp(df1) > 0 { - t.Errorf("Rat(%v).Float32() = %g (%b), but next float32 %g (%b) is closer", r, f, f, f1, f1) - return false - } - if df.Cmp(df0) == 0 && !isEven32(f) { - t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0) - return false - } - if df.Cmp(df1) == 0 && !isEven32(f) { - t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1) - return false - } - return true -} - -// checkIsBestApprox64 checks that f is the best possible float64 -// approximation of r. -// Returns true on success. -func checkIsBestApprox64(t *testing.T, f float64, r *Rat) bool { - if math.Abs(f) >= math.MaxFloat64 { - // Cannot check +Inf, -Inf, nor the float next to them (MaxFloat64). - // But we have tests for these special cases. - return true - } - - // r must be strictly between f0 and f1, the floats bracketing f. - f0 := math.Nextafter(f, math.Inf(-1)) - f1 := math.Nextafter(f, math.Inf(+1)) - - // For f to be correct, r must be closer to f than to f0 or f1. - df := delta(r, f) - df0 := delta(r, f0) - df1 := delta(r, f1) - if df.Cmp(df0) > 0 { - t.Errorf("Rat(%v).Float64() = %g (%b), but previous float64 %g (%b) is closer", r, f, f, f0, f0) - return false - } - if df.Cmp(df1) > 0 { - t.Errorf("Rat(%v).Float64() = %g (%b), but next float64 %g (%b) is closer", r, f, f, f1, f1) - return false - } - if df.Cmp(df0) == 0 && !isEven64(f) { - t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0) - return false - } - if df.Cmp(df1) == 0 && !isEven64(f) { - t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1) - return false - } - return true -} - -func isEven32(f float32) bool { return math.Float32bits(f)&1 == 0 } -func isEven64(f float64) bool { return math.Float64bits(f)&1 == 0 } - -func TestIsFinite(t *testing.T) { - finites := []float64{ - 1.0 / 3, - 4891559871276714924261e+222, - math.MaxFloat64, - math.SmallestNonzeroFloat64, - -math.MaxFloat64, - -math.SmallestNonzeroFloat64, - } - for _, f := range finites { - if !isFinite(f) { - t.Errorf("!IsFinite(%g (%b))", f, f) - } - } - nonfinites := []float64{ - math.NaN(), - math.Inf(-1), - math.Inf(+1), - } - for _, f := range nonfinites { - if isFinite(f) { - t.Errorf("IsFinite(%g, (%b))", f, f) - } - } -} diff --git a/src/pkg/math/bits.go b/src/pkg/math/bits.go deleted file mode 100644 index d85ee9cb1..000000000 --- a/src/pkg/math/bits.go +++ /dev/null @@ -1,59 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -const ( - uvnan = 0x7FF8000000000001 - uvinf = 0x7FF0000000000000 - uvneginf = 0xFFF0000000000000 - mask = 0x7FF - shift = 64 - 11 - 1 - bias = 1023 -) - -// Inf returns positive infinity if sign >= 0, negative infinity if sign < 0. -func Inf(sign int) float64 { - var v uint64 - if sign >= 0 { - v = uvinf - } else { - v = uvneginf - } - return Float64frombits(v) -} - -// NaN returns an IEEE 754 ``not-a-number'' value. -func NaN() float64 { return Float64frombits(uvnan) } - -// IsNaN reports whether f is an IEEE 754 ``not-a-number'' value. -func IsNaN(f float64) (is bool) { - // IEEE 754 says that only NaNs satisfy f != f. - // To avoid the floating-point hardware, could use: - // x := Float64bits(f); - // return uint32(x>>shift)&mask == mask && x != uvinf && x != uvneginf - return f != f -} - -// IsInf reports whether f is an infinity, according to sign. -// If sign > 0, IsInf reports whether f is positive infinity. -// If sign < 0, IsInf reports whether f is negative infinity. -// If sign == 0, IsInf reports whether f is either infinity. -func IsInf(f float64, sign int) bool { - // Test for infinity by comparing against maximum float. - // To avoid the floating-point hardware, could use: - // x := Float64bits(f); - // return sign >= 0 && x == uvinf || sign <= 0 && x == uvneginf; - return sign >= 0 && f > MaxFloat64 || sign <= 0 && f < -MaxFloat64 -} - -// normalize returns a normal number y and exponent exp -// satisfying x == y × 2**exp. It assumes x is finite and non-zero. -func normalize(x float64) (y float64, exp int) { - const SmallestNormal = 2.2250738585072014e-308 // 2**-1022 - if Abs(x) < SmallestNormal { - return x * (1 << 52), -52 - } - return x, 0 -} diff --git a/src/pkg/math/cbrt.go b/src/pkg/math/cbrt.go deleted file mode 100644 index 272e30923..000000000 --- a/src/pkg/math/cbrt.go +++ /dev/null @@ -1,76 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -/* - The algorithm is based in part on "Optimal Partitioning of - Newton's Method for Calculating Roots", by Gunter Meinardus - and G. D. Taylor, Mathematics of Computation © 1980 American - Mathematical Society. - (http://www.jstor.org/stable/2006387?seq=9, accessed 11-Feb-2010) -*/ - -// Cbrt returns the cube root of x. -// -// Special cases are: -// Cbrt(±0) = ±0 -// Cbrt(±Inf) = ±Inf -// Cbrt(NaN) = NaN -func Cbrt(x float64) float64 { - const ( - A1 = 1.662848358e-01 - A2 = 1.096040958e+00 - A3 = 4.105032829e-01 - A4 = 5.649335816e-01 - B1 = 2.639607233e-01 - B2 = 8.699282849e-01 - B3 = 1.629083358e-01 - B4 = 2.824667908e-01 - C1 = 4.190115298e-01 - C2 = 6.904625373e-01 - C3 = 6.46502159e-02 - C4 = 1.412333954e-01 - ) - // special cases - switch { - case x == 0 || IsNaN(x) || IsInf(x, 0): - return x - } - sign := false - if x < 0 { - x = -x - sign = true - } - // Reduce argument and estimate cube root - f, e := Frexp(x) // 0.5 <= f < 1.0 - m := e % 3 - if m > 0 { - m -= 3 - e -= m // e is multiple of 3 - } - switch m { - case 0: // 0.5 <= f < 1.0 - f = A1*f + A2 - A3/(A4+f) - case -1: - f *= 0.5 // 0.25 <= f < 0.5 - f = B1*f + B2 - B3/(B4+f) - default: // m == -2 - f *= 0.25 // 0.125 <= f < 0.25 - f = C1*f + C2 - C3/(C4+f) - } - y := Ldexp(f, e/3) // e/3 = exponent of cube root - - // Iterate - s := y * y * y - t := s + x - y *= (t + x) / (s + t) - // Reiterate - s = (y*y*y - x) / x - y -= y * (((14.0/81.0)*s-(2.0/9.0))*s + (1.0 / 3.0)) * s - if sign { - y = -y - } - return y -} diff --git a/src/pkg/math/cmplx/abs.go b/src/pkg/math/cmplx/abs.go deleted file mode 100644 index f3cd1073e..000000000 --- a/src/pkg/math/cmplx/abs.go +++ /dev/null @@ -1,12 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package cmplx provides basic constants and mathematical functions for -// complex numbers. -package cmplx - -import "math" - -// Abs returns the absolute value (also called the modulus) of x. -func Abs(x complex128) float64 { return math.Hypot(real(x), imag(x)) } diff --git a/src/pkg/math/cmplx/asin.go b/src/pkg/math/cmplx/asin.go deleted file mode 100644 index 61880a257..000000000 --- a/src/pkg/math/cmplx/asin.go +++ /dev/null @@ -1,170 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cmplx - -import "math" - -// The original C code, the long comment, and the constants -// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. -// The go code is a simplified version of the original C. -// -// Cephes Math Library Release 2.8: June, 2000 -// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier -// -// The readme file at http://netlib.sandia.gov/cephes/ says: -// Some software in this archive may be from the book _Methods and -// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster -// International, 1989) or from the Cephes Mathematical Library, a -// commercial product. In either event, it is copyrighted by the author. -// What you see here may be used freely but it comes with no support or -// guarantee. -// -// The two known misprints in the book are repaired here in the -// source listings for the gamma function and the incomplete beta -// integral. -// -// Stephen L. Moshier -// moshier@na-net.ornl.gov - -// Complex circular arc sine -// -// DESCRIPTION: -// -// Inverse complex sine: -// 2 -// w = -i clog( iz + csqrt( 1 - z ) ). -// -// casin(z) = -i casinh(iz) -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// DEC -10,+10 10100 2.1e-15 3.4e-16 -// IEEE -10,+10 30000 2.2e-14 2.7e-15 -// Larger relative error can be observed for z near zero. -// Also tested by csin(casin(z)) = z. - -// Asin returns the inverse sine of x. -func Asin(x complex128) complex128 { - if imag(x) == 0 { - if math.Abs(real(x)) > 1 { - return complex(math.Pi/2, 0) // DOMAIN error - } - return complex(math.Asin(real(x)), 0) - } - ct := complex(-imag(x), real(x)) // i * x - xx := x * x - x1 := complex(1-real(xx), -imag(xx)) // 1 - x*x - x2 := Sqrt(x1) // x2 = sqrt(1 - x*x) - w := Log(ct + x2) - return complex(imag(w), -real(w)) // -i * w -} - -// Asinh returns the inverse hyperbolic sine of x. -func Asinh(x complex128) complex128 { - // TODO check range - if imag(x) == 0 { - if math.Abs(real(x)) > 1 { - return complex(math.Pi/2, 0) // DOMAIN error - } - return complex(math.Asinh(real(x)), 0) - } - xx := x * x - x1 := complex(1+real(xx), imag(xx)) // 1 + x*x - return Log(x + Sqrt(x1)) // log(x + sqrt(1 + x*x)) -} - -// Complex circular arc cosine -// -// DESCRIPTION: -// -// w = arccos z = PI/2 - arcsin z. -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// DEC -10,+10 5200 1.6e-15 2.8e-16 -// IEEE -10,+10 30000 1.8e-14 2.2e-15 - -// Acos returns the inverse cosine of x. -func Acos(x complex128) complex128 { - w := Asin(x) - return complex(math.Pi/2-real(w), -imag(w)) -} - -// Acosh returns the inverse hyperbolic cosine of x. -func Acosh(x complex128) complex128 { - w := Acos(x) - if imag(w) <= 0 { - return complex(-imag(w), real(w)) // i * w - } - return complex(imag(w), -real(w)) // -i * w -} - -// Complex circular arc tangent -// -// DESCRIPTION: -// -// If -// z = x + iy, -// -// then -// 1 ( 2x ) -// Re w = - arctan(-----------) + k PI -// 2 ( 2 2) -// (1 - x - y ) -// -// ( 2 2) -// 1 (x + (y+1) ) -// Im w = - log(------------) -// 4 ( 2 2) -// (x + (y-1) ) -// -// Where k is an arbitrary integer. -// -// catan(z) = -i catanh(iz). -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// DEC -10,+10 5900 1.3e-16 7.8e-18 -// IEEE -10,+10 30000 2.3e-15 8.5e-17 -// The check catan( ctan(z) ) = z, with |x| and |y| < PI/2, -// had peak relative error 1.5e-16, rms relative error -// 2.9e-17. See also clog(). - -// Atan returns the inverse tangent of x. -func Atan(x complex128) complex128 { - if real(x) == 0 && imag(x) > 1 { - return NaN() - } - - x2 := real(x) * real(x) - a := 1 - x2 - imag(x)*imag(x) - if a == 0 { - return NaN() - } - t := 0.5 * math.Atan2(2*real(x), a) - w := reducePi(t) - - t = imag(x) - 1 - b := x2 + t*t - if b == 0 { - return NaN() - } - t = imag(x) + 1 - c := (x2 + t*t) / b - return complex(w, 0.25*math.Log(c)) -} - -// Atanh returns the inverse hyperbolic tangent of x. -func Atanh(x complex128) complex128 { - z := complex(-imag(x), real(x)) // z = i * x - z = Atan(z) - return complex(imag(z), -real(z)) // z = -i * z -} diff --git a/src/pkg/math/cmplx/cmath_test.go b/src/pkg/math/cmplx/cmath_test.go deleted file mode 100644 index f285646af..000000000 --- a/src/pkg/math/cmplx/cmath_test.go +++ /dev/null @@ -1,866 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cmplx - -import ( - "math" - "testing" -) - -var vc26 = []complex128{ - (4.97901192488367350108546816 + 7.73887247457810456552351752i), - (7.73887247457810456552351752 - 0.27688005719200159404635997i), - (-0.27688005719200159404635997 - 5.01060361827107492160848778i), - (-5.01060361827107492160848778 + 9.63629370719841737980004837i), - (9.63629370719841737980004837 + 2.92637723924396464525443662i), - (2.92637723924396464525443662 + 5.22908343145930665230025625i), - (5.22908343145930665230025625 + 2.72793991043601025126008608i), - (2.72793991043601025126008608 + 1.82530809168085506044576505i), - (1.82530809168085506044576505 - 8.68592476857560136238589621i), - (-8.68592476857560136238589621 + 4.97901192488367350108546816i), -} -var vc = []complex128{ - (4.9790119248836735e+00 + 7.7388724745781045e+00i), - (7.7388724745781045e+00 - 2.7688005719200159e-01i), - (-2.7688005719200159e-01 - 5.0106036182710749e+00i), - (-5.0106036182710749e+00 + 9.6362937071984173e+00i), - (9.6362937071984173e+00 + 2.9263772392439646e+00i), - (2.9263772392439646e+00 + 5.2290834314593066e+00i), - (5.2290834314593066e+00 + 2.7279399104360102e+00i), - (2.7279399104360102e+00 + 1.8253080916808550e+00i), - (1.8253080916808550e+00 - 8.6859247685756013e+00i), - (-8.6859247685756013e+00 + 4.9790119248836735e+00i), -} - -// The expected results below were computed by the high precision calculators -// at http://keisan.casio.com/. More exact input values (array vc[], above) -// were obtained by printing them with "%.26f". The answers were calculated -// to 26 digits (by using the "Digit number" drop-down control of each -// calculator). - -var abs = []float64{ - 9.2022120669932650313380972e+00, - 7.7438239742296106616261394e+00, - 5.0182478202557746902556648e+00, - 1.0861137372799545160704002e+01, - 1.0070841084922199607011905e+01, - 5.9922447613166942183705192e+00, - 5.8978784056736762299945176e+00, - 3.2822866700678709020367184e+00, - 8.8756430028990417290744307e+00, - 1.0011785496777731986390856e+01, -} - -var acos = []complex128{ - (1.0017679804707456328694569 - 2.9138232718554953784519807i), - (0.03606427612041407369636057 + 2.7358584434576260925091256i), - (1.6249365462333796703711823 + 2.3159537454335901187730929i), - (2.0485650849650740120660391 - 3.0795576791204117911123886i), - (0.29621132089073067282488147 - 3.0007392508200622519398814i), - (1.0664555914934156601503632 - 2.4872865024796011364747111i), - (0.48681307452231387690013905 - 2.463655912283054555225301i), - (0.6116977071277574248407752 - 1.8734458851737055262693056i), - (1.3649311280370181331184214 + 2.8793528632328795424123832i), - (2.6189310485682988308904501 - 2.9956543302898767795858704i), -} -var acosh = []complex128{ - (2.9138232718554953784519807 + 1.0017679804707456328694569i), - (2.7358584434576260925091256 - 0.03606427612041407369636057i), - (2.3159537454335901187730929 - 1.6249365462333796703711823i), - (3.0795576791204117911123886 + 2.0485650849650740120660391i), - (3.0007392508200622519398814 + 0.29621132089073067282488147i), - (2.4872865024796011364747111 + 1.0664555914934156601503632i), - (2.463655912283054555225301 + 0.48681307452231387690013905i), - (1.8734458851737055262693056 + 0.6116977071277574248407752i), - (2.8793528632328795424123832 - 1.3649311280370181331184214i), - (2.9956543302898767795858704 + 2.6189310485682988308904501i), -} -var asin = []complex128{ - (0.56902834632415098636186476 + 2.9138232718554953784519807i), - (1.5347320506744825455349611 - 2.7358584434576260925091256i), - (-0.054140219438483051139860579 - 2.3159537454335901187730929i), - (-0.47776875817017739283471738 + 3.0795576791204117911123886i), - (1.2745850059041659464064402 + 3.0007392508200622519398814i), - (0.50434073530148095908095852 + 2.4872865024796011364747111i), - (1.0839832522725827423311826 + 2.463655912283054555225301i), - (0.9590986196671391943905465 + 1.8734458851737055262693056i), - (0.20586519875787848611290031 - 2.8793528632328795424123832i), - (-1.0481347217734022116591284 + 2.9956543302898767795858704i), -} -var asinh = []complex128{ - (2.9113760469415295679342185 + 0.99639459545704326759805893i), - (2.7441755423994259061579029 - 0.035468308789000500601119392i), - (-2.2962136462520690506126678 - 1.5144663565690151885726707i), - (-3.0771233459295725965402455 + 1.0895577967194013849422294i), - (3.0048366100923647417557027 + 0.29346979169819220036454168i), - (2.4800059370795363157364643 + 1.0545868606049165710424232i), - (2.4718773838309585611141821 + 0.47502344364250803363708842i), - (1.8910743588080159144378396 + 0.56882925572563602341139174i), - (2.8735426423367341878069406 - 1.362376149648891420997548i), - (-2.9981750586172477217567878 + 0.5183571985225367505624207i), -} -var atan = []complex128{ - (1.5115747079332741358607654 + 0.091324403603954494382276776i), - (1.4424504323482602560806727 - 0.0045416132642803911503770933i), - (-1.5593488703630532674484026 - 0.20163295409248362456446431i), - (-1.5280619472445889867794105 + 0.081721556230672003746956324i), - (1.4759909163240799678221039 + 0.028602969320691644358773586i), - (1.4877353772046548932715555 + 0.14566877153207281663773599i), - (1.4206983927779191889826 + 0.076830486127880702249439993i), - (1.3162236060498933364869556 + 0.16031313000467530644933363i), - (1.5473450684303703578810093 - 0.11064907507939082484935782i), - (-1.4841462340185253987375812 + 0.049341850305024399493142411i), -} -var atanh = []complex128{ - (0.058375027938968509064640438 + 1.4793488495105334458167782i), - (0.12977343497790381229915667 - 1.5661009410463561327262499i), - (-0.010576456067347252072200088 - 1.3743698658402284549750563i), - (-0.042218595678688358882784918 + 1.4891433968166405606692604i), - (0.095218997991316722061828397 + 1.5416884098777110330499698i), - (0.079965459366890323857556487 + 1.4252510353873192700350435i), - (0.15051245471980726221708301 + 1.4907432533016303804884461i), - (0.25082072933993987714470373 + 1.392057665392187516442986i), - (0.022896108815797135846276662 - 1.4609224989282864208963021i), - (-0.08665624101841876130537396 + 1.5207902036935093480142159i), -} -var conj = []complex128{ - (4.9790119248836735e+00 - 7.7388724745781045e+00i), - (7.7388724745781045e+00 + 2.7688005719200159e-01i), - (-2.7688005719200159e-01 + 5.0106036182710749e+00i), - (-5.0106036182710749e+00 - 9.6362937071984173e+00i), - (9.6362937071984173e+00 - 2.9263772392439646e+00i), - (2.9263772392439646e+00 - 5.2290834314593066e+00i), - (5.2290834314593066e+00 - 2.7279399104360102e+00i), - (2.7279399104360102e+00 - 1.8253080916808550e+00i), - (1.8253080916808550e+00 + 8.6859247685756013e+00i), - (-8.6859247685756013e+00 - 4.9790119248836735e+00i), -} -var cos = []complex128{ - (3.024540920601483938336569e+02 + 1.1073797572517071650045357e+03i), - (1.192858682649064973252758e-01 + 2.7857554122333065540970207e-01i), - (7.2144394304528306603857962e+01 - 2.0500129667076044169954205e+01i), - (2.24921952538403984190541e+03 - 7.317363745602773587049329e+03i), - (-9.148222970032421760015498e+00 + 1.953124661113563541862227e+00i), - (-9.116081175857732248227078e+01 - 1.992669213569952232487371e+01i), - (3.795639179042704640002918e+00 + 6.623513350981458399309662e+00i), - (-2.9144840732498869560679084e+00 - 1.214620271628002917638748e+00i), - (-7.45123482501299743872481e+02 + 2.8641692314488080814066734e+03i), - (-5.371977967039319076416747e+01 + 4.893348341339375830564624e+01i), -} -var cosh = []complex128{ - (8.34638383523018249366948e+00 + 7.2181057886425846415112064e+01i), - (1.10421967379919366952251e+03 - 3.1379638689277575379469861e+02i), - (3.051485206773701584738512e-01 - 2.6805384730105297848044485e-01i), - (-7.33294728684187933370938e+01 + 1.574445942284918251038144e+01i), - (-7.478643293945957535757355e+03 + 1.6348382209913353929473321e+03i), - (4.622316522966235701630926e+00 - 8.088695185566375256093098e+00i), - (-8.544333183278877406197712e+01 + 3.7505836120128166455231717e+01i), - (-1.934457815021493925115198e+00 + 7.3725859611767228178358673e+00i), - (-2.352958770061749348353548e+00 - 2.034982010440878358915409e+00i), - (7.79756457532134748165069e+02 + 2.8549350716819176560377717e+03i), -} -var exp = []complex128{ - (1.669197736864670815125146e+01 + 1.4436895109507663689174096e+02i), - (2.2084389286252583447276212e+03 - 6.2759289284909211238261917e+02i), - (2.227538273122775173434327e-01 + 7.2468284028334191250470034e-01i), - (-6.5182985958153548997881627e-03 - 1.39965837915193860879044e-03i), - (-1.4957286524084015746110777e+04 + 3.269676455931135688988042e+03i), - (9.218158701983105935659273e+00 - 1.6223985291084956009304582e+01i), - (-1.7088175716853040841444505e+02 + 7.501382609870410713795546e+01i), - (-3.852461315830959613132505e+00 + 1.4808420423156073221970892e+01i), - (-4.586775503301407379786695e+00 - 4.178501081246873415144744e+00i), - (4.451337963005453491095747e-05 - 1.62977574205442915935263e-04i), -} -var log = []complex128{ - (2.2194438972179194425697051e+00 + 9.9909115046919291062461269e-01i), - (2.0468956191154167256337289e+00 - 3.5762575021856971295156489e-02i), - (1.6130808329853860438751244e+00 - 1.6259990074019058442232221e+00i), - (2.3851910394823008710032651e+00 + 2.0502936359659111755031062e+00i), - (2.3096442270679923004800651e+00 + 2.9483213155446756211881774e-01i), - (1.7904660933974656106951860e+00 + 1.0605860367252556281902109e+00i), - (1.7745926939841751666177512e+00 + 4.8084556083358307819310911e-01i), - (1.1885403350045342425648780e+00 + 5.8969634164776659423195222e-01i), - (2.1833107837679082586772505e+00 - 1.3636647724582455028314573e+00i), - (2.3037629487273259170991671e+00 + 2.6210913895386013290915234e+00i), -} -var log10 = []complex128{ - (9.6389223745559042474184943e-01 + 4.338997735671419492599631e-01i), - (8.8895547241376579493490892e-01 - 1.5531488990643548254864806e-02i), - (7.0055210462945412305244578e-01 - 7.0616239649481243222248404e-01i), - (1.0358753067322445311676952e+00 + 8.9043121238134980156490909e-01i), - (1.003065742975330237172029e+00 + 1.2804396782187887479857811e-01i), - (7.7758954439739162532085157e-01 + 4.6060666333341810869055108e-01i), - (7.7069581462315327037689152e-01 + 2.0882857371769952195512475e-01i), - (5.1617650901191156135137239e-01 + 2.5610186717615977620363299e-01i), - (9.4819982567026639742663212e-01 - 5.9223208584446952284914289e-01i), - (1.0005115362454417135973429e+00 + 1.1383255270407412817250921e+00i), -} - -type ff struct { - r, theta float64 -} - -var polar = []ff{ - {9.2022120669932650313380972e+00, 9.9909115046919291062461269e-01}, - {7.7438239742296106616261394e+00, -3.5762575021856971295156489e-02}, - {5.0182478202557746902556648e+00, -1.6259990074019058442232221e+00}, - {1.0861137372799545160704002e+01, 2.0502936359659111755031062e+00}, - {1.0070841084922199607011905e+01, 2.9483213155446756211881774e-01}, - {5.9922447613166942183705192e+00, 1.0605860367252556281902109e+00}, - {5.8978784056736762299945176e+00, 4.8084556083358307819310911e-01}, - {3.2822866700678709020367184e+00, 5.8969634164776659423195222e-01}, - {8.8756430028990417290744307e+00, -1.3636647724582455028314573e+00}, - {1.0011785496777731986390856e+01, 2.6210913895386013290915234e+00}, -} -var pow = []complex128{ - (-2.499956739197529585028819e+00 + 1.759751724335650228957144e+00i), - (7.357094338218116311191939e+04 - 5.089973412479151648145882e+04i), - (1.320777296067768517259592e+01 - 3.165621914333901498921986e+01i), - (-3.123287828297300934072149e-07 - 1.9849567521490553032502223E-7i), - (8.0622651468477229614813e+04 - 7.80028727944573092944363e+04i), - (-1.0268824572103165858577141e+00 - 4.716844738244989776610672e-01i), - (-4.35953819012244175753187e+01 + 2.2036445974645306917648585e+02i), - (8.3556092283250594950239e-01 - 1.2261571947167240272593282e+01i), - (1.582292972120769306069625e+03 + 1.273564263524278244782512e+04i), - (6.592208301642122149025369e-08 + 2.584887236651661903526389e-08i), -} -var sin = []complex128{ - (-1.1073801774240233539648544e+03 + 3.024539773002502192425231e+02i), - (1.0317037521400759359744682e+00 - 3.2208979799929570242818e-02i), - (-2.0501952097271429804261058e+01 - 7.2137981348240798841800967e+01i), - (7.3173638080346338642193078e+03 + 2.249219506193664342566248e+03i), - (-1.964375633631808177565226e+00 - 9.0958264713870404464159683e+00i), - (1.992783647158514838337674e+01 - 9.11555769410191350416942e+01i), - (-6.680335650741921444300349e+00 + 3.763353833142432513086117e+00i), - (1.2794028166657459148245993e+00 - 2.7669092099795781155109602e+00i), - (2.8641693949535259594188879e+03 + 7.451234399649871202841615e+02i), - (-4.893811726244659135553033e+01 - 5.371469305562194635957655e+01i), -} -var sinh = []complex128{ - (8.34559353341652565758198e+00 + 7.2187893208650790476628899e+01i), - (1.1042192548260646752051112e+03 - 3.1379650595631635858792056e+02i), - (-8.239469336509264113041849e-02 + 9.9273668758439489098514519e-01i), - (7.332295456982297798219401e+01 - 1.574585908122833444899023e+01i), - (-7.4786432301380582103534216e+03 + 1.63483823493980029604071e+03i), - (4.595842179016870234028347e+00 - 8.135290105518580753211484e+00i), - (-8.543842533574163435246793e+01 + 3.750798997857594068272375e+01i), - (-1.918003500809465688017307e+00 + 7.4358344619793504041350251e+00i), - (-2.233816733239658031433147e+00 - 2.143519070805995056229335e+00i), - (-7.797564130187551181105341e+02 - 2.8549352346594918614806877e+03i), -} -var sqrt = []complex128{ - (2.6628203086086130543813948e+00 + 1.4531345674282185229796902e+00i), - (2.7823278427251986247149295e+00 - 4.9756907317005224529115567e-02i), - (1.5397025302089642757361015e+00 - 1.6271336573016637535695727e+00i), - (1.7103411581506875260277898e+00 + 2.8170677122737589676157029e+00i), - (3.1390392472953103383607947e+00 + 4.6612625849858653248980849e-01i), - (2.1117080764822417640789287e+00 + 1.2381170223514273234967850e+00i), - (2.3587032281672256703926939e+00 + 5.7827111903257349935720172e-01i), - (1.7335262588873410476661577e+00 + 5.2647258220721269141550382e-01i), - (2.3131094974708716531499282e+00 - 1.8775429304303785570775490e+00i), - (8.1420535745048086240947359e-01 + 3.0575897587277248522656113e+00i), -} -var tan = []complex128{ - (-1.928757919086441129134525e-07 + 1.0000003267499169073251826e+00i), - (1.242412685364183792138948e+00 - 3.17149693883133370106696e+00i), - (-4.6745126251587795225571826e-05 - 9.9992439225263959286114298e-01i), - (4.792363401193648192887116e-09 + 1.0000000070589333451557723e+00i), - (2.345740824080089140287315e-03 + 9.947733046570988661022763e-01i), - (-2.396030789494815566088809e-05 + 9.9994781345418591429826779e-01i), - (-7.370204836644931340905303e-03 + 1.0043553413417138987717748e+00i), - (-3.691803847992048527007457e-02 + 9.6475071993469548066328894e-01i), - (-2.781955256713729368401878e-08 - 1.000000049848910609006646e+00i), - (9.4281590064030478879791249e-05 + 9.9999119340863718183758545e-01i), -} -var tanh = []complex128{ - (1.0000921981225144748819918e+00 + 2.160986245871518020231507e-05i), - (9.9999967727531993209562591e-01 - 1.9953763222959658873657676e-07i), - (-1.765485739548037260789686e+00 + 1.7024216325552852445168471e+00i), - (-9.999189442732736452807108e-01 + 3.64906070494473701938098e-05i), - (9.9999999224622333738729767e-01 - 3.560088949517914774813046e-09i), - (1.0029324933367326862499343e+00 - 4.948790309797102353137528e-03i), - (9.9996113064788012488693567e-01 - 4.226995742097032481451259e-05i), - (1.0074784189316340029873945e+00 - 4.194050814891697808029407e-03i), - (9.9385534229718327109131502e-01 + 5.144217985914355502713437e-02i), - (-1.0000000491604982429364892e+00 - 2.901873195374433112227349e-08i), -} - -// special cases -var vcAbsSC = []complex128{ - NaN(), -} -var absSC = []float64{ - math.NaN(), -} -var vcAcosSC = []complex128{ - NaN(), -} -var acosSC = []complex128{ - NaN(), -} -var vcAcoshSC = []complex128{ - NaN(), -} -var acoshSC = []complex128{ - NaN(), -} -var vcAsinSC = []complex128{ - NaN(), -} -var asinSC = []complex128{ - NaN(), -} -var vcAsinhSC = []complex128{ - NaN(), -} -var asinhSC = []complex128{ - NaN(), -} -var vcAtanSC = []complex128{ - NaN(), -} -var atanSC = []complex128{ - NaN(), -} -var vcAtanhSC = []complex128{ - NaN(), -} -var atanhSC = []complex128{ - NaN(), -} -var vcConjSC = []complex128{ - NaN(), -} -var conjSC = []complex128{ - NaN(), -} -var vcCosSC = []complex128{ - NaN(), -} -var cosSC = []complex128{ - NaN(), -} -var vcCoshSC = []complex128{ - NaN(), -} -var coshSC = []complex128{ - NaN(), -} -var vcExpSC = []complex128{ - NaN(), -} -var expSC = []complex128{ - NaN(), -} -var vcIsNaNSC = []complex128{ - complex(math.Inf(-1), math.Inf(-1)), - complex(math.Inf(-1), math.NaN()), - complex(math.NaN(), math.Inf(-1)), - complex(0, math.NaN()), - complex(math.NaN(), 0), - complex(math.Inf(1), math.Inf(1)), - complex(math.Inf(1), math.NaN()), - complex(math.NaN(), math.Inf(1)), - complex(math.NaN(), math.NaN()), -} -var isNaNSC = []bool{ - false, - false, - false, - true, - true, - false, - false, - false, - true, -} -var vcLogSC = []complex128{ - NaN(), -} -var logSC = []complex128{ - NaN(), -} -var vcLog10SC = []complex128{ - NaN(), -} -var log10SC = []complex128{ - NaN(), -} -var vcPolarSC = []complex128{ - NaN(), -} -var polarSC = []ff{ - {math.NaN(), math.NaN()}, -} -var vcPowSC = [][2]complex128{ - {NaN(), NaN()}, -} -var powSC = []complex128{ - NaN(), -} -var vcSinSC = []complex128{ - NaN(), -} -var sinSC = []complex128{ - NaN(), -} -var vcSinhSC = []complex128{ - NaN(), -} -var sinhSC = []complex128{ - NaN(), -} -var vcSqrtSC = []complex128{ - NaN(), -} -var sqrtSC = []complex128{ - NaN(), -} -var vcTanSC = []complex128{ - NaN(), -} -var tanSC = []complex128{ - NaN(), -} -var vcTanhSC = []complex128{ - NaN(), -} -var tanhSC = []complex128{ - NaN(), -} - -// functions borrowed from pkg/math/all_test.go -func tolerance(a, b, e float64) bool { - d := a - b - if d < 0 { - d = -d - } - - if a != 0 { - e = e * a - if e < 0 { - e = -e - } - } - return d < e -} -func soclose(a, b, e float64) bool { return tolerance(a, b, e) } -func veryclose(a, b float64) bool { return tolerance(a, b, 4e-16) } -func alike(a, b float64) bool { - switch { - case a != a && b != b: // math.IsNaN(a) && math.IsNaN(b): - return true - case a == b: - return math.Signbit(a) == math.Signbit(b) - } - return false -} - -func cTolerance(a, b complex128, e float64) bool { - d := Abs(a - b) - if a != 0 { - e = e * Abs(a) - if e < 0 { - e = -e - } - } - return d < e -} -func cSoclose(a, b complex128, e float64) bool { return cTolerance(a, b, e) } -func cVeryclose(a, b complex128) bool { return cTolerance(a, b, 4e-16) } -func cAlike(a, b complex128) bool { - switch { - case IsNaN(a) && IsNaN(b): - return true - case a == b: - return math.Signbit(real(a)) == math.Signbit(real(b)) && math.Signbit(imag(a)) == math.Signbit(imag(b)) - } - return false -} - -func TestAbs(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Abs(vc[i]); !veryclose(abs[i], f) { - t.Errorf("Abs(%g) = %g, want %g", vc[i], f, abs[i]) - } - } - for i := 0; i < len(vcAbsSC); i++ { - if f := Abs(vcAbsSC[i]); !alike(absSC[i], f) { - t.Errorf("Abs(%g) = %g, want %g", vcAbsSC[i], f, absSC[i]) - } - } -} -func TestAcos(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Acos(vc[i]); !cSoclose(acos[i], f, 1e-14) { - t.Errorf("Acos(%g) = %g, want %g", vc[i], f, acos[i]) - } - } - for i := 0; i < len(vcAcosSC); i++ { - if f := Acos(vcAcosSC[i]); !cAlike(acosSC[i], f) { - t.Errorf("Acos(%g) = %g, want %g", vcAcosSC[i], f, acosSC[i]) - } - } -} -func TestAcosh(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Acosh(vc[i]); !cSoclose(acosh[i], f, 1e-14) { - t.Errorf("Acosh(%g) = %g, want %g", vc[i], f, acosh[i]) - } - } - for i := 0; i < len(vcAcoshSC); i++ { - if f := Acosh(vcAcoshSC[i]); !cAlike(acoshSC[i], f) { - t.Errorf("Acosh(%g) = %g, want %g", vcAcoshSC[i], f, acoshSC[i]) - } - } -} -func TestAsin(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Asin(vc[i]); !cSoclose(asin[i], f, 1e-14) { - t.Errorf("Asin(%g) = %g, want %g", vc[i], f, asin[i]) - } - } - for i := 0; i < len(vcAsinSC); i++ { - if f := Asin(vcAsinSC[i]); !cAlike(asinSC[i], f) { - t.Errorf("Asin(%g) = %g, want %g", vcAsinSC[i], f, asinSC[i]) - } - } -} -func TestAsinh(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Asinh(vc[i]); !cSoclose(asinh[i], f, 4e-15) { - t.Errorf("Asinh(%g) = %g, want %g", vc[i], f, asinh[i]) - } - } - for i := 0; i < len(vcAsinhSC); i++ { - if f := Asinh(vcAsinhSC[i]); !cAlike(asinhSC[i], f) { - t.Errorf("Asinh(%g) = %g, want %g", vcAsinhSC[i], f, asinhSC[i]) - } - } -} -func TestAtan(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Atan(vc[i]); !cVeryclose(atan[i], f) { - t.Errorf("Atan(%g) = %g, want %g", vc[i], f, atan[i]) - } - } - for i := 0; i < len(vcAtanSC); i++ { - if f := Atan(vcAtanSC[i]); !cAlike(atanSC[i], f) { - t.Errorf("Atan(%g) = %g, want %g", vcAtanSC[i], f, atanSC[i]) - } - } -} -func TestAtanh(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Atanh(vc[i]); !cVeryclose(atanh[i], f) { - t.Errorf("Atanh(%g) = %g, want %g", vc[i], f, atanh[i]) - } - } - for i := 0; i < len(vcAtanhSC); i++ { - if f := Atanh(vcAtanhSC[i]); !cAlike(atanhSC[i], f) { - t.Errorf("Atanh(%g) = %g, want %g", vcAtanhSC[i], f, atanhSC[i]) - } - } -} -func TestConj(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Conj(vc[i]); !cVeryclose(conj[i], f) { - t.Errorf("Conj(%g) = %g, want %g", vc[i], f, conj[i]) - } - } - for i := 0; i < len(vcConjSC); i++ { - if f := Conj(vcConjSC[i]); !cAlike(conjSC[i], f) { - t.Errorf("Conj(%g) = %g, want %g", vcConjSC[i], f, conjSC[i]) - } - } -} -func TestCos(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Cos(vc[i]); !cSoclose(cos[i], f, 3e-15) { - t.Errorf("Cos(%g) = %g, want %g", vc[i], f, cos[i]) - } - } - for i := 0; i < len(vcCosSC); i++ { - if f := Cos(vcCosSC[i]); !cAlike(cosSC[i], f) { - t.Errorf("Cos(%g) = %g, want %g", vcCosSC[i], f, cosSC[i]) - } - } -} -func TestCosh(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Cosh(vc[i]); !cSoclose(cosh[i], f, 2e-15) { - t.Errorf("Cosh(%g) = %g, want %g", vc[i], f, cosh[i]) - } - } - for i := 0; i < len(vcCoshSC); i++ { - if f := Cosh(vcCoshSC[i]); !cAlike(coshSC[i], f) { - t.Errorf("Cosh(%g) = %g, want %g", vcCoshSC[i], f, coshSC[i]) - } - } -} -func TestExp(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Exp(vc[i]); !cSoclose(exp[i], f, 1e-15) { - t.Errorf("Exp(%g) = %g, want %g", vc[i], f, exp[i]) - } - } - for i := 0; i < len(vcExpSC); i++ { - if f := Exp(vcExpSC[i]); !cAlike(expSC[i], f) { - t.Errorf("Exp(%g) = %g, want %g", vcExpSC[i], f, expSC[i]) - } - } -} -func TestIsNaN(t *testing.T) { - for i := 0; i < len(vcIsNaNSC); i++ { - if f := IsNaN(vcIsNaNSC[i]); isNaNSC[i] != f { - t.Errorf("IsNaN(%v) = %v, want %v", vcIsNaNSC[i], f, isNaNSC[i]) - } - } -} -func TestLog(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Log(vc[i]); !cVeryclose(log[i], f) { - t.Errorf("Log(%g) = %g, want %g", vc[i], f, log[i]) - } - } - for i := 0; i < len(vcLogSC); i++ { - if f := Log(vcLogSC[i]); !cAlike(logSC[i], f) { - t.Errorf("Log(%g) = %g, want %g", vcLogSC[i], f, logSC[i]) - } - } -} -func TestLog10(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Log10(vc[i]); !cVeryclose(log10[i], f) { - t.Errorf("Log10(%g) = %g, want %g", vc[i], f, log10[i]) - } - } - for i := 0; i < len(vcLog10SC); i++ { - if f := Log10(vcLog10SC[i]); !cAlike(log10SC[i], f) { - t.Errorf("Log10(%g) = %g, want %g", vcLog10SC[i], f, log10SC[i]) - } - } -} -func TestPolar(t *testing.T) { - for i := 0; i < len(vc); i++ { - if r, theta := Polar(vc[i]); !veryclose(polar[i].r, r) && !veryclose(polar[i].theta, theta) { - t.Errorf("Polar(%g) = %g, %g want %g, %g", vc[i], r, theta, polar[i].r, polar[i].theta) - } - } - for i := 0; i < len(vcPolarSC); i++ { - if r, theta := Polar(vcPolarSC[i]); !alike(polarSC[i].r, r) && !alike(polarSC[i].theta, theta) { - t.Errorf("Polar(%g) = %g, %g, want %g, %g", vcPolarSC[i], r, theta, polarSC[i].r, polarSC[i].theta) - } - } -} -func TestPow(t *testing.T) { - // Special cases for Pow(0, c). - var zero = complex(0, 0) - zeroPowers := [][2]complex128{ - {0, 1 + 0i}, - {1.5, 0 + 0i}, - {-1.5, complex(math.Inf(0), 0)}, - {-1.5 + 1.5i, Inf()}, - } - for _, zp := range zeroPowers { - if f := Pow(zero, zp[0]); f != zp[1] { - t.Errorf("Pow(%g, %g) = %g, want %g", zero, zp[0], f, zp[1]) - } - } - var a = complex(3.0, 3.0) - for i := 0; i < len(vc); i++ { - if f := Pow(a, vc[i]); !cSoclose(pow[i], f, 4e-15) { - t.Errorf("Pow(%g, %g) = %g, want %g", a, vc[i], f, pow[i]) - } - } - for i := 0; i < len(vcPowSC); i++ { - if f := Pow(vcPowSC[i][0], vcPowSC[i][0]); !cAlike(powSC[i], f) { - t.Errorf("Pow(%g, %g) = %g, want %g", vcPowSC[i][0], vcPowSC[i][0], f, powSC[i]) - } - } -} -func TestRect(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Rect(polar[i].r, polar[i].theta); !cVeryclose(vc[i], f) { - t.Errorf("Rect(%g, %g) = %g want %g", polar[i].r, polar[i].theta, f, vc[i]) - } - } - for i := 0; i < len(vcPolarSC); i++ { - if f := Rect(polarSC[i].r, polarSC[i].theta); !cAlike(vcPolarSC[i], f) { - t.Errorf("Rect(%g, %g) = %g, want %g", polarSC[i].r, polarSC[i].theta, f, vcPolarSC[i]) - } - } -} -func TestSin(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Sin(vc[i]); !cSoclose(sin[i], f, 2e-15) { - t.Errorf("Sin(%g) = %g, want %g", vc[i], f, sin[i]) - } - } - for i := 0; i < len(vcSinSC); i++ { - if f := Sin(vcSinSC[i]); !cAlike(sinSC[i], f) { - t.Errorf("Sin(%g) = %g, want %g", vcSinSC[i], f, sinSC[i]) - } - } -} -func TestSinh(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Sinh(vc[i]); !cSoclose(sinh[i], f, 2e-15) { - t.Errorf("Sinh(%g) = %g, want %g", vc[i], f, sinh[i]) - } - } - for i := 0; i < len(vcSinhSC); i++ { - if f := Sinh(vcSinhSC[i]); !cAlike(sinhSC[i], f) { - t.Errorf("Sinh(%g) = %g, want %g", vcSinhSC[i], f, sinhSC[i]) - } - } -} -func TestSqrt(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Sqrt(vc[i]); !cVeryclose(sqrt[i], f) { - t.Errorf("Sqrt(%g) = %g, want %g", vc[i], f, sqrt[i]) - } - } - for i := 0; i < len(vcSqrtSC); i++ { - if f := Sqrt(vcSqrtSC[i]); !cAlike(sqrtSC[i], f) { - t.Errorf("Sqrt(%g) = %g, want %g", vcSqrtSC[i], f, sqrtSC[i]) - } - } -} -func TestTan(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Tan(vc[i]); !cSoclose(tan[i], f, 3e-15) { - t.Errorf("Tan(%g) = %g, want %g", vc[i], f, tan[i]) - } - } - for i := 0; i < len(vcTanSC); i++ { - if f := Tan(vcTanSC[i]); !cAlike(tanSC[i], f) { - t.Errorf("Tan(%g) = %g, want %g", vcTanSC[i], f, tanSC[i]) - } - } -} -func TestTanh(t *testing.T) { - for i := 0; i < len(vc); i++ { - if f := Tanh(vc[i]); !cSoclose(tanh[i], f, 2e-15) { - t.Errorf("Tanh(%g) = %g, want %g", vc[i], f, tanh[i]) - } - } - for i := 0; i < len(vcTanhSC); i++ { - if f := Tanh(vcTanhSC[i]); !cAlike(tanhSC[i], f) { - t.Errorf("Tanh(%g) = %g, want %g", vcTanhSC[i], f, tanhSC[i]) - } - } -} - -func BenchmarkAbs(b *testing.B) { - for i := 0; i < b.N; i++ { - Abs(complex(2.5, 3.5)) - } -} -func BenchmarkAcos(b *testing.B) { - for i := 0; i < b.N; i++ { - Acos(complex(2.5, 3.5)) - } -} -func BenchmarkAcosh(b *testing.B) { - for i := 0; i < b.N; i++ { - Acosh(complex(2.5, 3.5)) - } -} -func BenchmarkAsin(b *testing.B) { - for i := 0; i < b.N; i++ { - Asin(complex(2.5, 3.5)) - } -} -func BenchmarkAsinh(b *testing.B) { - for i := 0; i < b.N; i++ { - Asinh(complex(2.5, 3.5)) - } -} -func BenchmarkAtan(b *testing.B) { - for i := 0; i < b.N; i++ { - Atan(complex(2.5, 3.5)) - } -} -func BenchmarkAtanh(b *testing.B) { - for i := 0; i < b.N; i++ { - Atanh(complex(2.5, 3.5)) - } -} -func BenchmarkConj(b *testing.B) { - for i := 0; i < b.N; i++ { - Conj(complex(2.5, 3.5)) - } -} -func BenchmarkCos(b *testing.B) { - for i := 0; i < b.N; i++ { - Cos(complex(2.5, 3.5)) - } -} -func BenchmarkCosh(b *testing.B) { - for i := 0; i < b.N; i++ { - Cosh(complex(2.5, 3.5)) - } -} -func BenchmarkExp(b *testing.B) { - for i := 0; i < b.N; i++ { - Exp(complex(2.5, 3.5)) - } -} -func BenchmarkLog(b *testing.B) { - for i := 0; i < b.N; i++ { - Log(complex(2.5, 3.5)) - } -} -func BenchmarkLog10(b *testing.B) { - for i := 0; i < b.N; i++ { - Log10(complex(2.5, 3.5)) - } -} -func BenchmarkPhase(b *testing.B) { - for i := 0; i < b.N; i++ { - Phase(complex(2.5, 3.5)) - } -} -func BenchmarkPolar(b *testing.B) { - for i := 0; i < b.N; i++ { - Polar(complex(2.5, 3.5)) - } -} -func BenchmarkPow(b *testing.B) { - for i := 0; i < b.N; i++ { - Pow(complex(2.5, 3.5), complex(2.5, 3.5)) - } -} -func BenchmarkRect(b *testing.B) { - for i := 0; i < b.N; i++ { - Rect(2.5, 1.5) - } -} -func BenchmarkSin(b *testing.B) { - for i := 0; i < b.N; i++ { - Sin(complex(2.5, 3.5)) - } -} -func BenchmarkSinh(b *testing.B) { - for i := 0; i < b.N; i++ { - Sinh(complex(2.5, 3.5)) - } -} -func BenchmarkSqrt(b *testing.B) { - for i := 0; i < b.N; i++ { - Sqrt(complex(2.5, 3.5)) - } -} -func BenchmarkTan(b *testing.B) { - for i := 0; i < b.N; i++ { - Tan(complex(2.5, 3.5)) - } -} -func BenchmarkTanh(b *testing.B) { - for i := 0; i < b.N; i++ { - Tanh(complex(2.5, 3.5)) - } -} diff --git a/src/pkg/math/cmplx/conj.go b/src/pkg/math/cmplx/conj.go deleted file mode 100644 index 34a4277c1..000000000 --- a/src/pkg/math/cmplx/conj.go +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cmplx - -// Conj returns the complex conjugate of x. -func Conj(x complex128) complex128 { return complex(real(x), -imag(x)) } diff --git a/src/pkg/math/cmplx/exp.go b/src/pkg/math/cmplx/exp.go deleted file mode 100644 index 485ed2c78..000000000 --- a/src/pkg/math/cmplx/exp.go +++ /dev/null @@ -1,55 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cmplx - -import "math" - -// The original C code, the long comment, and the constants -// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. -// The go code is a simplified version of the original C. -// -// Cephes Math Library Release 2.8: June, 2000 -// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier -// -// The readme file at http://netlib.sandia.gov/cephes/ says: -// Some software in this archive may be from the book _Methods and -// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster -// International, 1989) or from the Cephes Mathematical Library, a -// commercial product. In either event, it is copyrighted by the author. -// What you see here may be used freely but it comes with no support or -// guarantee. -// -// The two known misprints in the book are repaired here in the -// source listings for the gamma function and the incomplete beta -// integral. -// -// Stephen L. Moshier -// moshier@na-net.ornl.gov - -// Complex exponential function -// -// DESCRIPTION: -// -// Returns the complex exponential of the complex argument z. -// -// If -// z = x + iy, -// r = exp(x), -// then -// w = r cos y + i r sin y. -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// DEC -10,+10 8700 3.7e-17 1.1e-17 -// IEEE -10,+10 30000 3.0e-16 8.7e-17 - -// Exp returns e**x, the base-e exponential of x. -func Exp(x complex128) complex128 { - r := math.Exp(real(x)) - s, c := math.Sincos(imag(x)) - return complex(r*c, r*s) -} diff --git a/src/pkg/math/cmplx/isinf.go b/src/pkg/math/cmplx/isinf.go deleted file mode 100644 index d5a65b44b..000000000 --- a/src/pkg/math/cmplx/isinf.go +++ /dev/null @@ -1,21 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cmplx - -import "math" - -// IsInf returns true if either real(x) or imag(x) is an infinity. -func IsInf(x complex128) bool { - if math.IsInf(real(x), 0) || math.IsInf(imag(x), 0) { - return true - } - return false -} - -// Inf returns a complex infinity, complex(+Inf, +Inf). -func Inf() complex128 { - inf := math.Inf(1) - return complex(inf, inf) -} diff --git a/src/pkg/math/cmplx/isnan.go b/src/pkg/math/cmplx/isnan.go deleted file mode 100644 index 05d0cce63..000000000 --- a/src/pkg/math/cmplx/isnan.go +++ /dev/null @@ -1,25 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cmplx - -import "math" - -// IsNaN returns true if either real(x) or imag(x) is NaN -// and neither is an infinity. -func IsNaN(x complex128) bool { - switch { - case math.IsInf(real(x), 0) || math.IsInf(imag(x), 0): - return false - case math.IsNaN(real(x)) || math.IsNaN(imag(x)): - return true - } - return false -} - -// NaN returns a complex ``not-a-number'' value. -func NaN() complex128 { - nan := math.NaN() - return complex(nan, nan) -} diff --git a/src/pkg/math/cmplx/log.go b/src/pkg/math/cmplx/log.go deleted file mode 100644 index 881a064d8..000000000 --- a/src/pkg/math/cmplx/log.go +++ /dev/null @@ -1,64 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cmplx - -import "math" - -// The original C code, the long comment, and the constants -// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. -// The go code is a simplified version of the original C. -// -// Cephes Math Library Release 2.8: June, 2000 -// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier -// -// The readme file at http://netlib.sandia.gov/cephes/ says: -// Some software in this archive may be from the book _Methods and -// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster -// International, 1989) or from the Cephes Mathematical Library, a -// commercial product. In either event, it is copyrighted by the author. -// What you see here may be used freely but it comes with no support or -// guarantee. -// -// The two known misprints in the book are repaired here in the -// source listings for the gamma function and the incomplete beta -// integral. -// -// Stephen L. Moshier -// moshier@na-net.ornl.gov - -// Complex natural logarithm -// -// DESCRIPTION: -// -// Returns complex logarithm to the base e (2.718...) of -// the complex argument z. -// -// If -// z = x + iy, r = sqrt( x**2 + y**2 ), -// then -// w = log(r) + i arctan(y/x). -// -// The arctangent ranges from -PI to +PI. -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// DEC -10,+10 7000 8.5e-17 1.9e-17 -// IEEE -10,+10 30000 5.0e-15 1.1e-16 -// -// Larger relative error can be observed for z near 1 +i0. -// In IEEE arithmetic the peak absolute error is 5.2e-16, rms -// absolute error 1.0e-16. - -// Log returns the natural logarithm of x. -func Log(x complex128) complex128 { - return complex(math.Log(Abs(x)), Phase(x)) -} - -// Log10 returns the decimal logarithm of x. -func Log10(x complex128) complex128 { - return math.Log10E * Log(x) -} diff --git a/src/pkg/math/cmplx/phase.go b/src/pkg/math/cmplx/phase.go deleted file mode 100644 index 03cece8a5..000000000 --- a/src/pkg/math/cmplx/phase.go +++ /dev/null @@ -1,11 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cmplx - -import "math" - -// Phase returns the phase (also called the argument) of x. -// The returned value is in the range [-Pi, Pi]. -func Phase(x complex128) float64 { return math.Atan2(imag(x), real(x)) } diff --git a/src/pkg/math/cmplx/polar.go b/src/pkg/math/cmplx/polar.go deleted file mode 100644 index 9b192bc62..000000000 --- a/src/pkg/math/cmplx/polar.go +++ /dev/null @@ -1,12 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cmplx - -// Polar returns the absolute value r and phase θ of x, -// such that x = r * e**θi. -// The phase is in the range [-Pi, Pi]. -func Polar(x complex128) (r, θ float64) { - return Abs(x), Phase(x) -} diff --git a/src/pkg/math/cmplx/pow.go b/src/pkg/math/cmplx/pow.go deleted file mode 100644 index 1630b879b..000000000 --- a/src/pkg/math/cmplx/pow.go +++ /dev/null @@ -1,78 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cmplx - -import "math" - -// The original C code, the long comment, and the constants -// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. -// The go code is a simplified version of the original C. -// -// Cephes Math Library Release 2.8: June, 2000 -// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier -// -// The readme file at http://netlib.sandia.gov/cephes/ says: -// Some software in this archive may be from the book _Methods and -// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster -// International, 1989) or from the Cephes Mathematical Library, a -// commercial product. In either event, it is copyrighted by the author. -// What you see here may be used freely but it comes with no support or -// guarantee. -// -// The two known misprints in the book are repaired here in the -// source listings for the gamma function and the incomplete beta -// integral. -// -// Stephen L. Moshier -// moshier@na-net.ornl.gov - -// Complex power function -// -// DESCRIPTION: -// -// Raises complex A to the complex Zth power. -// Definition is per AMS55 # 4.2.8, -// analytically equivalent to cpow(a,z) = cexp(z clog(a)). -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// IEEE -10,+10 30000 9.4e-15 1.5e-15 - -// Pow returns x**y, the base-x exponential of y. -// For generalized compatibility with math.Pow: -// Pow(0, ±0) returns 1+0i -// Pow(0, c) for real(c)<0 returns Inf+0i if imag(c) is zero, otherwise Inf+Inf i. -func Pow(x, y complex128) complex128 { - if x == 0 { // Guaranteed also true for x == -0. - r, i := real(y), imag(y) - switch { - case r == 0: - return 1 - case r < 0: - if i == 0 { - return complex(math.Inf(1), 0) - } - return Inf() - case r > 0: - return 0 - } - panic("not reached") - } - modulus := Abs(x) - if modulus == 0 { - return complex(0, 0) - } - r := math.Pow(modulus, real(y)) - arg := Phase(x) - theta := real(y) * arg - if imag(y) != 0 { - r *= math.Exp(-imag(y) * arg) - theta += imag(y) * math.Log(modulus) - } - s, c := math.Sincos(theta) - return complex(r*c, r*s) -} diff --git a/src/pkg/math/cmplx/rect.go b/src/pkg/math/cmplx/rect.go deleted file mode 100644 index bf94d787e..000000000 --- a/src/pkg/math/cmplx/rect.go +++ /dev/null @@ -1,13 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cmplx - -import "math" - -// Rect returns the complex number x with polar coordinates r, θ. -func Rect(r, θ float64) complex128 { - s, c := math.Sincos(θ) - return complex(r*c, r*s) -} diff --git a/src/pkg/math/cmplx/sin.go b/src/pkg/math/cmplx/sin.go deleted file mode 100644 index 2c57536ed..000000000 --- a/src/pkg/math/cmplx/sin.go +++ /dev/null @@ -1,132 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cmplx - -import "math" - -// The original C code, the long comment, and the constants -// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. -// The go code is a simplified version of the original C. -// -// Cephes Math Library Release 2.8: June, 2000 -// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier -// -// The readme file at http://netlib.sandia.gov/cephes/ says: -// Some software in this archive may be from the book _Methods and -// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster -// International, 1989) or from the Cephes Mathematical Library, a -// commercial product. In either event, it is copyrighted by the author. -// What you see here may be used freely but it comes with no support or -// guarantee. -// -// The two known misprints in the book are repaired here in the -// source listings for the gamma function and the incomplete beta -// integral. -// -// Stephen L. Moshier -// moshier@na-net.ornl.gov - -// Complex circular sine -// -// DESCRIPTION: -// -// If -// z = x + iy, -// -// then -// -// w = sin x cosh y + i cos x sinh y. -// -// csin(z) = -i csinh(iz). -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// DEC -10,+10 8400 5.3e-17 1.3e-17 -// IEEE -10,+10 30000 3.8e-16 1.0e-16 -// Also tested by csin(casin(z)) = z. - -// Sin returns the sine of x. -func Sin(x complex128) complex128 { - s, c := math.Sincos(real(x)) - sh, ch := sinhcosh(imag(x)) - return complex(s*ch, c*sh) -} - -// Complex hyperbolic sine -// -// DESCRIPTION: -// -// csinh z = (cexp(z) - cexp(-z))/2 -// = sinh x * cos y + i cosh x * sin y . -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// IEEE -10,+10 30000 3.1e-16 8.2e-17 - -// Sinh returns the hyperbolic sine of x. -func Sinh(x complex128) complex128 { - s, c := math.Sincos(imag(x)) - sh, ch := sinhcosh(real(x)) - return complex(c*sh, s*ch) -} - -// Complex circular cosine -// -// DESCRIPTION: -// -// If -// z = x + iy, -// -// then -// -// w = cos x cosh y - i sin x sinh y. -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// DEC -10,+10 8400 4.5e-17 1.3e-17 -// IEEE -10,+10 30000 3.8e-16 1.0e-16 - -// Cos returns the cosine of x. -func Cos(x complex128) complex128 { - s, c := math.Sincos(real(x)) - sh, ch := sinhcosh(imag(x)) - return complex(c*ch, -s*sh) -} - -// Complex hyperbolic cosine -// -// DESCRIPTION: -// -// ccosh(z) = cosh x cos y + i sinh x sin y . -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// IEEE -10,+10 30000 2.9e-16 8.1e-17 - -// Cosh returns the hyperbolic cosine of x. -func Cosh(x complex128) complex128 { - s, c := math.Sincos(imag(x)) - sh, ch := sinhcosh(real(x)) - return complex(c*ch, s*sh) -} - -// calculate sinh and cosh -func sinhcosh(x float64) (sh, ch float64) { - if math.Abs(x) <= 0.5 { - return math.Sinh(x), math.Cosh(x) - } - e := math.Exp(x) - ei := 0.5 / e - e *= 0.5 - return e - ei, e + ei -} diff --git a/src/pkg/math/cmplx/sqrt.go b/src/pkg/math/cmplx/sqrt.go deleted file mode 100644 index 4ef6807ad..000000000 --- a/src/pkg/math/cmplx/sqrt.go +++ /dev/null @@ -1,104 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cmplx - -import "math" - -// The original C code, the long comment, and the constants -// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. -// The go code is a simplified version of the original C. -// -// Cephes Math Library Release 2.8: June, 2000 -// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier -// -// The readme file at http://netlib.sandia.gov/cephes/ says: -// Some software in this archive may be from the book _Methods and -// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster -// International, 1989) or from the Cephes Mathematical Library, a -// commercial product. In either event, it is copyrighted by the author. -// What you see here may be used freely but it comes with no support or -// guarantee. -// -// The two known misprints in the book are repaired here in the -// source listings for the gamma function and the incomplete beta -// integral. -// -// Stephen L. Moshier -// moshier@na-net.ornl.gov - -// Complex square root -// -// DESCRIPTION: -// -// If z = x + iy, r = |z|, then -// -// 1/2 -// Re w = [ (r + x)/2 ] , -// -// 1/2 -// Im w = [ (r - x)/2 ] . -// -// Cancellation error in r-x or r+x is avoided by using the -// identity 2 Re w Im w = y. -// -// Note that -w is also a square root of z. The root chosen -// is always in the right half plane and Im w has the same sign as y. -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// DEC -10,+10 25000 3.2e-17 9.6e-18 -// IEEE -10,+10 1,000,000 2.9e-16 6.1e-17 - -// Sqrt returns the square root of x. -// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x). -func Sqrt(x complex128) complex128 { - if imag(x) == 0 { - if real(x) == 0 { - return complex(0, 0) - } - if real(x) < 0 { - return complex(0, math.Sqrt(-real(x))) - } - return complex(math.Sqrt(real(x)), 0) - } - if real(x) == 0 { - if imag(x) < 0 { - r := math.Sqrt(-0.5 * imag(x)) - return complex(r, -r) - } - r := math.Sqrt(0.5 * imag(x)) - return complex(r, r) - } - a := real(x) - b := imag(x) - var scale float64 - // Rescale to avoid internal overflow or underflow. - if math.Abs(a) > 4 || math.Abs(b) > 4 { - a *= 0.25 - b *= 0.25 - scale = 2 - } else { - a *= 1.8014398509481984e16 // 2**54 - b *= 1.8014398509481984e16 - scale = 7.450580596923828125e-9 // 2**-27 - } - r := math.Hypot(a, b) - var t float64 - if a > 0 { - t = math.Sqrt(0.5*r + 0.5*a) - r = scale * math.Abs((0.5*b)/t) - t *= scale - } else { - r = math.Sqrt(0.5*r - 0.5*a) - t = scale * math.Abs((0.5*b)/r) - r *= scale - } - if b < 0 { - return complex(t, -r) - } - return complex(t, r) -} diff --git a/src/pkg/math/cmplx/tan.go b/src/pkg/math/cmplx/tan.go deleted file mode 100644 index 9485315d8..000000000 --- a/src/pkg/math/cmplx/tan.go +++ /dev/null @@ -1,184 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cmplx - -import "math" - -// The original C code, the long comment, and the constants -// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. -// The go code is a simplified version of the original C. -// -// Cephes Math Library Release 2.8: June, 2000 -// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier -// -// The readme file at http://netlib.sandia.gov/cephes/ says: -// Some software in this archive may be from the book _Methods and -// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster -// International, 1989) or from the Cephes Mathematical Library, a -// commercial product. In either event, it is copyrighted by the author. -// What you see here may be used freely but it comes with no support or -// guarantee. -// -// The two known misprints in the book are repaired here in the -// source listings for the gamma function and the incomplete beta -// integral. -// -// Stephen L. Moshier -// moshier@na-net.ornl.gov - -// Complex circular tangent -// -// DESCRIPTION: -// -// If -// z = x + iy, -// -// then -// -// sin 2x + i sinh 2y -// w = --------------------. -// cos 2x + cosh 2y -// -// On the real axis the denominator is zero at odd multiples -// of PI/2. The denominator is evaluated by its Taylor -// series near these points. -// -// ctan(z) = -i ctanh(iz). -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// DEC -10,+10 5200 7.1e-17 1.6e-17 -// IEEE -10,+10 30000 7.2e-16 1.2e-16 -// Also tested by ctan * ccot = 1 and catan(ctan(z)) = z. - -// Tan returns the tangent of x. -func Tan(x complex128) complex128 { - d := math.Cos(2*real(x)) + math.Cosh(2*imag(x)) - if math.Abs(d) < 0.25 { - d = tanSeries(x) - } - if d == 0 { - return Inf() - } - return complex(math.Sin(2*real(x))/d, math.Sinh(2*imag(x))/d) -} - -// Complex hyperbolic tangent -// -// DESCRIPTION: -// -// tanh z = (sinh 2x + i sin 2y) / (cosh 2x + cos 2y) . -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// IEEE -10,+10 30000 1.7e-14 2.4e-16 - -// Tanh returns the hyperbolic tangent of x. -func Tanh(x complex128) complex128 { - d := math.Cosh(2*real(x)) + math.Cos(2*imag(x)) - if d == 0 { - return Inf() - } - return complex(math.Sinh(2*real(x))/d, math.Sin(2*imag(x))/d) -} - -// Program to subtract nearest integer multiple of PI -func reducePi(x float64) float64 { - const ( - // extended precision value of PI: - DP1 = 3.14159265160560607910E0 // ?? 0x400921fb54000000 - DP2 = 1.98418714791870343106E-9 // ?? 0x3e210b4610000000 - DP3 = 1.14423774522196636802E-17 // ?? 0x3c6a62633145c06e - ) - t := x / math.Pi - if t >= 0 { - t += 0.5 - } else { - t -= 0.5 - } - t = float64(int64(t)) // int64(t) = the multiple - return ((x - t*DP1) - t*DP2) - t*DP3 -} - -// Taylor series expansion for cosh(2y) - cos(2x) -func tanSeries(z complex128) float64 { - const MACHEP = 1.0 / (1 << 53) - x := math.Abs(2 * real(z)) - y := math.Abs(2 * imag(z)) - x = reducePi(x) - x = x * x - y = y * y - x2 := 1.0 - y2 := 1.0 - f := 1.0 - rn := 0.0 - d := 0.0 - for { - rn += 1 - f *= rn - rn += 1 - f *= rn - x2 *= x - y2 *= y - t := y2 + x2 - t /= f - d += t - - rn += 1 - f *= rn - rn += 1 - f *= rn - x2 *= x - y2 *= y - t = y2 - x2 - t /= f - d += t - if math.Abs(t/d) <= MACHEP { - break - } - } - return d -} - -// Complex circular cotangent -// -// DESCRIPTION: -// -// If -// z = x + iy, -// -// then -// -// sin 2x - i sinh 2y -// w = --------------------. -// cosh 2y - cos 2x -// -// On the real axis, the denominator has zeros at even -// multiples of PI/2. Near these points it is evaluated -// by a Taylor series. -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// DEC -10,+10 3000 6.5e-17 1.6e-17 -// IEEE -10,+10 30000 9.2e-16 1.2e-16 -// Also tested by ctan * ccot = 1 + i0. - -// Cot returns the cotangent of x. -func Cot(x complex128) complex128 { - d := math.Cosh(2*imag(x)) - math.Cos(2*real(x)) - if math.Abs(d) < 0.25 { - d = tanSeries(x) - } - if d == 0 { - return Inf() - } - return complex(math.Sin(2*real(x))/d, -math.Sinh(2*imag(x))/d) -} diff --git a/src/pkg/math/const.go b/src/pkg/math/const.go deleted file mode 100644 index f1247c383..000000000 --- a/src/pkg/math/const.go +++ /dev/null @@ -1,51 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package math provides basic constants and mathematical functions. -package math - -// Mathematical constants. -// Reference: http://oeis.org/Axxxxxx -const ( - E = 2.71828182845904523536028747135266249775724709369995957496696763 // A001113 - Pi = 3.14159265358979323846264338327950288419716939937510582097494459 // A000796 - Phi = 1.61803398874989484820458683436563811772030917980576286213544862 // A001622 - - Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974 // A002193 - SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931 // A019774 - SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779 // A002161 - SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038 // A139339 - - Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 // A002162 - Log2E = 1 / Ln2 - Ln10 = 2.30258509299404568401799145468436420760110148862877297603332790 // A002392 - Log10E = 1 / Ln10 -) - -// Floating-point limit values. -// Max is the largest finite value representable by the type. -// SmallestNonzero is the smallest positive, non-zero value representable by the type. -const ( - MaxFloat32 = 3.40282346638528859811704183484516925440e+38 // 2**127 * (2**24 - 1) / 2**23 - SmallestNonzeroFloat32 = 1.401298464324817070923729583289916131280e-45 // 1 / 2**(127 - 1 + 23) - - MaxFloat64 = 1.797693134862315708145274237317043567981e+308 // 2**1023 * (2**53 - 1) / 2**52 - SmallestNonzeroFloat64 = 4.940656458412465441765687928682213723651e-324 // 1 / 2**(1023 - 1 + 52) -) - -// Integer limit values. -const ( - MaxInt8 = 1<<7 - 1 - MinInt8 = -1 << 7 - MaxInt16 = 1<<15 - 1 - MinInt16 = -1 << 15 - MaxInt32 = 1<<31 - 1 - MinInt32 = -1 << 31 - MaxInt64 = 1<<63 - 1 - MinInt64 = -1 << 63 - MaxUint8 = 1<<8 - 1 - MaxUint16 = 1<<16 - 1 - MaxUint32 = 1<<32 - 1 - MaxUint64 = 1<<64 - 1 -) diff --git a/src/pkg/math/copysign.go b/src/pkg/math/copysign.go deleted file mode 100644 index 719c64b9e..000000000 --- a/src/pkg/math/copysign.go +++ /dev/null @@ -1,12 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// Copysign returns a value with the magnitude -// of x and the sign of y. -func Copysign(x, y float64) float64 { - const sign = 1 << 63 - return Float64frombits(Float64bits(x)&^sign | Float64bits(y)&sign) -} diff --git a/src/pkg/math/dim.go b/src/pkg/math/dim.go deleted file mode 100644 index 1c634d415..000000000 --- a/src/pkg/math/dim.go +++ /dev/null @@ -1,72 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// Dim returns the maximum of x-y or 0. -// -// Special cases are: -// Dim(+Inf, +Inf) = NaN -// Dim(-Inf, -Inf) = NaN -// Dim(x, NaN) = Dim(NaN, x) = NaN -func Dim(x, y float64) float64 - -func dim(x, y float64) float64 { - return max(x-y, 0) -} - -// Max returns the larger of x or y. -// -// Special cases are: -// Max(x, +Inf) = Max(+Inf, x) = +Inf -// Max(x, NaN) = Max(NaN, x) = NaN -// Max(+0, ±0) = Max(±0, +0) = +0 -// Max(-0, -0) = -0 -func Max(x, y float64) float64 - -func max(x, y float64) float64 { - // special cases - switch { - case IsInf(x, 1) || IsInf(y, 1): - return Inf(1) - case IsNaN(x) || IsNaN(y): - return NaN() - case x == 0 && x == y: - if Signbit(x) { - return y - } - return x - } - if x > y { - return x - } - return y -} - -// Min returns the smaller of x or y. -// -// Special cases are: -// Min(x, -Inf) = Min(-Inf, x) = -Inf -// Min(x, NaN) = Min(NaN, x) = NaN -// Min(-0, ±0) = Min(±0, -0) = -0 -func Min(x, y float64) float64 - -func min(x, y float64) float64 { - // special cases - switch { - case IsInf(x, -1) || IsInf(y, -1): - return Inf(-1) - case IsNaN(x) || IsNaN(y): - return NaN() - case x == 0 && x == y: - if Signbit(x) { - return x - } - return y - } - if x < y { - return x - } - return y -} diff --git a/src/pkg/math/dim_386.s b/src/pkg/math/dim_386.s deleted file mode 100644 index c8194fed8..000000000 --- a/src/pkg/math/dim_386.s +++ /dev/null @@ -1,14 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Dim(SB),NOSPLIT,$0 - JMP ·dim(SB) - -TEXT ·Max(SB),NOSPLIT,$0 - JMP ·max(SB) - -TEXT ·Min(SB),NOSPLIT,$0 - JMP ·min(SB) diff --git a/src/pkg/math/dim_amd64.s b/src/pkg/math/dim_amd64.s deleted file mode 100644 index 622cc3fba..000000000 --- a/src/pkg/math/dim_amd64.s +++ /dev/null @@ -1,144 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -#define PosInf 0x7FF0000000000000 -#define NaN 0x7FF8000000000001 -#define NegInf 0xFFF0000000000000 - -// func Dim(x, y float64) float64 -TEXT ·Dim(SB),NOSPLIT,$0 - // (+Inf, +Inf) special case - MOVQ x+0(FP), BX - MOVQ y+8(FP), CX - MOVQ $PosInf, AX - CMPQ AX, BX - JNE dim2 - CMPQ AX, CX - JEQ bothInf -dim2: // (-Inf, -Inf) special case - MOVQ $NegInf, AX - CMPQ AX, BX - JNE dim3 - CMPQ AX, CX - JEQ bothInf -dim3: // (NaN, x) or (x, NaN) - MOVQ $~(1<<63), DX - MOVQ $NaN, AX - ANDQ DX, BX // x = |x| - CMPQ AX, BX - JLE isDimNaN - ANDQ DX, CX // y = |y| - CMPQ AX, CX - JLE isDimNaN - - MOVSD x+0(FP), X0 - SUBSD y+8(FP), X0 - MOVSD $(0.0), X1 - MAXSD X1, X0 - MOVSD X0, ret+16(FP) - RET -bothInf: // Dim(-Inf, -Inf) or Dim(+Inf, +Inf) - MOVQ $NaN, AX -isDimNaN: - MOVQ AX, ret+16(FP) - RET - -// func ·Max(x, y float64) float64 -TEXT ·Max(SB),NOSPLIT,$0 - // +Inf special cases - MOVQ $PosInf, AX - MOVQ x+0(FP), R8 - CMPQ AX, R8 - JEQ isPosInf - MOVQ y+8(FP), R9 - CMPQ AX, R9 - JEQ isPosInf - // NaN special cases - MOVQ $~(1<<63), DX // bit mask - MOVQ $NaN, AX - MOVQ R8, BX - ANDQ DX, BX // x = |x| - CMPQ AX, BX - JLE isMaxNaN - MOVQ R9, CX - ANDQ DX, CX // y = |y| - CMPQ AX, CX - JLE isMaxNaN - // ±0 special cases - ORQ CX, BX - JEQ isMaxZero - - MOVQ R8, X0 - MOVQ R9, X1 - MAXSD X1, X0 - MOVSD X0, ret+16(FP) - RET -isMaxNaN: // return NaN -isPosInf: // return +Inf - MOVQ AX, ret+16(FP) - RET -isMaxZero: - MOVQ $(1<<63), AX // -0.0 - CMPQ AX, R8 - JEQ +3(PC) - MOVQ R8, ret+16(FP) // return 0 - RET - MOVQ R9, ret+16(FP) // return other 0 - RET - -/* - MOVQ $0, AX - CMPQ AX, R8 - JNE +3(PC) - MOVQ R8, ret+16(FP) // return 0 - RET - MOVQ R9, ret+16(FP) // return other 0 - RET -*/ - -// func Min(x, y float64) float64 -TEXT ·Min(SB),NOSPLIT,$0 - // -Inf special cases - MOVQ $NegInf, AX - MOVQ x+0(FP), R8 - CMPQ AX, R8 - JEQ isNegInf - MOVQ y+8(FP), R9 - CMPQ AX, R9 - JEQ isNegInf - // NaN special cases - MOVQ $~(1<<63), DX - MOVQ $NaN, AX - MOVQ R8, BX - ANDQ DX, BX // x = |x| - CMPQ AX, BX - JLE isMinNaN - MOVQ R9, CX - ANDQ DX, CX // y = |y| - CMPQ AX, CX - JLE isMinNaN - // ±0 special cases - ORQ CX, BX - JEQ isMinZero - - MOVQ R8, X0 - MOVQ R9, X1 - MINSD X1, X0 - MOVSD X0, ret+16(FP) - RET -isMinNaN: // return NaN -isNegInf: // return -Inf - MOVQ AX, ret+16(FP) - RET -isMinZero: - MOVQ $(1<<63), AX // -0.0 - CMPQ AX, R8 - JEQ +3(PC) - MOVQ R9, ret+16(FP) // return other 0 - RET - MOVQ R8, ret+16(FP) // return -0 - RET - diff --git a/src/pkg/math/dim_amd64p32.s b/src/pkg/math/dim_amd64p32.s deleted file mode 100644 index e5e34479d..000000000 --- a/src/pkg/math/dim_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "dim_amd64.s" diff --git a/src/pkg/math/dim_arm.s b/src/pkg/math/dim_arm.s deleted file mode 100644 index be6695068..000000000 --- a/src/pkg/math/dim_arm.s +++ /dev/null @@ -1,14 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Dim(SB),NOSPLIT,$0 - B ·dim(SB) - -TEXT ·Min(SB),NOSPLIT,$0 - B ·min(SB) - -TEXT ·Max(SB),NOSPLIT,$0 - B ·max(SB) diff --git a/src/pkg/math/erf.go b/src/pkg/math/erf.go deleted file mode 100644 index 4cd80f80c..000000000 --- a/src/pkg/math/erf.go +++ /dev/null @@ -1,335 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -/* - Floating-point error function and complementary error function. -*/ - -// The original C code and the long comment below are -// from FreeBSD's /usr/src/lib/msun/src/s_erf.c and -// came with this notice. The go code is a simplified -// version of the original C. -// -// ==================================================== -// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. -// -// Developed at SunPro, a Sun Microsystems, Inc. business. -// Permission to use, copy, modify, and distribute this -// software is freely granted, provided that this notice -// is preserved. -// ==================================================== -// -// -// double erf(double x) -// double erfc(double x) -// x -// 2 |\ -// erf(x) = --------- | exp(-t*t)dt -// sqrt(pi) \| -// 0 -// -// erfc(x) = 1-erf(x) -// Note that -// erf(-x) = -erf(x) -// erfc(-x) = 2 - erfc(x) -// -// Method: -// 1. For |x| in [0, 0.84375] -// erf(x) = x + x*R(x**2) -// erfc(x) = 1 - erf(x) if x in [-.84375,0.25] -// = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] -// where R = P/Q where P is an odd poly of degree 8 and -// Q is an odd poly of degree 10. -// -57.90 -// | R - (erf(x)-x)/x | <= 2 -// -// -// Remark. The formula is derived by noting -// erf(x) = (2/sqrt(pi))*(x - x**3/3 + x**5/10 - x**7/42 + ....) -// and that -// 2/sqrt(pi) = 1.128379167095512573896158903121545171688 -// is close to one. The interval is chosen because the fix -// point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is -// near 0.6174), and by some experiment, 0.84375 is chosen to -// guarantee the error is less than one ulp for erf. -// -// 2. For |x| in [0.84375,1.25], let s = |x| - 1, and -// c = 0.84506291151 rounded to single (24 bits) -// erf(x) = sign(x) * (c + P1(s)/Q1(s)) -// erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 -// 1+(c+P1(s)/Q1(s)) if x < 0 -// |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 -// Remark: here we use the taylor series expansion at x=1. -// erf(1+s) = erf(1) + s*Poly(s) -// = 0.845.. + P1(s)/Q1(s) -// That is, we use rational approximation to approximate -// erf(1+s) - (c = (single)0.84506291151) -// Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] -// where -// P1(s) = degree 6 poly in s -// Q1(s) = degree 6 poly in s -// -// 3. For x in [1.25,1/0.35(~2.857143)], -// erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) -// erf(x) = 1 - erfc(x) -// where -// R1(z) = degree 7 poly in z, (z=1/x**2) -// S1(z) = degree 8 poly in z -// -// 4. For x in [1/0.35,28] -// erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 -// = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 -// = 2.0 - tiny (if x <= -6) -// erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else -// erf(x) = sign(x)*(1.0 - tiny) -// where -// R2(z) = degree 6 poly in z, (z=1/x**2) -// S2(z) = degree 7 poly in z -// -// Note1: -// To compute exp(-x*x-0.5625+R/S), let s be a single -// precision number and s := x; then -// -x*x = -s*s + (s-x)*(s+x) -// exp(-x*x-0.5626+R/S) = -// exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); -// Note2: -// Here 4 and 5 make use of the asymptotic series -// exp(-x*x) -// erfc(x) ~ ---------- * ( 1 + Poly(1/x**2) ) -// x*sqrt(pi) -// We use rational approximation to approximate -// g(s)=f(1/x**2) = log(erfc(x)*x) - x*x + 0.5625 -// Here is the error bound for R1/S1 and R2/S2 -// |R1/S1 - f(x)| < 2**(-62.57) -// |R2/S2 - f(x)| < 2**(-61.52) -// -// 5. For inf > x >= 28 -// erf(x) = sign(x) *(1 - tiny) (raise inexact) -// erfc(x) = tiny*tiny (raise underflow) if x > 0 -// = 2 - tiny if x<0 -// -// 7. Special case: -// erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, -// erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, -// erfc/erf(NaN) is NaN - -const ( - erx = 8.45062911510467529297e-01 // 0x3FEB0AC160000000 - // Coefficients for approximation to erf in [0, 0.84375] - efx = 1.28379167095512586316e-01 // 0x3FC06EBA8214DB69 - efx8 = 1.02703333676410069053e+00 // 0x3FF06EBA8214DB69 - pp0 = 1.28379167095512558561e-01 // 0x3FC06EBA8214DB68 - pp1 = -3.25042107247001499370e-01 // 0xBFD4CD7D691CB913 - pp2 = -2.84817495755985104766e-02 // 0xBF9D2A51DBD7194F - pp3 = -5.77027029648944159157e-03 // 0xBF77A291236668E4 - pp4 = -2.37630166566501626084e-05 // 0xBEF8EAD6120016AC - qq1 = 3.97917223959155352819e-01 // 0x3FD97779CDDADC09 - qq2 = 6.50222499887672944485e-02 // 0x3FB0A54C5536CEBA - qq3 = 5.08130628187576562776e-03 // 0x3F74D022C4D36B0F - qq4 = 1.32494738004321644526e-04 // 0x3F215DC9221C1A10 - qq5 = -3.96022827877536812320e-06 // 0xBED09C4342A26120 - // Coefficients for approximation to erf in [0.84375, 1.25] - pa0 = -2.36211856075265944077e-03 // 0xBF6359B8BEF77538 - pa1 = 4.14856118683748331666e-01 // 0x3FDA8D00AD92B34D - pa2 = -3.72207876035701323847e-01 // 0xBFD7D240FBB8C3F1 - pa3 = 3.18346619901161753674e-01 // 0x3FD45FCA805120E4 - pa4 = -1.10894694282396677476e-01 // 0xBFBC63983D3E28EC - pa5 = 3.54783043256182359371e-02 // 0x3FA22A36599795EB - pa6 = -2.16637559486879084300e-03 // 0xBF61BF380A96073F - qa1 = 1.06420880400844228286e-01 // 0x3FBB3E6618EEE323 - qa2 = 5.40397917702171048937e-01 // 0x3FE14AF092EB6F33 - qa3 = 7.18286544141962662868e-02 // 0x3FB2635CD99FE9A7 - qa4 = 1.26171219808761642112e-01 // 0x3FC02660E763351F - qa5 = 1.36370839120290507362e-02 // 0x3F8BEDC26B51DD1C - qa6 = 1.19844998467991074170e-02 // 0x3F888B545735151D - // Coefficients for approximation to erfc in [1.25, 1/0.35] - ra0 = -9.86494403484714822705e-03 // 0xBF843412600D6435 - ra1 = -6.93858572707181764372e-01 // 0xBFE63416E4BA7360 - ra2 = -1.05586262253232909814e+01 // 0xC0251E0441B0E726 - ra3 = -6.23753324503260060396e+01 // 0xC04F300AE4CBA38D - ra4 = -1.62396669462573470355e+02 // 0xC0644CB184282266 - ra5 = -1.84605092906711035994e+02 // 0xC067135CEBCCABB2 - ra6 = -8.12874355063065934246e+01 // 0xC054526557E4D2F2 - ra7 = -9.81432934416914548592e+00 // 0xC023A0EFC69AC25C - sa1 = 1.96512716674392571292e+01 // 0x4033A6B9BD707687 - sa2 = 1.37657754143519042600e+02 // 0x4061350C526AE721 - sa3 = 4.34565877475229228821e+02 // 0x407B290DD58A1A71 - sa4 = 6.45387271733267880336e+02 // 0x40842B1921EC2868 - sa5 = 4.29008140027567833386e+02 // 0x407AD02157700314 - sa6 = 1.08635005541779435134e+02 // 0x405B28A3EE48AE2C - sa7 = 6.57024977031928170135e+00 // 0x401A47EF8E484A93 - sa8 = -6.04244152148580987438e-02 // 0xBFAEEFF2EE749A62 - // Coefficients for approximation to erfc in [1/.35, 28] - rb0 = -9.86494292470009928597e-03 // 0xBF84341239E86F4A - rb1 = -7.99283237680523006574e-01 // 0xBFE993BA70C285DE - rb2 = -1.77579549177547519889e+01 // 0xC031C209555F995A - rb3 = -1.60636384855821916062e+02 // 0xC064145D43C5ED98 - rb4 = -6.37566443368389627722e+02 // 0xC083EC881375F228 - rb5 = -1.02509513161107724954e+03 // 0xC09004616A2E5992 - rb6 = -4.83519191608651397019e+02 // 0xC07E384E9BDC383F - sb1 = 3.03380607434824582924e+01 // 0x403E568B261D5190 - sb2 = 3.25792512996573918826e+02 // 0x40745CAE221B9F0A - sb3 = 1.53672958608443695994e+03 // 0x409802EB189D5118 - sb4 = 3.19985821950859553908e+03 // 0x40A8FFB7688C246A - sb5 = 2.55305040643316442583e+03 // 0x40A3F219CEDF3BE6 - sb6 = 4.74528541206955367215e+02 // 0x407DA874E79FE763 - sb7 = -2.24409524465858183362e+01 // 0xC03670E242712D62 -) - -// Erf returns the error function of x. -// -// Special cases are: -// Erf(+Inf) = 1 -// Erf(-Inf) = -1 -// Erf(NaN) = NaN -func Erf(x float64) float64 { - const ( - VeryTiny = 2.848094538889218e-306 // 0x0080000000000000 - Small = 1.0 / (1 << 28) // 2**-28 - ) - // special cases - switch { - case IsNaN(x): - return NaN() - case IsInf(x, 1): - return 1 - case IsInf(x, -1): - return -1 - } - sign := false - if x < 0 { - x = -x - sign = true - } - if x < 0.84375 { // |x| < 0.84375 - var temp float64 - if x < Small { // |x| < 2**-28 - if x < VeryTiny { - temp = 0.125 * (8.0*x + efx8*x) // avoid underflow - } else { - temp = x + efx*x - } - } else { - z := x * x - r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4))) - s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))) - y := r / s - temp = x + x*y - } - if sign { - return -temp - } - return temp - } - if x < 1.25 { // 0.84375 <= |x| < 1.25 - s := x - 1 - P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))) - Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))) - if sign { - return -erx - P/Q - } - return erx + P/Q - } - if x >= 6 { // inf > |x| >= 6 - if sign { - return -1 - } - return 1 - } - s := 1 / (x * x) - var R, S float64 - if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143 - R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7)))))) - S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8))))))) - } else { // |x| >= 1 / 0.35 ~ 2.857143 - R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6))))) - S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7)))))) - } - z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precision x - r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S) - if sign { - return r/x - 1 - } - return 1 - r/x -} - -// Erfc returns the complementary error function of x. -// -// Special cases are: -// Erfc(+Inf) = 0 -// Erfc(-Inf) = 2 -// Erfc(NaN) = NaN -func Erfc(x float64) float64 { - const Tiny = 1.0 / (1 << 56) // 2**-56 - // special cases - switch { - case IsNaN(x): - return NaN() - case IsInf(x, 1): - return 0 - case IsInf(x, -1): - return 2 - } - sign := false - if x < 0 { - x = -x - sign = true - } - if x < 0.84375 { // |x| < 0.84375 - var temp float64 - if x < Tiny { // |x| < 2**-56 - temp = x - } else { - z := x * x - r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4))) - s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))) - y := r / s - if x < 0.25 { // |x| < 1/4 - temp = x + x*y - } else { - temp = 0.5 + (x*y + (x - 0.5)) - } - } - if sign { - return 1 + temp - } - return 1 - temp - } - if x < 1.25 { // 0.84375 <= |x| < 1.25 - s := x - 1 - P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))) - Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))) - if sign { - return 1 + erx + P/Q - } - return 1 - erx - P/Q - - } - if x < 28 { // |x| < 28 - s := 1 / (x * x) - var R, S float64 - if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143 - R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7)))))) - S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8))))))) - } else { // |x| >= 1 / 0.35 ~ 2.857143 - if sign && x > 6 { - return 2 // x < -6 - } - R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6))))) - S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7)))))) - } - z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precision x - r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S) - if sign { - return 2 - r/x - } - return r / x - } - if sign { - return 2 - } - return 0 -} diff --git a/src/pkg/math/exp.go b/src/pkg/math/exp.go deleted file mode 100644 index f31585fa7..000000000 --- a/src/pkg/math/exp.go +++ /dev/null @@ -1,191 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// Exp returns e**x, the base-e exponential of x. -// -// Special cases are: -// Exp(+Inf) = +Inf -// Exp(NaN) = NaN -// Very large values overflow to 0 or +Inf. -// Very small values underflow to 1. -func Exp(x float64) float64 - -// The original C code, the long comment, and the constants -// below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c -// and came with this notice. The go code is a simplified -// version of the original C. -// -// ==================================================== -// Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. -// -// Permission to use, copy, modify, and distribute this -// software is freely granted, provided that this notice -// is preserved. -// ==================================================== -// -// -// exp(x) -// Returns the exponential of x. -// -// Method -// 1. Argument reduction: -// Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. -// Given x, find r and integer k such that -// -// x = k*ln2 + r, |r| <= 0.5*ln2. -// -// Here r will be represented as r = hi-lo for better -// accuracy. -// -// 2. Approximation of exp(r) by a special rational function on -// the interval [0,0.34658]: -// Write -// R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... -// We use a special Remes algorithm on [0,0.34658] to generate -// a polynomial of degree 5 to approximate R. The maximum error -// of this polynomial approximation is bounded by 2**-59. In -// other words, -// R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 -// (where z=r*r, and the values of P1 to P5 are listed below) -// and -// | 5 | -59 -// | 2.0+P1*z+...+P5*z - R(z) | <= 2 -// | | -// The computation of exp(r) thus becomes -// 2*r -// exp(r) = 1 + ------- -// R - r -// r*R1(r) -// = 1 + r + ----------- (for better accuracy) -// 2 - R1(r) -// where -// 2 4 10 -// R1(r) = r - (P1*r + P2*r + ... + P5*r ). -// -// 3. Scale back to obtain exp(x): -// From step 1, we have -// exp(x) = 2**k * exp(r) -// -// Special cases: -// exp(INF) is INF, exp(NaN) is NaN; -// exp(-INF) is 0, and -// for finite argument, only exp(0)=1 is exact. -// -// Accuracy: -// according to an error analysis, the error is always less than -// 1 ulp (unit in the last place). -// -// Misc. info. -// For IEEE double -// if x > 7.09782712893383973096e+02 then exp(x) overflow -// if x < -7.45133219101941108420e+02 then exp(x) underflow -// -// Constants: -// The hexadecimal values are the intended ones for the following -// constants. The decimal values may be used, provided that the -// compiler will convert from decimal to binary accurately enough -// to produce the hexadecimal values shown. - -func exp(x float64) float64 { - const ( - Ln2Hi = 6.93147180369123816490e-01 - Ln2Lo = 1.90821492927058770002e-10 - Log2e = 1.44269504088896338700e+00 - - Overflow = 7.09782712893383973096e+02 - Underflow = -7.45133219101941108420e+02 - NearZero = 1.0 / (1 << 28) // 2**-28 - ) - - // special cases - switch { - case IsNaN(x) || IsInf(x, 1): - return x - case IsInf(x, -1): - return 0 - case x > Overflow: - return Inf(1) - case x < Underflow: - return 0 - case -NearZero < x && x < NearZero: - return 1 + x - } - - // reduce; computed as r = hi - lo for extra precision. - var k int - switch { - case x < 0: - k = int(Log2e*x - 0.5) - case x > 0: - k = int(Log2e*x + 0.5) - } - hi := x - float64(k)*Ln2Hi - lo := float64(k) * Ln2Lo - - // compute - return expmulti(hi, lo, k) -} - -// Exp2 returns 2**x, the base-2 exponential of x. -// -// Special cases are the same as Exp. -func Exp2(x float64) float64 - -func exp2(x float64) float64 { - const ( - Ln2Hi = 6.93147180369123816490e-01 - Ln2Lo = 1.90821492927058770002e-10 - - Overflow = 1.0239999999999999e+03 - Underflow = -1.0740e+03 - ) - - // special cases - switch { - case IsNaN(x) || IsInf(x, 1): - return x - case IsInf(x, -1): - return 0 - case x > Overflow: - return Inf(1) - case x < Underflow: - return 0 - } - - // argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2. - // computed as r = hi - lo for extra precision. - var k int - switch { - case x > 0: - k = int(x + 0.5) - case x < 0: - k = int(x - 0.5) - } - t := x - float64(k) - hi := t * Ln2Hi - lo := -t * Ln2Lo - - // compute - return expmulti(hi, lo, k) -} - -// exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2. -func expmulti(hi, lo float64, k int) float64 { - const ( - P1 = 1.66666666666666019037e-01 /* 0x3FC55555; 0x5555553E */ - P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */ - P3 = 6.61375632143793436117e-05 /* 0x3F11566A; 0xAF25DE2C */ - P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */ - P5 = 4.13813679705723846039e-08 /* 0x3E663769; 0x72BEA4D0 */ - ) - - r := hi - lo - t := r * r - c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))) - y := 1 - ((lo - (r*c)/(2-c)) - hi) - // TODO(rsc): make sure Ldexp can handle boundary k - return Ldexp(y, k) -} diff --git a/src/pkg/math/exp2_386.s b/src/pkg/math/exp2_386.s deleted file mode 100644 index 7d11920c2..000000000 --- a/src/pkg/math/exp2_386.s +++ /dev/null @@ -1,40 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Exp2(x float64) float64 -TEXT ·Exp2(SB),NOSPLIT,$0 -// test bits for not-finite - MOVL x_hi+4(FP), AX - ANDL $0x7ff00000, AX - CMPL AX, $0x7ff00000 - JEQ not_finite - FMOVD x+0(FP), F0 // F0=x - FMOVD F0, F1 // F0=x, F1=x - FRNDINT // F0=int(x), F1=x - FSUBD F0, F1 // F0=int(x), F1=x-int(x) - FXCHD F0, F1 // F0=x-int(x), F1=int(x) - F2XM1 // F0=2**(x-int(x))-1, F1=int(x) - FLD1 // F0=1, F1=2**(x-int(x))-1, F2=int(x) - FADDDP F0, F1 // F0=2**(x-int(x)), F1=int(x) - FSCALE // F0=2**x, F1=int(x) - FMOVDP F0, F1 // F0=2**x - FMOVDP F0, ret+8(FP) - RET -not_finite: -// test bits for -Inf - MOVL x_hi+4(FP), BX - MOVL x_lo+0(FP), CX - CMPL BX, $0xfff00000 - JNE not_neginf - CMPL CX, $0 - JNE not_neginf - MOVL $0, ret_lo+8(FP) - MOVL $0, ret_hi+12(FP) - RET -not_neginf: - MOVL CX, ret_lo+8(FP) - MOVL BX, ret_hi+12(FP) - RET diff --git a/src/pkg/math/exp2_amd64.s b/src/pkg/math/exp2_amd64.s deleted file mode 100644 index 903c83589..000000000 --- a/src/pkg/math/exp2_amd64.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Exp2(SB),NOSPLIT,$0 - JMP ·exp2(SB) diff --git a/src/pkg/math/exp2_amd64p32.s b/src/pkg/math/exp2_amd64p32.s deleted file mode 100644 index 4d3830914..000000000 --- a/src/pkg/math/exp2_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "exp2_amd64.s" diff --git a/src/pkg/math/exp2_arm.s b/src/pkg/math/exp2_arm.s deleted file mode 100644 index 58283cd08..000000000 --- a/src/pkg/math/exp2_arm.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Exp2(SB),NOSPLIT,$0 - B ·exp2(SB) diff --git a/src/pkg/math/exp_386.s b/src/pkg/math/exp_386.s deleted file mode 100644 index 6a478a5e6..000000000 --- a/src/pkg/math/exp_386.s +++ /dev/null @@ -1,41 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Exp(x float64) float64 -TEXT ·Exp(SB),NOSPLIT,$0 -// test bits for not-finite - MOVL x_hi+4(FP), AX - ANDL $0x7ff00000, AX - CMPL AX, $0x7ff00000 - JEQ not_finite - FLDL2E // F0=log2(e) - FMULD x+0(FP), F0 // F0=x*log2(e) - FMOVD F0, F1 // F0=x*log2(e), F1=x*log2(e) - FRNDINT // F0=int(x*log2(e)), F1=x*log2(e) - FSUBD F0, F1 // F0=int(x*log2(e)), F1=x*log2(e)-int(x*log2(e)) - FXCHD F0, F1 // F0=x*log2(e)-int(x*log2(e)), F1=int(x*log2(e)) - F2XM1 // F0=2**(x*log2(e)-int(x*log2(e)))-1, F1=int(x*log2(e)) - FLD1 // F0=1, F1=2**(x*log2(e)-int(x*log2(e)))-1, F2=int(x*log2(e)) - FADDDP F0, F1 // F0=2**(x*log2(e)-int(x*log2(e))), F1=int(x*log2(e)) - FSCALE // F0=e**x, F1=int(x*log2(e)) - FMOVDP F0, F1 // F0=e**x - FMOVDP F0, ret+8(FP) - RET -not_finite: -// test bits for -Inf - MOVL x_hi+4(FP), BX - MOVL x_lo+0(FP), CX - CMPL BX, $0xfff00000 - JNE not_neginf - CMPL CX, $0 - JNE not_neginf - FLDZ // F0=0 - FMOVDP F0, ret+8(FP) - RET -not_neginf: - MOVL CX, ret_lo+8(FP) - MOVL BX, ret_hi+12(FP) - RET diff --git a/src/pkg/math/exp_amd64.s b/src/pkg/math/exp_amd64.s deleted file mode 100644 index d9cf8fd86..000000000 --- a/src/pkg/math/exp_amd64.s +++ /dev/null @@ -1,114 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// The method is based on a paper by Naoki Shibata: "Efficient evaluation -// methods of elementary functions suitable for SIMD computation", Proc. -// of International Supercomputing Conference 2010 (ISC'10), pp. 25 -- 32 -// (May 2010). The paper is available at -// http://www.springerlink.com/content/340228x165742104/ -// -// The original code and the constants below are from the author's -// implementation available at http://freshmeat.net/projects/sleef. -// The README file says, "The software is in public domain. -// You can use the software without any obligation." -// -// This code is a simplified version of the original. - -#define LN2 0.6931471805599453094172321214581766 // log_e(2) -#define LOG2E 1.4426950408889634073599246810018920 // 1/LN2 -#define LN2U 0.69314718055966295651160180568695068359375 // upper half LN2 -#define LN2L 0.28235290563031577122588448175013436025525412068e-12 // lower half LN2 -#define T0 1.0 -#define T1 0.5 -#define T2 1.6666666666666666667e-1 -#define T3 4.1666666666666666667e-2 -#define T4 8.3333333333333333333e-3 -#define T5 1.3888888888888888889e-3 -#define T6 1.9841269841269841270e-4 -#define T7 2.4801587301587301587e-5 -#define PosInf 0x7FF0000000000000 -#define NegInf 0xFFF0000000000000 - -// func Exp(x float64) float64 -TEXT ·Exp(SB),NOSPLIT,$0 -// test bits for not-finite - MOVQ x+0(FP), BX - MOVQ $~(1<<63), AX // sign bit mask - MOVQ BX, DX - ANDQ AX, DX - MOVQ $PosInf, AX - CMPQ AX, DX - JLE notFinite - MOVQ BX, X0 - MOVSD $LOG2E, X1 - MULSD X0, X1 - CVTSD2SL X1, BX // BX = exponent - CVTSL2SD BX, X1 - MOVSD $LN2U, X2 - MULSD X1, X2 - SUBSD X2, X0 - MOVSD $LN2L, X2 - MULSD X1, X2 - SUBSD X2, X0 - // reduce argument - MULSD $0.0625, X0 - // Taylor series evaluation - MOVSD $T7, X1 - MULSD X0, X1 - ADDSD $T6, X1 - MULSD X0, X1 - ADDSD $T5, X1 - MULSD X0, X1 - ADDSD $T4, X1 - MULSD X0, X1 - ADDSD $T3, X1 - MULSD X0, X1 - ADDSD $T2, X1 - MULSD X0, X1 - ADDSD $T1, X1 - MULSD X0, X1 - ADDSD $T0, X1 - MULSD X1, X0 - MOVSD $2.0, X1 - ADDSD X0, X1 - MULSD X1, X0 - MOVSD $2.0, X1 - ADDSD X0, X1 - MULSD X1, X0 - MOVSD $2.0, X1 - ADDSD X0, X1 - MULSD X1, X0 - MOVSD $2.0, X1 - ADDSD X0, X1 - MULSD X1, X0 - ADDSD $1.0, X0 - // return fr * 2**exponent - MOVL $0x3FF, AX // bias - ADDL AX, BX - JLE underflow - CMPL BX, $0x7FF - JGE overflow - MOVL $52, CX - SHLQ CX, BX - MOVQ BX, X1 - MULSD X1, X0 - MOVSD X0, ret+8(FP) - RET -notFinite: - // test bits for -Inf - MOVQ $NegInf, AX - CMPQ AX, BX - JNE notNegInf - // -Inf, return 0 -underflow: // return 0 - MOVQ $0, AX - MOVQ AX, ret+8(FP) - RET -overflow: // return +Inf - MOVQ $PosInf, BX -notNegInf: // NaN or +Inf, return x - MOVQ BX, ret+8(FP) - RET diff --git a/src/pkg/math/exp_amd64p32.s b/src/pkg/math/exp_amd64p32.s deleted file mode 100644 index 98ac2e91e..000000000 --- a/src/pkg/math/exp_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "exp_amd64.s" diff --git a/src/pkg/math/exp_arm.s b/src/pkg/math/exp_arm.s deleted file mode 100644 index ce36d03ca..000000000 --- a/src/pkg/math/exp_arm.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Exp(SB),NOSPLIT,$0 - B ·exp(SB) diff --git a/src/pkg/math/expm1.go b/src/pkg/math/expm1.go deleted file mode 100644 index 8f56e15cc..000000000 --- a/src/pkg/math/expm1.go +++ /dev/null @@ -1,237 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// The original C code, the long comment, and the constants -// below are from FreeBSD's /usr/src/lib/msun/src/s_expm1.c -// and came with this notice. The go code is a simplified -// version of the original C. -// -// ==================================================== -// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. -// -// Developed at SunPro, a Sun Microsystems, Inc. business. -// Permission to use, copy, modify, and distribute this -// software is freely granted, provided that this notice -// is preserved. -// ==================================================== -// -// expm1(x) -// Returns exp(x)-1, the exponential of x minus 1. -// -// Method -// 1. Argument reduction: -// Given x, find r and integer k such that -// -// x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 -// -// Here a correction term c will be computed to compensate -// the error in r when rounded to a floating-point number. -// -// 2. Approximating expm1(r) by a special rational function on -// the interval [0,0.34658]: -// Since -// r*(exp(r)+1)/(exp(r)-1) = 2+ r**2/6 - r**4/360 + ... -// we define R1(r*r) by -// r*(exp(r)+1)/(exp(r)-1) = 2+ r**2/6 * R1(r*r) -// That is, -// R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) -// = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) -// = 1 - r**2/60 + r**4/2520 - r**6/100800 + ... -// We use a special Reme algorithm on [0,0.347] to generate -// a polynomial of degree 5 in r*r to approximate R1. The -// maximum error of this polynomial approximation is bounded -// by 2**-61. In other words, -// R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 -// where Q1 = -1.6666666666666567384E-2, -// Q2 = 3.9682539681370365873E-4, -// Q3 = -9.9206344733435987357E-6, -// Q4 = 2.5051361420808517002E-7, -// Q5 = -6.2843505682382617102E-9; -// (where z=r*r, and the values of Q1 to Q5 are listed below) -// with error bounded by -// | 5 | -61 -// | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 -// | | -// -// expm1(r) = exp(r)-1 is then computed by the following -// specific way which minimize the accumulation rounding error: -// 2 3 -// r r [ 3 - (R1 + R1*r/2) ] -// expm1(r) = r + --- + --- * [--------------------] -// 2 2 [ 6 - r*(3 - R1*r/2) ] -// -// To compensate the error in the argument reduction, we use -// expm1(r+c) = expm1(r) + c + expm1(r)*c -// ~ expm1(r) + c + r*c -// Thus c+r*c will be added in as the correction terms for -// expm1(r+c). Now rearrange the term to avoid optimization -// screw up: -// ( 2 2 ) -// ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) -// expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) -// ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) -// ( ) -// -// = r - E -// 3. Scale back to obtain expm1(x): -// From step 1, we have -// expm1(x) = either 2**k*[expm1(r)+1] - 1 -// = or 2**k*[expm1(r) + (1-2**-k)] -// 4. Implementation notes: -// (A). To save one multiplication, we scale the coefficient Qi -// to Qi*2**i, and replace z by (x**2)/2. -// (B). To achieve maximum accuracy, we compute expm1(x) by -// (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) -// (ii) if k=0, return r-E -// (iii) if k=-1, return 0.5*(r-E)-0.5 -// (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) -// else return 1.0+2.0*(r-E); -// (v) if (k<-2||k>56) return 2**k(1-(E-r)) - 1 (or exp(x)-1) -// (vi) if k <= 20, return 2**k((1-2**-k)-(E-r)), else -// (vii) return 2**k(1-((E+2**-k)-r)) -// -// Special cases: -// expm1(INF) is INF, expm1(NaN) is NaN; -// expm1(-INF) is -1, and -// for finite argument, only expm1(0)=0 is exact. -// -// Accuracy: -// according to an error analysis, the error is always less than -// 1 ulp (unit in the last place). -// -// Misc. info. -// For IEEE double -// if x > 7.09782712893383973096e+02 then expm1(x) overflow -// -// Constants: -// The hexadecimal values are the intended ones for the following -// constants. The decimal values may be used, provided that the -// compiler will convert from decimal to binary accurately enough -// to produce the hexadecimal values shown. -// - -// Expm1 returns e**x - 1, the base-e exponential of x minus 1. -// It is more accurate than Exp(x) - 1 when x is near zero. -// -// Special cases are: -// Expm1(+Inf) = +Inf -// Expm1(-Inf) = -1 -// Expm1(NaN) = NaN -// Very large values overflow to -1 or +Inf. -func Expm1(x float64) float64 - -func expm1(x float64) float64 { - const ( - Othreshold = 7.09782712893383973096e+02 // 0x40862E42FEFA39EF - Ln2X56 = 3.88162421113569373274e+01 // 0x4043687a9f1af2b1 - Ln2HalfX3 = 1.03972077083991796413e+00 // 0x3ff0a2b23f3bab73 - Ln2Half = 3.46573590279972654709e-01 // 0x3fd62e42fefa39ef - Ln2Hi = 6.93147180369123816490e-01 // 0x3fe62e42fee00000 - Ln2Lo = 1.90821492927058770002e-10 // 0x3dea39ef35793c76 - InvLn2 = 1.44269504088896338700e+00 // 0x3ff71547652b82fe - Tiny = 1.0 / (1 << 54) // 2**-54 = 0x3c90000000000000 - // scaled coefficients related to expm1 - Q1 = -3.33333333333331316428e-02 // 0xBFA11111111110F4 - Q2 = 1.58730158725481460165e-03 // 0x3F5A01A019FE5585 - Q3 = -7.93650757867487942473e-05 // 0xBF14CE199EAADBB7 - Q4 = 4.00821782732936239552e-06 // 0x3ED0CFCA86E65239 - Q5 = -2.01099218183624371326e-07 // 0xBE8AFDB76E09C32D - ) - - // special cases - switch { - case IsInf(x, 1) || IsNaN(x): - return x - case IsInf(x, -1): - return -1 - } - - absx := x - sign := false - if x < 0 { - absx = -absx - sign = true - } - - // filter out huge argument - if absx >= Ln2X56 { // if |x| >= 56 * ln2 - if absx >= Othreshold { // if |x| >= 709.78... - return Inf(1) // overflow - } - if sign { - return -1 // x < -56*ln2, return -1.0 - } - } - - // argument reduction - var c float64 - var k int - if absx > Ln2Half { // if |x| > 0.5 * ln2 - var hi, lo float64 - if absx < Ln2HalfX3 { // and |x| < 1.5 * ln2 - if !sign { - hi = x - Ln2Hi - lo = Ln2Lo - k = 1 - } else { - hi = x + Ln2Hi - lo = -Ln2Lo - k = -1 - } - } else { - if !sign { - k = int(InvLn2*x + 0.5) - } else { - k = int(InvLn2*x - 0.5) - } - t := float64(k) - hi = x - t*Ln2Hi // t * Ln2Hi is exact here - lo = t * Ln2Lo - } - x = hi - lo - c = (hi - x) - lo - } else if absx < Tiny { // when |x| < 2**-54, return x - return x - } else { - k = 0 - } - - // x is now in primary range - hfx := 0.5 * x - hxs := x * hfx - r1 := 1 + hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))) - t := 3 - r1*hfx - e := hxs * ((r1 - t) / (6.0 - x*t)) - if k != 0 { - e = (x*(e-c) - c) - e -= hxs - switch { - case k == -1: - return 0.5*(x-e) - 0.5 - case k == 1: - if x < -0.25 { - return -2 * (e - (x + 0.5)) - } - return 1 + 2*(x-e) - case k <= -2 || k > 56: // suffice to return exp(x)-1 - y := 1 - (e - x) - y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent - return y - 1 - } - if k < 20 { - t := Float64frombits(0x3ff0000000000000 - (0x20000000000000 >> uint(k))) // t=1-2**-k - y := t - (e - x) - y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent - return y - } - t := Float64frombits(uint64((0x3ff - k) << 52)) // 2**-k - y := x - (e + t) - y += 1 - y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent - return y - } - return x - (x*e - hxs) // c is 0 -} diff --git a/src/pkg/math/expm1_386.s b/src/pkg/math/expm1_386.s deleted file mode 100644 index a48ca8a58..000000000 --- a/src/pkg/math/expm1_386.s +++ /dev/null @@ -1,57 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Expm1(x float64) float64 -TEXT ·Expm1(SB),NOSPLIT,$0 - FLDLN2 // F0=log(2) = 1/log2(e) ~ 0.693147 - FMOVD x+0(FP), F0 // F0=x, F1=1/log2(e) - FABS // F0=|x|, F1=1/log2(e) - FUCOMPP F0, F1 // compare F0 to F1 - FSTSW AX - SAHF - JCC use_exp // jump if F0 >= F1 - FLDL2E // F0=log2(e) - FMULD x+0(FP), F0 // F0=x*log2(e) (-1<F0<1) - F2XM1 // F0=e**x-1 = 2**(x*log2(e))-1 - FMOVDP F0, ret+8(FP) - RET -use_exp: -// test bits for not-finite - MOVL x_hi+4(FP), AX - ANDL $0x7ff00000, AX - CMPL AX, $0x7ff00000 - JEQ not_finite - FLDL2E // F0=log2(e) - FMULD x+0(FP), F0 // F0=x*log2(e) - FMOVD F0, F1 // F0=x*log2(e), F1=x*log2(e) - FRNDINT // F0=int(x*log2(e)), F1=x*log2(e) - FSUBD F0, F1 // F0=int(x*log2(e)), F1=x*log2(e)-int(x*log2(e)) - FXCHD F0, F1 // F0=x*log2(e)-int(x*log2(e)), F1=int(x*log2(e)) - F2XM1 // F0=2**(x*log2(e)-int(x*log2(e)))-1, F1=int(x*log2(e)) - FLD1 // F0=1, F1=2**(x*log2(e)-int(x*log2(e)))-1, F2=int(x*log2(e)) - FADDDP F0, F1 // F0=2**(x*log2(e)-int(x*log2(e))), F1=int(x*log2(e)) - FSCALE // F0=e**x, F1=int(x*log2(e)) - FMOVDP F0, F1 // F0=e**x - FLD1 // F0=1, F1=e**x - FSUBDP F0, F1 // F0=e**x-1 - FMOVDP F0, ret+8(FP) - RET -not_finite: -// test bits for -Inf - MOVL x_hi+4(FP), BX - MOVL x_lo+0(FP), CX - CMPL BX, $0xfff00000 - JNE not_neginf - CMPL CX, $0 - JNE not_neginf - FLD1 // F0=1 - FCHS // F0=-1 - FMOVDP F0, ret+8(FP) - RET -not_neginf: - MOVL CX, ret_lo+8(FP) - MOVL BX, ret_hi+12(FP) - RET diff --git a/src/pkg/math/expm1_amd64.s b/src/pkg/math/expm1_amd64.s deleted file mode 100644 index b7d5a3be0..000000000 --- a/src/pkg/math/expm1_amd64.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Expm1(SB),NOSPLIT,$0 - JMP ·expm1(SB) diff --git a/src/pkg/math/expm1_amd64p32.s b/src/pkg/math/expm1_amd64p32.s deleted file mode 100644 index 709ebefcb..000000000 --- a/src/pkg/math/expm1_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "expm1_amd64.s" diff --git a/src/pkg/math/expm1_arm.s b/src/pkg/math/expm1_arm.s deleted file mode 100644 index 5f80d872f..000000000 --- a/src/pkg/math/expm1_arm.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Expm1(SB),NOSPLIT,$0 - B ·expm1(SB) diff --git a/src/pkg/math/export_test.go b/src/pkg/math/export_test.go deleted file mode 100644 index 02992d70e..000000000 --- a/src/pkg/math/export_test.go +++ /dev/null @@ -1,11 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// Export internal functions for testing. -var ExpGo = exp -var Exp2Go = exp2 -var HypotGo = hypot -var SqrtGo = sqrt diff --git a/src/pkg/math/floor.go b/src/pkg/math/floor.go deleted file mode 100644 index 9d30629c5..000000000 --- a/src/pkg/math/floor.go +++ /dev/null @@ -1,56 +0,0 @@ -// Copyright 2009-2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// Floor returns the greatest integer value less than or equal to x. -// -// Special cases are: -// Floor(±0) = ±0 -// Floor(±Inf) = ±Inf -// Floor(NaN) = NaN -func Floor(x float64) float64 - -func floor(x float64) float64 { - if x == 0 || IsNaN(x) || IsInf(x, 0) { - return x - } - if x < 0 { - d, fract := Modf(-x) - if fract != 0.0 { - d = d + 1 - } - return -d - } - d, _ := Modf(x) - return d -} - -// Ceil returns the least integer value greater than or equal to x. -// -// Special cases are: -// Ceil(±0) = ±0 -// Ceil(±Inf) = ±Inf -// Ceil(NaN) = NaN -func Ceil(x float64) float64 - -func ceil(x float64) float64 { - return -Floor(-x) -} - -// Trunc returns the integer value of x. -// -// Special cases are: -// Trunc(±0) = ±0 -// Trunc(±Inf) = ±Inf -// Trunc(NaN) = NaN -func Trunc(x float64) float64 - -func trunc(x float64) float64 { - if x == 0 || IsNaN(x) || IsInf(x, 0) { - return x - } - d, _ := Modf(x) - return d -} diff --git a/src/pkg/math/floor_386.s b/src/pkg/math/floor_386.s deleted file mode 100644 index 31c9b174d..000000000 --- a/src/pkg/math/floor_386.s +++ /dev/null @@ -1,46 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Ceil(x float64) float64 -TEXT ·Ceil(SB),NOSPLIT,$0 - FMOVD x+0(FP), F0 // F0=x - FSTCW -2(SP) // save old Control Word - MOVW -2(SP), AX - ANDW $0xf3ff, AX - ORW $0x0800, AX // Rounding Control set to +Inf - MOVW AX, -4(SP) // store new Control Word - FLDCW -4(SP) // load new Control Word - FRNDINT // F0=Ceil(x) - FLDCW -2(SP) // load old Control Word - FMOVDP F0, ret+8(FP) - RET - -// func Floor(x float64) float64 -TEXT ·Floor(SB),NOSPLIT,$0 - FMOVD x+0(FP), F0 // F0=x - FSTCW -2(SP) // save old Control Word - MOVW -2(SP), AX - ANDW $0xf3ff, AX - ORW $0x0400, AX // Rounding Control set to -Inf - MOVW AX, -4(SP) // store new Control Word - FLDCW -4(SP) // load new Control Word - FRNDINT // F0=Floor(x) - FLDCW -2(SP) // load old Control Word - FMOVDP F0, ret+8(FP) - RET - -// func Trunc(x float64) float64 -TEXT ·Trunc(SB),NOSPLIT,$0 - FMOVD x+0(FP), F0 // F0=x - FSTCW -2(SP) // save old Control Word - MOVW -2(SP), AX - ORW $0x0c00, AX // Rounding Control set to truncate - MOVW AX, -4(SP) // store new Control Word - FLDCW -4(SP) // load new Control Word - FRNDINT // F0=Trunc(x) - FLDCW -2(SP) // load old Control Word - FMOVDP F0, ret+8(FP) - RET diff --git a/src/pkg/math/floor_amd64.s b/src/pkg/math/floor_amd64.s deleted file mode 100644 index 67b7cdec0..000000000 --- a/src/pkg/math/floor_amd64.s +++ /dev/null @@ -1,76 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -#define Big 0x4330000000000000 // 2**52 - -// func Floor(x float64) float64 -TEXT ·Floor(SB),NOSPLIT,$0 - MOVQ x+0(FP), AX - MOVQ $~(1<<63), DX // sign bit mask - ANDQ AX,DX // DX = |x| - SUBQ $1,DX - MOVQ $(Big - 1), CX // if |x| >= 2**52-1 or IsNaN(x) or |x| == 0, return x - CMPQ DX,CX - JAE isBig_floor - MOVQ AX, X0 // X0 = x - CVTTSD2SQ X0, AX - CVTSQ2SD AX, X1 // X1 = float(int(x)) - CMPSD X1, X0, 1 // compare LT; X0 = 0xffffffffffffffff or 0 - MOVSD $(-1.0), X2 - ANDPD X2, X0 // if x < float(int(x)) {X0 = -1} else {X0 = 0} - ADDSD X1, X0 - MOVSD X0, ret+8(FP) - RET -isBig_floor: - MOVQ AX, ret+8(FP) // return x - RET - -// func Ceil(x float64) float64 -TEXT ·Ceil(SB),NOSPLIT,$0 - MOVQ x+0(FP), AX - MOVQ $~(1<<63), DX // sign bit mask - MOVQ AX, BX // BX = copy of x - ANDQ DX, BX // BX = |x| - MOVQ $Big, CX // if |x| >= 2**52 or IsNaN(x), return x - CMPQ BX, CX - JAE isBig_ceil - MOVQ AX, X0 // X0 = x - MOVQ DX, X2 // X2 = sign bit mask - CVTTSD2SQ X0, AX - ANDNPD X0, X2 // X2 = sign - CVTSQ2SD AX, X1 // X1 = float(int(x)) - CMPSD X1, X0, 2 // compare LE; X0 = 0xffffffffffffffff or 0 - ORPD X2, X1 // if X1 = 0.0, incorporate sign - MOVSD $1.0, X3 - ANDNPD X3, X0 - ORPD X2, X0 // if float(int(x)) <= x {X0 = 1} else {X0 = -0} - ADDSD X1, X0 - MOVSD X0, ret+8(FP) - RET -isBig_ceil: - MOVQ AX, ret+8(FP) - RET - -// func Trunc(x float64) float64 -TEXT ·Trunc(SB),NOSPLIT,$0 - MOVQ x+0(FP), AX - MOVQ $~(1<<63), DX // sign bit mask - MOVQ AX, BX // BX = copy of x - ANDQ DX, BX // BX = |x| - MOVQ $Big, CX // if |x| >= 2**52 or IsNaN(x), return x - CMPQ BX, CX - JAE isBig_trunc - MOVQ AX, X0 - MOVQ DX, X2 // X2 = sign bit mask - CVTTSD2SQ X0, AX - ANDNPD X0, X2 // X2 = sign - CVTSQ2SD AX, X0 // X0 = float(int(x)) - ORPD X2, X0 // if X0 = 0.0, incorporate sign - MOVSD X0, ret+8(FP) - RET -isBig_trunc: - MOVQ AX, ret+8(FP) // return x - RET diff --git a/src/pkg/math/floor_amd64p32.s b/src/pkg/math/floor_amd64p32.s deleted file mode 100644 index 5b87d7a40..000000000 --- a/src/pkg/math/floor_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "floor_amd64.s" diff --git a/src/pkg/math/floor_arm.s b/src/pkg/math/floor_arm.s deleted file mode 100644 index 59091765b..000000000 --- a/src/pkg/math/floor_arm.s +++ /dev/null @@ -1,14 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Floor(SB),NOSPLIT,$0 - B ·floor(SB) - -TEXT ·Ceil(SB),NOSPLIT,$0 - B ·ceil(SB) - -TEXT ·Trunc(SB),NOSPLIT,$0 - B ·trunc(SB) diff --git a/src/pkg/math/frexp.go b/src/pkg/math/frexp.go deleted file mode 100644 index 0e26feb66..000000000 --- a/src/pkg/math/frexp.go +++ /dev/null @@ -1,33 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// Frexp breaks f into a normalized fraction -// and an integral power of two. -// It returns frac and exp satisfying f == frac × 2**exp, -// with the absolute value of frac in the interval [½, 1). -// -// Special cases are: -// Frexp(±0) = ±0, 0 -// Frexp(±Inf) = ±Inf, 0 -// Frexp(NaN) = NaN, 0 -func Frexp(f float64) (frac float64, exp int) - -func frexp(f float64) (frac float64, exp int) { - // special cases - switch { - case f == 0: - return f, 0 // correctly return -0 - case IsInf(f, 0) || IsNaN(f): - return f, 0 - } - f, exp = normalize(f) - x := Float64bits(f) - exp += int((x>>shift)&mask) - bias + 1 - x &^= mask << shift - x |= (-1 + bias) << shift - frac = Float64frombits(x) - return -} diff --git a/src/pkg/math/frexp_386.s b/src/pkg/math/frexp_386.s deleted file mode 100644 index 5bff7e215..000000000 --- a/src/pkg/math/frexp_386.s +++ /dev/null @@ -1,25 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Frexp(f float64) (frac float64, exp int) -TEXT ·Frexp(SB),NOSPLIT,$0 - FMOVD f+0(FP), F0 // F0=f - FXAM - FSTSW AX - SAHF - JNP nan_zero_inf - JCS nan_zero_inf - FXTRACT // F0=f (0<=f<1), F1=e - FMULD $(0.5), F0 // F0=f (0.5<=f<1), F1=e - FMOVDP F0, frac+8(FP) // F0=e - FLD1 // F0=1, F1=e - FADDDP F0, F1 // F0=e+1 - FMOVLP F0, exp+16(FP) // (int=int32) - RET -nan_zero_inf: - FMOVDP F0, frac+8(FP) // F0=e - MOVL $0, exp+16(FP) // exp=0 - RET diff --git a/src/pkg/math/frexp_amd64.s b/src/pkg/math/frexp_amd64.s deleted file mode 100644 index 93a321039..000000000 --- a/src/pkg/math/frexp_amd64.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Frexp(SB),NOSPLIT,$0 - JMP ·frexp(SB) diff --git a/src/pkg/math/frexp_amd64p32.s b/src/pkg/math/frexp_amd64p32.s deleted file mode 100644 index fbb564539..000000000 --- a/src/pkg/math/frexp_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "frexp_amd64.s" diff --git a/src/pkg/math/frexp_arm.s b/src/pkg/math/frexp_arm.s deleted file mode 100644 index 7842eca59..000000000 --- a/src/pkg/math/frexp_arm.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Frexp(SB),NOSPLIT,$0 - B ·frexp(SB) diff --git a/src/pkg/math/gamma.go b/src/pkg/math/gamma.go deleted file mode 100644 index 164f54f33..000000000 --- a/src/pkg/math/gamma.go +++ /dev/null @@ -1,202 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// The original C code, the long comment, and the constants -// below are from http://netlib.sandia.gov/cephes/cprob/gamma.c. -// The go code is a simplified version of the original C. -// -// tgamma.c -// -// Gamma function -// -// SYNOPSIS: -// -// double x, y, tgamma(); -// extern int signgam; -// -// y = tgamma( x ); -// -// DESCRIPTION: -// -// Returns gamma function of the argument. The result is -// correctly signed, and the sign (+1 or -1) is also -// returned in a global (extern) variable named signgam. -// This variable is also filled in by the logarithmic gamma -// function lgamma(). -// -// Arguments |x| <= 34 are reduced by recurrence and the function -// approximated by a rational function of degree 6/7 in the -// interval (2,3). Large arguments are handled by Stirling's -// formula. Large negative arguments are made positive using -// a reflection formula. -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// DEC -34, 34 10000 1.3e-16 2.5e-17 -// IEEE -170,-33 20000 2.3e-15 3.3e-16 -// IEEE -33, 33 20000 9.4e-16 2.2e-16 -// IEEE 33, 171.6 20000 2.3e-15 3.2e-16 -// -// Error for arguments outside the test range will be larger -// owing to error amplification by the exponential function. -// -// Cephes Math Library Release 2.8: June, 2000 -// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier -// -// The readme file at http://netlib.sandia.gov/cephes/ says: -// Some software in this archive may be from the book _Methods and -// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster -// International, 1989) or from the Cephes Mathematical Library, a -// commercial product. In either event, it is copyrighted by the author. -// What you see here may be used freely but it comes with no support or -// guarantee. -// -// The two known misprints in the book are repaired here in the -// source listings for the gamma function and the incomplete beta -// integral. -// -// Stephen L. Moshier -// moshier@na-net.ornl.gov - -var _gamP = [...]float64{ - 1.60119522476751861407e-04, - 1.19135147006586384913e-03, - 1.04213797561761569935e-02, - 4.76367800457137231464e-02, - 2.07448227648435975150e-01, - 4.94214826801497100753e-01, - 9.99999999999999996796e-01, -} -var _gamQ = [...]float64{ - -2.31581873324120129819e-05, - 5.39605580493303397842e-04, - -4.45641913851797240494e-03, - 1.18139785222060435552e-02, - 3.58236398605498653373e-02, - -2.34591795718243348568e-01, - 7.14304917030273074085e-02, - 1.00000000000000000320e+00, -} -var _gamS = [...]float64{ - 7.87311395793093628397e-04, - -2.29549961613378126380e-04, - -2.68132617805781232825e-03, - 3.47222221605458667310e-03, - 8.33333333333482257126e-02, -} - -// Gamma function computed by Stirling's formula. -// The polynomial is valid for 33 <= x <= 172. -func stirling(x float64) float64 { - const ( - SqrtTwoPi = 2.506628274631000502417 - MaxStirling = 143.01608 - ) - w := 1 / x - w = 1 + w*((((_gamS[0]*w+_gamS[1])*w+_gamS[2])*w+_gamS[3])*w+_gamS[4]) - y := Exp(x) - if x > MaxStirling { // avoid Pow() overflow - v := Pow(x, 0.5*x-0.25) - y = v * (v / y) - } else { - y = Pow(x, x-0.5) / y - } - y = SqrtTwoPi * y * w - return y -} - -// Gamma returns the Gamma function of x. -// -// Special cases are: -// Gamma(+Inf) = +Inf -// Gamma(+0) = +Inf -// Gamma(-0) = -Inf -// Gamma(x) = NaN for integer x < 0 -// Gamma(-Inf) = NaN -// Gamma(NaN) = NaN -func Gamma(x float64) float64 { - const Euler = 0.57721566490153286060651209008240243104215933593992 // A001620 - // special cases - switch { - case isNegInt(x) || IsInf(x, -1) || IsNaN(x): - return NaN() - case x == 0: - if Signbit(x) { - return Inf(-1) - } - return Inf(1) - case x < -170.5674972726612 || x > 171.61447887182298: - return Inf(1) - } - q := Abs(x) - p := Floor(q) - if q > 33 { - if x >= 0 { - return stirling(x) - } - signgam := 1 - if ip := int(p); ip&1 == 0 { - signgam = -1 - } - z := q - p - if z > 0.5 { - p = p + 1 - z = q - p - } - z = q * Sin(Pi*z) - if z == 0 { - return Inf(signgam) - } - z = Pi / (Abs(z) * stirling(q)) - return float64(signgam) * z - } - - // Reduce argument - z := 1.0 - for x >= 3 { - x = x - 1 - z = z * x - } - for x < 0 { - if x > -1e-09 { - goto small - } - z = z / x - x = x + 1 - } - for x < 2 { - if x < 1e-09 { - goto small - } - z = z / x - x = x + 1 - } - - if x == 2 { - return z - } - - x = x - 2 - p = (((((x*_gamP[0]+_gamP[1])*x+_gamP[2])*x+_gamP[3])*x+_gamP[4])*x+_gamP[5])*x + _gamP[6] - q = ((((((x*_gamQ[0]+_gamQ[1])*x+_gamQ[2])*x+_gamQ[3])*x+_gamQ[4])*x+_gamQ[5])*x+_gamQ[6])*x + _gamQ[7] - return z * p / q - -small: - if x == 0 { - return Inf(1) - } - return z / ((1 + Euler*x) * x) -} - -func isNegInt(x float64) bool { - if x < 0 { - _, xf := Modf(x) - return xf == 0 - } - return false -} diff --git a/src/pkg/math/hypot.go b/src/pkg/math/hypot.go deleted file mode 100644 index 2087cb05b..000000000 --- a/src/pkg/math/hypot.go +++ /dev/null @@ -1,43 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -/* - Hypot -- sqrt(p*p + q*q), but overflows only if the result does. -*/ - -// Hypot returns Sqrt(p*p + q*q), taking care to avoid -// unnecessary overflow and underflow. -// -// Special cases are: -// Hypot(±Inf, q) = +Inf -// Hypot(p, ±Inf) = +Inf -// Hypot(NaN, q) = NaN -// Hypot(p, NaN) = NaN -func Hypot(p, q float64) float64 - -func hypot(p, q float64) float64 { - // special cases - switch { - case IsInf(p, 0) || IsInf(q, 0): - return Inf(1) - case IsNaN(p) || IsNaN(q): - return NaN() - } - if p < 0 { - p = -p - } - if q < 0 { - q = -q - } - if p < q { - p, q = q, p - } - if p == 0 { - return 0 - } - q = q / p - return p * Sqrt(1+q*q) -} diff --git a/src/pkg/math/hypot_386.s b/src/pkg/math/hypot_386.s deleted file mode 100644 index d321f465b..000000000 --- a/src/pkg/math/hypot_386.s +++ /dev/null @@ -1,59 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Hypot(p, q float64) float64 -TEXT ·Hypot(SB),NOSPLIT,$0 -// test bits for not-finite - MOVL p_hi+4(FP), AX // high word p - ANDL $0x7ff00000, AX - CMPL AX, $0x7ff00000 - JEQ not_finite - MOVL q_hi+12(FP), AX // high word q - ANDL $0x7ff00000, AX - CMPL AX, $0x7ff00000 - JEQ not_finite - FMOVD p+0(FP), F0 // F0=p - FABS // F0=|p| - FMOVD q+8(FP), F0 // F0=q, F1=|p| - FABS // F0=|q|, F1=|p| - FUCOMI F0, F1 // compare F0 to F1 - JCC 2(PC) // jump if F0 >= F1 - FXCHD F0, F1 // F0=|p| (larger), F1=|q| (smaller) - FTST // compare F0 to 0 - FSTSW AX - ANDW $0x4000, AX - JNE 10(PC) // jump if F0 = 0 - FXCHD F0, F1 // F0=q (smaller), F1=p (larger) - FDIVD F1, F0 // F0=q(=q/p), F1=p - FMULD F0, F0 // F0=q*q, F1=p - FLD1 // F0=1, F1=q*q, F2=p - FADDDP F0, F1 // F0=1+q*q, F1=p - FSQRT // F0=sqrt(1+q*q), F1=p - FMULDP F0, F1 // F0=p*sqrt(1+q*q) - FMOVDP F0, ret+16(FP) - RET - FMOVDP F0, F1 // F0=0 - FMOVDP F0, ret+16(FP) - RET -not_finite: -// test bits for -Inf or +Inf - MOVL p_hi+4(FP), AX // high word p - ORL p_lo+0(FP), AX // low word p - ANDL $0x7fffffff, AX - CMPL AX, $0x7ff00000 - JEQ is_inf - MOVL q_hi+12(FP), AX // high word q - ORL q_lo+8(FP), AX // low word q - ANDL $0x7fffffff, AX - CMPL AX, $0x7ff00000 - JEQ is_inf - MOVL $0x7ff80000, ret_hi+20(FP) // return NaN = 0x7FF8000000000001 - MOVL $0x00000001, ret_lo+16(FP) - RET -is_inf: - MOVL AX, ret_hi+20(FP) // return +Inf = 0x7FF0000000000000 - MOVL $0x00000000, ret_lo+16(FP) - RET diff --git a/src/pkg/math/hypot_amd64.s b/src/pkg/math/hypot_amd64.s deleted file mode 100644 index a68eebc8c..000000000 --- a/src/pkg/math/hypot_amd64.s +++ /dev/null @@ -1,52 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -#define PosInf 0x7FF0000000000000 -#define NaN 0x7FF8000000000001 - -// func Hypot(p, q float64) float64 -TEXT ·Hypot(SB),NOSPLIT,$0 - // test bits for special cases - MOVQ p+0(FP), BX - MOVQ $~(1<<63), AX - ANDQ AX, BX // p = |p| - MOVQ q+8(FP), CX - ANDQ AX, CX // q = |q| - MOVQ $PosInf, AX - CMPQ AX, BX - JLE isInfOrNaN - CMPQ AX, CX - JLE isInfOrNaN - // hypot = max * sqrt(1 + (min/max)**2) - MOVQ BX, X0 - MOVQ CX, X1 - ORQ CX, BX - JEQ isZero - MOVAPD X0, X2 - MAXSD X1, X0 - MINSD X2, X1 - DIVSD X0, X1 - MULSD X1, X1 - ADDSD $1.0, X1 - SQRTSD X1, X1 - MULSD X1, X0 - MOVSD X0, ret+16(FP) - RET -isInfOrNaN: - CMPQ AX, BX - JEQ isInf - CMPQ AX, CX - JEQ isInf - MOVQ $NaN, AX - MOVQ AX, ret+16(FP) // return NaN - RET -isInf: - MOVQ AX, ret+16(FP) // return +Inf - RET -isZero: - MOVQ $0, AX - MOVQ AX, ret+16(FP) // return 0 - RET diff --git a/src/pkg/math/hypot_amd64p32.s b/src/pkg/math/hypot_amd64p32.s deleted file mode 100644 index b84542ae3..000000000 --- a/src/pkg/math/hypot_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "hypot_amd64.s" diff --git a/src/pkg/math/hypot_arm.s b/src/pkg/math/hypot_arm.s deleted file mode 100644 index 9c8abca13..000000000 --- a/src/pkg/math/hypot_arm.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Hypot(SB),NOSPLIT,$0 - B ·hypot(SB) diff --git a/src/pkg/math/j0.go b/src/pkg/math/j0.go deleted file mode 100644 index c20a9b22a..000000000 --- a/src/pkg/math/j0.go +++ /dev/null @@ -1,429 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -/* - Bessel function of the first and second kinds of order zero. -*/ - -// The original C code and the long comment below are -// from FreeBSD's /usr/src/lib/msun/src/e_j0.c and -// came with this notice. The go code is a simplified -// version of the original C. -// -// ==================================================== -// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. -// -// Developed at SunPro, a Sun Microsystems, Inc. business. -// Permission to use, copy, modify, and distribute this -// software is freely granted, provided that this notice -// is preserved. -// ==================================================== -// -// __ieee754_j0(x), __ieee754_y0(x) -// Bessel function of the first and second kinds of order zero. -// Method -- j0(x): -// 1. For tiny x, we use j0(x) = 1 - x**2/4 + x**4/64 - ... -// 2. Reduce x to |x| since j0(x)=j0(-x), and -// for x in (0,2) -// j0(x) = 1-z/4+ z**2*R0/S0, where z = x*x; -// (precision: |j0-1+z/4-z**2R0/S0 |<2**-63.67 ) -// for x in (2,inf) -// j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) -// where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) -// as follow: -// cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) -// = 1/sqrt(2) * (cos(x) + sin(x)) -// sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) -// = 1/sqrt(2) * (sin(x) - cos(x)) -// (To avoid cancellation, use -// sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) -// to compute the worse one.) -// -// 3 Special cases -// j0(nan)= nan -// j0(0) = 1 -// j0(inf) = 0 -// -// Method -- y0(x): -// 1. For x<2. -// Since -// y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x**2/4 - ...) -// therefore y0(x)-2/pi*j0(x)*ln(x) is an even function. -// We use the following function to approximate y0, -// y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x**2 -// where -// U(z) = u00 + u01*z + ... + u06*z**6 -// V(z) = 1 + v01*z + ... + v04*z**4 -// with absolute approximation error bounded by 2**-72. -// Note: For tiny x, U/V = u0 and j0(x)~1, hence -// y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27) -// 2. For x>=2. -// y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) -// where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) -// by the method mentioned above. -// 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0. -// - -// J0 returns the order-zero Bessel function of the first kind. -// -// Special cases are: -// J0(±Inf) = 0 -// J0(0) = 1 -// J0(NaN) = NaN -func J0(x float64) float64 { - const ( - Huge = 1e300 - TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000 - TwoM13 = 1.0 / (1 << 13) // 2**-13 0x3f20000000000000 - Two129 = 1 << 129 // 2**129 0x4800000000000000 - // R0/S0 on [0, 2] - R02 = 1.56249999999999947958e-02 // 0x3F8FFFFFFFFFFFFD - R03 = -1.89979294238854721751e-04 // 0xBF28E6A5B61AC6E9 - R04 = 1.82954049532700665670e-06 // 0x3EBEB1D10C503919 - R05 = -4.61832688532103189199e-09 // 0xBE33D5E773D63FCE - S01 = 1.56191029464890010492e-02 // 0x3F8FFCE882C8C2A4 - S02 = 1.16926784663337450260e-04 // 0x3F1EA6D2DD57DBF4 - S03 = 5.13546550207318111446e-07 // 0x3EA13B54CE84D5A9 - S04 = 1.16614003333790000205e-09 // 0x3E1408BCF4745D8F - ) - // special cases - switch { - case IsNaN(x): - return x - case IsInf(x, 0): - return 0 - case x == 0: - return 1 - } - - if x < 0 { - x = -x - } - if x >= 2 { - s, c := Sincos(x) - ss := s - c - cc := s + c - - // make sure x+x does not overflow - if x < MaxFloat64/2 { - z := -Cos(x + x) - if s*c < 0 { - cc = z / ss - } else { - ss = z / cc - } - } - - // j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) - // y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) - - var z float64 - if x > Two129 { // |x| > ~6.8056e+38 - z = (1 / SqrtPi) * cc / Sqrt(x) - } else { - u := pzero(x) - v := qzero(x) - z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x) - } - return z // |x| >= 2.0 - } - if x < TwoM13 { // |x| < ~1.2207e-4 - if x < TwoM27 { - return 1 // |x| < ~7.4506e-9 - } - return 1 - 0.25*x*x // ~7.4506e-9 < |x| < ~1.2207e-4 - } - z := x * x - r := z * (R02 + z*(R03+z*(R04+z*R05))) - s := 1 + z*(S01+z*(S02+z*(S03+z*S04))) - if x < 1 { - return 1 + z*(-0.25+(r/s)) // |x| < 1.00 - } - u := 0.5 * x - return (1+u)*(1-u) + z*(r/s) // 1.0 < |x| < 2.0 -} - -// Y0 returns the order-zero Bessel function of the second kind. -// -// Special cases are: -// Y0(+Inf) = 0 -// Y0(0) = -Inf -// Y0(x < 0) = NaN -// Y0(NaN) = NaN -func Y0(x float64) float64 { - const ( - TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000 - Two129 = 1 << 129 // 2**129 0x4800000000000000 - U00 = -7.38042951086872317523e-02 // 0xBFB2E4D699CBD01F - U01 = 1.76666452509181115538e-01 // 0x3FC69D019DE9E3FC - U02 = -1.38185671945596898896e-02 // 0xBF8C4CE8B16CFA97 - U03 = 3.47453432093683650238e-04 // 0x3F36C54D20B29B6B - U04 = -3.81407053724364161125e-06 // 0xBECFFEA773D25CAD - U05 = 1.95590137035022920206e-08 // 0x3E5500573B4EABD4 - U06 = -3.98205194132103398453e-11 // 0xBDC5E43D693FB3C8 - V01 = 1.27304834834123699328e-02 // 0x3F8A127091C9C71A - V02 = 7.60068627350353253702e-05 // 0x3F13ECBBF578C6C1 - V03 = 2.59150851840457805467e-07 // 0x3E91642D7FF202FD - V04 = 4.41110311332675467403e-10 // 0x3DFE50183BD6D9EF - ) - // special cases - switch { - case x < 0 || IsNaN(x): - return NaN() - case IsInf(x, 1): - return 0 - case x == 0: - return Inf(-1) - } - - if x >= 2 { // |x| >= 2.0 - - // y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) - // where x0 = x-pi/4 - // Better formula: - // cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) - // = 1/sqrt(2) * (sin(x) + cos(x)) - // sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) - // = 1/sqrt(2) * (sin(x) - cos(x)) - // To avoid cancellation, use - // sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - // to compute the worse one. - - s, c := Sincos(x) - ss := s - c - cc := s + c - - // j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) - // y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) - - // make sure x+x does not overflow - if x < MaxFloat64/2 { - z := -Cos(x + x) - if s*c < 0 { - cc = z / ss - } else { - ss = z / cc - } - } - var z float64 - if x > Two129 { // |x| > ~6.8056e+38 - z = (1 / SqrtPi) * ss / Sqrt(x) - } else { - u := pzero(x) - v := qzero(x) - z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x) - } - return z // |x| >= 2.0 - } - if x <= TwoM27 { - return U00 + (2/Pi)*Log(x) // |x| < ~7.4506e-9 - } - z := x * x - u := U00 + z*(U01+z*(U02+z*(U03+z*(U04+z*(U05+z*U06))))) - v := 1 + z*(V01+z*(V02+z*(V03+z*V04))) - return u/v + (2/Pi)*J0(x)*Log(x) // ~7.4506e-9 < |x| < 2.0 -} - -// The asymptotic expansions of pzero is -// 1 - 9/128 s**2 + 11025/98304 s**4 - ..., where s = 1/x. -// For x >= 2, We approximate pzero by -// pzero(x) = 1 + (R/S) -// where R = pR0 + pR1*s**2 + pR2*s**4 + ... + pR5*s**10 -// S = 1 + pS0*s**2 + ... + pS4*s**10 -// and -// | pzero(x)-1-R/S | <= 2 ** ( -60.26) - -// for x in [inf, 8]=1/[0,0.125] -var p0R8 = [6]float64{ - 0.00000000000000000000e+00, // 0x0000000000000000 - -7.03124999999900357484e-02, // 0xBFB1FFFFFFFFFD32 - -8.08167041275349795626e+00, // 0xC02029D0B44FA779 - -2.57063105679704847262e+02, // 0xC07011027B19E863 - -2.48521641009428822144e+03, // 0xC0A36A6ECD4DCAFC - -5.25304380490729545272e+03, // 0xC0B4850B36CC643D -} -var p0S8 = [5]float64{ - 1.16534364619668181717e+02, // 0x405D223307A96751 - 3.83374475364121826715e+03, // 0x40ADF37D50596938 - 4.05978572648472545552e+04, // 0x40E3D2BB6EB6B05F - 1.16752972564375915681e+05, // 0x40FC810F8F9FA9BD - 4.76277284146730962675e+04, // 0x40E741774F2C49DC -} - -// for x in [8,4.5454]=1/[0.125,0.22001] -var p0R5 = [6]float64{ - -1.14125464691894502584e-11, // 0xBDA918B147E495CC - -7.03124940873599280078e-02, // 0xBFB1FFFFE69AFBC6 - -4.15961064470587782438e+00, // 0xC010A370F90C6BBF - -6.76747652265167261021e+01, // 0xC050EB2F5A7D1783 - -3.31231299649172967747e+02, // 0xC074B3B36742CC63 - -3.46433388365604912451e+02, // 0xC075A6EF28A38BD7 -} -var p0S5 = [5]float64{ - 6.07539382692300335975e+01, // 0x404E60810C98C5DE - 1.05125230595704579173e+03, // 0x40906D025C7E2864 - 5.97897094333855784498e+03, // 0x40B75AF88FBE1D60 - 9.62544514357774460223e+03, // 0x40C2CCB8FA76FA38 - 2.40605815922939109441e+03, // 0x40A2CC1DC70BE864 -} - -// for x in [4.547,2.8571]=1/[0.2199,0.35001] -var p0R3 = [6]float64{ - -2.54704601771951915620e-09, // 0xBE25E1036FE1AA86 - -7.03119616381481654654e-02, // 0xBFB1FFF6F7C0E24B - -2.40903221549529611423e+00, // 0xC00345B2AEA48074 - -2.19659774734883086467e+01, // 0xC035F74A4CB94E14 - -5.80791704701737572236e+01, // 0xC04D0A22420A1A45 - -3.14479470594888503854e+01, // 0xC03F72ACA892D80F -} -var p0S3 = [5]float64{ - 3.58560338055209726349e+01, // 0x4041ED9284077DD3 - 3.61513983050303863820e+02, // 0x40769839464A7C0E - 1.19360783792111533330e+03, // 0x4092A66E6D1061D6 - 1.12799679856907414432e+03, // 0x40919FFCB8C39B7E - 1.73580930813335754692e+02, // 0x4065B296FC379081 -} - -// for x in [2.8570,2]=1/[0.3499,0.5] -var p0R2 = [6]float64{ - -8.87534333032526411254e-08, // 0xBE77D316E927026D - -7.03030995483624743247e-02, // 0xBFB1FF62495E1E42 - -1.45073846780952986357e+00, // 0xBFF736398A24A843 - -7.63569613823527770791e+00, // 0xC01E8AF3EDAFA7F3 - -1.11931668860356747786e+01, // 0xC02662E6C5246303 - -3.23364579351335335033e+00, // 0xC009DE81AF8FE70F -} -var p0S2 = [5]float64{ - 2.22202997532088808441e+01, // 0x40363865908B5959 - 1.36206794218215208048e+02, // 0x4061069E0EE8878F - 2.70470278658083486789e+02, // 0x4070E78642EA079B - 1.53875394208320329881e+02, // 0x40633C033AB6FAFF - 1.46576176948256193810e+01, // 0x402D50B344391809 -} - -func pzero(x float64) float64 { - var p [6]float64 - var q [5]float64 - if x >= 8 { - p = p0R8 - q = p0S8 - } else if x >= 4.5454 { - p = p0R5 - q = p0S5 - } else if x >= 2.8571 { - p = p0R3 - q = p0S3 - } else if x >= 2 { - p = p0R2 - q = p0S2 - } - z := 1 / (x * x) - r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))) - s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))) - return 1 + r/s -} - -// For x >= 8, the asymptotic expansions of qzero is -// -1/8 s + 75/1024 s**3 - ..., where s = 1/x. -// We approximate pzero by -// qzero(x) = s*(-1.25 + (R/S)) -// where R = qR0 + qR1*s**2 + qR2*s**4 + ... + qR5*s**10 -// S = 1 + qS0*s**2 + ... + qS5*s**12 -// and -// | qzero(x)/s +1.25-R/S | <= 2**(-61.22) - -// for x in [inf, 8]=1/[0,0.125] -var q0R8 = [6]float64{ - 0.00000000000000000000e+00, // 0x0000000000000000 - 7.32421874999935051953e-02, // 0x3FB2BFFFFFFFFE2C - 1.17682064682252693899e+01, // 0x402789525BB334D6 - 5.57673380256401856059e+02, // 0x40816D6315301825 - 8.85919720756468632317e+03, // 0x40C14D993E18F46D - 3.70146267776887834771e+04, // 0x40E212D40E901566 -} -var q0S8 = [6]float64{ - 1.63776026895689824414e+02, // 0x406478D5365B39BC - 8.09834494656449805916e+03, // 0x40BFA2584E6B0563 - 1.42538291419120476348e+05, // 0x4101665254D38C3F - 8.03309257119514397345e+05, // 0x412883DA83A52B43 - 8.40501579819060512818e+05, // 0x4129A66B28DE0B3D - -3.43899293537866615225e+05, // 0xC114FD6D2C9530C5 -} - -// for x in [8,4.5454]=1/[0.125,0.22001] -var q0R5 = [6]float64{ - 1.84085963594515531381e-11, // 0x3DB43D8F29CC8CD9 - 7.32421766612684765896e-02, // 0x3FB2BFFFD172B04C - 5.83563508962056953777e+00, // 0x401757B0B9953DD3 - 1.35111577286449829671e+02, // 0x4060E3920A8788E9 - 1.02724376596164097464e+03, // 0x40900CF99DC8C481 - 1.98997785864605384631e+03, // 0x409F17E953C6E3A6 -} -var q0S5 = [6]float64{ - 8.27766102236537761883e+01, // 0x4054B1B3FB5E1543 - 2.07781416421392987104e+03, // 0x40A03BA0DA21C0CE - 1.88472887785718085070e+04, // 0x40D267D27B591E6D - 5.67511122894947329769e+04, // 0x40EBB5E397E02372 - 3.59767538425114471465e+04, // 0x40E191181F7A54A0 - -5.35434275601944773371e+03, // 0xC0B4EA57BEDBC609 -} - -// for x in [4.547,2.8571]=1/[0.2199,0.35001] -var q0R3 = [6]float64{ - 4.37741014089738620906e-09, // 0x3E32CD036ADECB82 - 7.32411180042911447163e-02, // 0x3FB2BFEE0E8D0842 - 3.34423137516170720929e+00, // 0x400AC0FC61149CF5 - 4.26218440745412650017e+01, // 0x40454F98962DAEDD - 1.70808091340565596283e+02, // 0x406559DBE25EFD1F - 1.66733948696651168575e+02, // 0x4064D77C81FA21E0 -} -var q0S3 = [6]float64{ - 4.87588729724587182091e+01, // 0x40486122BFE343A6 - 7.09689221056606015736e+02, // 0x40862D8386544EB3 - 3.70414822620111362994e+03, // 0x40ACF04BE44DFC63 - 6.46042516752568917582e+03, // 0x40B93C6CD7C76A28 - 2.51633368920368957333e+03, // 0x40A3A8AAD94FB1C0 - -1.49247451836156386662e+02, // 0xC062A7EB201CF40F -} - -// for x in [2.8570,2]=1/[0.3499,0.5] -var q0R2 = [6]float64{ - 1.50444444886983272379e-07, // 0x3E84313B54F76BDB - 7.32234265963079278272e-02, // 0x3FB2BEC53E883E34 - 1.99819174093815998816e+00, // 0x3FFFF897E727779C - 1.44956029347885735348e+01, // 0x402CFDBFAAF96FE5 - 3.16662317504781540833e+01, // 0x403FAA8E29FBDC4A - 1.62527075710929267416e+01, // 0x403040B171814BB4 -} -var q0S2 = [6]float64{ - 3.03655848355219184498e+01, // 0x403E5D96F7C07AED - 2.69348118608049844624e+02, // 0x4070D591E4D14B40 - 8.44783757595320139444e+02, // 0x408A664522B3BF22 - 8.82935845112488550512e+02, // 0x408B977C9C5CC214 - 2.12666388511798828631e+02, // 0x406A95530E001365 - -5.31095493882666946917e+00, // 0xC0153E6AF8B32931 -} - -func qzero(x float64) float64 { - var p, q [6]float64 - if x >= 8 { - p = q0R8 - q = q0S8 - } else if x >= 4.5454 { - p = q0R5 - q = q0S5 - } else if x >= 2.8571 { - p = q0R3 - q = q0S3 - } else if x >= 2 { - p = q0R2 - q = q0S2 - } - z := 1 / (x * x) - r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))) - s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))) - return (-0.125 + r/s) / x -} diff --git a/src/pkg/math/j1.go b/src/pkg/math/j1.go deleted file mode 100644 index 7ac186b72..000000000 --- a/src/pkg/math/j1.go +++ /dev/null @@ -1,422 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -/* - Bessel function of the first and second kinds of order one. -*/ - -// The original C code and the long comment below are -// from FreeBSD's /usr/src/lib/msun/src/e_j1.c and -// came with this notice. The go code is a simplified -// version of the original C. -// -// ==================================================== -// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. -// -// Developed at SunPro, a Sun Microsystems, Inc. business. -// Permission to use, copy, modify, and distribute this -// software is freely granted, provided that this notice -// is preserved. -// ==================================================== -// -// __ieee754_j1(x), __ieee754_y1(x) -// Bessel function of the first and second kinds of order one. -// Method -- j1(x): -// 1. For tiny x, we use j1(x) = x/2 - x**3/16 + x**5/384 - ... -// 2. Reduce x to |x| since j1(x)=-j1(-x), and -// for x in (0,2) -// j1(x) = x/2 + x*z*R0/S0, where z = x*x; -// (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 ) -// for x in (2,inf) -// j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) -// y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) -// where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) -// as follow: -// cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) -// = 1/sqrt(2) * (sin(x) - cos(x)) -// sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) -// = -1/sqrt(2) * (sin(x) + cos(x)) -// (To avoid cancellation, use -// sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) -// to compute the worse one.) -// -// 3 Special cases -// j1(nan)= nan -// j1(0) = 0 -// j1(inf) = 0 -// -// Method -- y1(x): -// 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN -// 2. For x<2. -// Since -// y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x**3-...) -// therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function. -// We use the following function to approximate y1, -// y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x**2 -// where for x in [0,2] (abs err less than 2**-65.89) -// U(z) = U0[0] + U0[1]*z + ... + U0[4]*z**4 -// V(z) = 1 + v0[0]*z + ... + v0[4]*z**5 -// Note: For tiny x, 1/x dominate y1 and hence -// y1(tiny) = -2/pi/tiny, (choose tiny<2**-54) -// 3. For x>=2. -// y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) -// where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) -// by method mentioned above. - -// J1 returns the order-one Bessel function of the first kind. -// -// Special cases are: -// J1(±Inf) = 0 -// J1(NaN) = NaN -func J1(x float64) float64 { - const ( - TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000 - Two129 = 1 << 129 // 2**129 0x4800000000000000 - // R0/S0 on [0, 2] - R00 = -6.25000000000000000000e-02 // 0xBFB0000000000000 - R01 = 1.40705666955189706048e-03 // 0x3F570D9F98472C61 - R02 = -1.59955631084035597520e-05 // 0xBEF0C5C6BA169668 - R03 = 4.96727999609584448412e-08 // 0x3E6AAAFA46CA0BD9 - S01 = 1.91537599538363460805e-02 // 0x3F939D0B12637E53 - S02 = 1.85946785588630915560e-04 // 0x3F285F56B9CDF664 - S03 = 1.17718464042623683263e-06 // 0x3EB3BFF8333F8498 - S04 = 5.04636257076217042715e-09 // 0x3E35AC88C97DFF2C - S05 = 1.23542274426137913908e-11 // 0x3DAB2ACFCFB97ED8 - ) - // special cases - switch { - case IsNaN(x): - return x - case IsInf(x, 0) || x == 0: - return 0 - } - - sign := false - if x < 0 { - x = -x - sign = true - } - if x >= 2 { - s, c := Sincos(x) - ss := -s - c - cc := s - c - - // make sure x+x does not overflow - if x < MaxFloat64/2 { - z := Cos(x + x) - if s*c > 0 { - cc = z / ss - } else { - ss = z / cc - } - } - - // j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) - // y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) - - var z float64 - if x > Two129 { - z = (1 / SqrtPi) * cc / Sqrt(x) - } else { - u := pone(x) - v := qone(x) - z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x) - } - if sign { - return -z - } - return z - } - if x < TwoM27 { // |x|<2**-27 - return 0.5 * x // inexact if x!=0 necessary - } - z := x * x - r := z * (R00 + z*(R01+z*(R02+z*R03))) - s := 1.0 + z*(S01+z*(S02+z*(S03+z*(S04+z*S05)))) - r *= x - z = 0.5*x + r/s - if sign { - return -z - } - return z -} - -// Y1 returns the order-one Bessel function of the second kind. -// -// Special cases are: -// Y1(+Inf) = 0 -// Y1(0) = -Inf -// Y1(x < 0) = NaN -// Y1(NaN) = NaN -func Y1(x float64) float64 { - const ( - TwoM54 = 1.0 / (1 << 54) // 2**-54 0x3c90000000000000 - Two129 = 1 << 129 // 2**129 0x4800000000000000 - U00 = -1.96057090646238940668e-01 // 0xBFC91866143CBC8A - U01 = 5.04438716639811282616e-02 // 0x3FA9D3C776292CD1 - U02 = -1.91256895875763547298e-03 // 0xBF5F55E54844F50F - U03 = 2.35252600561610495928e-05 // 0x3EF8AB038FA6B88E - U04 = -9.19099158039878874504e-08 // 0xBE78AC00569105B8 - V00 = 1.99167318236649903973e-02 // 0x3F94650D3F4DA9F0 - V01 = 2.02552581025135171496e-04 // 0x3F2A8C896C257764 - V02 = 1.35608801097516229404e-06 // 0x3EB6C05A894E8CA6 - V03 = 6.22741452364621501295e-09 // 0x3E3ABF1D5BA69A86 - V04 = 1.66559246207992079114e-11 // 0x3DB25039DACA772A - ) - // special cases - switch { - case x < 0 || IsNaN(x): - return NaN() - case IsInf(x, 1): - return 0 - case x == 0: - return Inf(-1) - } - - if x >= 2 { - s, c := Sincos(x) - ss := -s - c - cc := s - c - - // make sure x+x does not overflow - if x < MaxFloat64/2 { - z := Cos(x + x) - if s*c > 0 { - cc = z / ss - } else { - ss = z / cc - } - } - // y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) - // where x0 = x-3pi/4 - // Better formula: - // cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) - // = 1/sqrt(2) * (sin(x) - cos(x)) - // sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) - // = -1/sqrt(2) * (cos(x) + sin(x)) - // To avoid cancellation, use - // sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - // to compute the worse one. - - var z float64 - if x > Two129 { - z = (1 / SqrtPi) * ss / Sqrt(x) - } else { - u := pone(x) - v := qone(x) - z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x) - } - return z - } - if x <= TwoM54 { // x < 2**-54 - return -(2 / Pi) / x - } - z := x * x - u := U00 + z*(U01+z*(U02+z*(U03+z*U04))) - v := 1 + z*(V00+z*(V01+z*(V02+z*(V03+z*V04)))) - return x*(u/v) + (2/Pi)*(J1(x)*Log(x)-1/x) -} - -// For x >= 8, the asymptotic expansions of pone is -// 1 + 15/128 s**2 - 4725/2**15 s**4 - ..., where s = 1/x. -// We approximate pone by -// pone(x) = 1 + (R/S) -// where R = pr0 + pr1*s**2 + pr2*s**4 + ... + pr5*s**10 -// S = 1 + ps0*s**2 + ... + ps4*s**10 -// and -// | pone(x)-1-R/S | <= 2**(-60.06) - -// for x in [inf, 8]=1/[0,0.125] -var p1R8 = [6]float64{ - 0.00000000000000000000e+00, // 0x0000000000000000 - 1.17187499999988647970e-01, // 0x3FBDFFFFFFFFFCCE - 1.32394806593073575129e+01, // 0x402A7A9D357F7FCE - 4.12051854307378562225e+02, // 0x4079C0D4652EA590 - 3.87474538913960532227e+03, // 0x40AE457DA3A532CC - 7.91447954031891731574e+03, // 0x40BEEA7AC32782DD -} -var p1S8 = [5]float64{ - 1.14207370375678408436e+02, // 0x405C8D458E656CAC - 3.65093083420853463394e+03, // 0x40AC85DC964D274F - 3.69562060269033463555e+04, // 0x40E20B8697C5BB7F - 9.76027935934950801311e+04, // 0x40F7D42CB28F17BB - 3.08042720627888811578e+04, // 0x40DE1511697A0B2D -} - -// for x in [8,4.5454] = 1/[0.125,0.22001] -var p1R5 = [6]float64{ - 1.31990519556243522749e-11, // 0x3DAD0667DAE1CA7D - 1.17187493190614097638e-01, // 0x3FBDFFFFE2C10043 - 6.80275127868432871736e+00, // 0x401B36046E6315E3 - 1.08308182990189109773e+02, // 0x405B13B9452602ED - 5.17636139533199752805e+02, // 0x40802D16D052D649 - 5.28715201363337541807e+02, // 0x408085B8BB7E0CB7 -} -var p1S5 = [5]float64{ - 5.92805987221131331921e+01, // 0x404DA3EAA8AF633D - 9.91401418733614377743e+02, // 0x408EFB361B066701 - 5.35326695291487976647e+03, // 0x40B4E9445706B6FB - 7.84469031749551231769e+03, // 0x40BEA4B0B8A5BB15 - 1.50404688810361062679e+03, // 0x40978030036F5E51 -} - -// for x in[4.5453,2.8571] = 1/[0.2199,0.35001] -var p1R3 = [6]float64{ - 3.02503916137373618024e-09, // 0x3E29FC21A7AD9EDD - 1.17186865567253592491e-01, // 0x3FBDFFF55B21D17B - 3.93297750033315640650e+00, // 0x400F76BCE85EAD8A - 3.51194035591636932736e+01, // 0x40418F489DA6D129 - 9.10550110750781271918e+01, // 0x4056C3854D2C1837 - 4.85590685197364919645e+01, // 0x4048478F8EA83EE5 -} -var p1S3 = [5]float64{ - 3.47913095001251519989e+01, // 0x40416549A134069C - 3.36762458747825746741e+02, // 0x40750C3307F1A75F - 1.04687139975775130551e+03, // 0x40905B7C5037D523 - 8.90811346398256432622e+02, // 0x408BD67DA32E31E9 - 1.03787932439639277504e+02, // 0x4059F26D7C2EED53 -} - -// for x in [2.8570,2] = 1/[0.3499,0.5] -var p1R2 = [6]float64{ - 1.07710830106873743082e-07, // 0x3E7CE9D4F65544F4 - 1.17176219462683348094e-01, // 0x3FBDFF42BE760D83 - 2.36851496667608785174e+00, // 0x4002F2B7F98FAEC0 - 1.22426109148261232917e+01, // 0x40287C377F71A964 - 1.76939711271687727390e+01, // 0x4031B1A8177F8EE2 - 5.07352312588818499250e+00, // 0x40144B49A574C1FE -} -var p1S2 = [5]float64{ - 2.14364859363821409488e+01, // 0x40356FBD8AD5ECDC - 1.25290227168402751090e+02, // 0x405F529314F92CD5 - 2.32276469057162813669e+02, // 0x406D08D8D5A2DBD9 - 1.17679373287147100768e+02, // 0x405D6B7ADA1884A9 - 8.36463893371618283368e+00, // 0x4020BAB1F44E5192 -} - -func pone(x float64) float64 { - var p [6]float64 - var q [5]float64 - if x >= 8 { - p = p1R8 - q = p1S8 - } else if x >= 4.5454 { - p = p1R5 - q = p1S5 - } else if x >= 2.8571 { - p = p1R3 - q = p1S3 - } else if x >= 2 { - p = p1R2 - q = p1S2 - } - z := 1 / (x * x) - r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))) - s := 1.0 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))) - return 1 + r/s -} - -// For x >= 8, the asymptotic expansions of qone is -// 3/8 s - 105/1024 s**3 - ..., where s = 1/x. -// We approximate qone by -// qone(x) = s*(0.375 + (R/S)) -// where R = qr1*s**2 + qr2*s**4 + ... + qr5*s**10 -// S = 1 + qs1*s**2 + ... + qs6*s**12 -// and -// | qone(x)/s -0.375-R/S | <= 2**(-61.13) - -// for x in [inf, 8] = 1/[0,0.125] -var q1R8 = [6]float64{ - 0.00000000000000000000e+00, // 0x0000000000000000 - -1.02539062499992714161e-01, // 0xBFBA3FFFFFFFFDF3 - -1.62717534544589987888e+01, // 0xC0304591A26779F7 - -7.59601722513950107896e+02, // 0xC087BCD053E4B576 - -1.18498066702429587167e+04, // 0xC0C724E740F87415 - -4.84385124285750353010e+04, // 0xC0E7A6D065D09C6A -} -var q1S8 = [6]float64{ - 1.61395369700722909556e+02, // 0x40642CA6DE5BCDE5 - 7.82538599923348465381e+03, // 0x40BE9162D0D88419 - 1.33875336287249578163e+05, // 0x4100579AB0B75E98 - 7.19657723683240939863e+05, // 0x4125F65372869C19 - 6.66601232617776375264e+05, // 0x412457D27719AD5C - -2.94490264303834643215e+05, // 0xC111F9690EA5AA18 -} - -// for x in [8,4.5454] = 1/[0.125,0.22001] -var q1R5 = [6]float64{ - -2.08979931141764104297e-11, // 0xBDB6FA431AA1A098 - -1.02539050241375426231e-01, // 0xBFBA3FFFCB597FEF - -8.05644828123936029840e+00, // 0xC0201CE6CA03AD4B - -1.83669607474888380239e+02, // 0xC066F56D6CA7B9B0 - -1.37319376065508163265e+03, // 0xC09574C66931734F - -2.61244440453215656817e+03, // 0xC0A468E388FDA79D -} -var q1S5 = [6]float64{ - 8.12765501384335777857e+01, // 0x405451B2FF5A11B2 - 1.99179873460485964642e+03, // 0x409F1F31E77BF839 - 1.74684851924908907677e+04, // 0x40D10F1F0D64CE29 - 4.98514270910352279316e+04, // 0x40E8576DAABAD197 - 2.79480751638918118260e+04, // 0x40DB4B04CF7C364B - -4.71918354795128470869e+03, // 0xC0B26F2EFCFFA004 -} - -// for x in [4.5454,2.8571] = 1/[0.2199,0.35001] ??? -var q1R3 = [6]float64{ - -5.07831226461766561369e-09, // 0xBE35CFA9D38FC84F - -1.02537829820837089745e-01, // 0xBFBA3FEB51AEED54 - -4.61011581139473403113e+00, // 0xC01270C23302D9FF - -5.78472216562783643212e+01, // 0xC04CEC71C25D16DA - -2.28244540737631695038e+02, // 0xC06C87D34718D55F - -2.19210128478909325622e+02, // 0xC06B66B95F5C1BF6 -} -var q1S3 = [6]float64{ - 4.76651550323729509273e+01, // 0x4047D523CCD367E4 - 6.73865112676699709482e+02, // 0x40850EEBC031EE3E - 3.38015286679526343505e+03, // 0x40AA684E448E7C9A - 5.54772909720722782367e+03, // 0x40B5ABBAA61D54A6 - 1.90311919338810798763e+03, // 0x409DBC7A0DD4DF4B - -1.35201191444307340817e+02, // 0xC060E670290A311F -} - -// for x in [2.8570,2] = 1/[0.3499,0.5] -var q1R2 = [6]float64{ - -1.78381727510958865572e-07, // 0xBE87F12644C626D2 - -1.02517042607985553460e-01, // 0xBFBA3E8E9148B010 - -2.75220568278187460720e+00, // 0xC006048469BB4EDA - -1.96636162643703720221e+01, // 0xC033A9E2C168907F - -4.23253133372830490089e+01, // 0xC04529A3DE104AAA - -2.13719211703704061733e+01, // 0xC0355F3639CF6E52 -} -var q1S2 = [6]float64{ - 2.95333629060523854548e+01, // 0x403D888A78AE64FF - 2.52981549982190529136e+02, // 0x406F9F68DB821CBA - 7.57502834868645436472e+02, // 0x4087AC05CE49A0F7 - 7.39393205320467245656e+02, // 0x40871B2548D4C029 - 1.55949003336666123687e+02, // 0x40637E5E3C3ED8D4 - -4.95949898822628210127e+00, // 0xC013D686E71BE86B -} - -func qone(x float64) float64 { - var p, q [6]float64 - if x >= 8 { - p = q1R8 - q = q1S8 - } else if x >= 4.5454 { - p = q1R5 - q = q1S5 - } else if x >= 2.8571 { - p = q1R3 - q = q1S3 - } else if x >= 2 { - p = q1R2 - q = q1S2 - } - z := 1 / (x * x) - r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))) - s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))) - return (0.375 + r/s) / x -} diff --git a/src/pkg/math/jn.go b/src/pkg/math/jn.go deleted file mode 100644 index a7909eb24..000000000 --- a/src/pkg/math/jn.go +++ /dev/null @@ -1,306 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -/* - Bessel function of the first and second kinds of order n. -*/ - -// The original C code and the long comment below are -// from FreeBSD's /usr/src/lib/msun/src/e_jn.c and -// came with this notice. The go code is a simplified -// version of the original C. -// -// ==================================================== -// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. -// -// Developed at SunPro, a Sun Microsystems, Inc. business. -// Permission to use, copy, modify, and distribute this -// software is freely granted, provided that this notice -// is preserved. -// ==================================================== -// -// __ieee754_jn(n, x), __ieee754_yn(n, x) -// floating point Bessel's function of the 1st and 2nd kind -// of order n -// -// Special cases: -// y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; -// y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. -// Note 2. About jn(n,x), yn(n,x) -// For n=0, j0(x) is called, -// for n=1, j1(x) is called, -// for n<x, forward recursion is used starting -// from values of j0(x) and j1(x). -// for n>x, a continued fraction approximation to -// j(n,x)/j(n-1,x) is evaluated and then backward -// recursion is used starting from a supposed value -// for j(n,x). The resulting value of j(0,x) is -// compared with the actual value to correct the -// supposed value of j(n,x). -// -// yn(n,x) is similar in all respects, except -// that forward recursion is used for all -// values of n>1. - -// Jn returns the order-n Bessel function of the first kind. -// -// Special cases are: -// Jn(n, ±Inf) = 0 -// Jn(n, NaN) = NaN -func Jn(n int, x float64) float64 { - const ( - TwoM29 = 1.0 / (1 << 29) // 2**-29 0x3e10000000000000 - Two302 = 1 << 302 // 2**302 0x52D0000000000000 - ) - // special cases - switch { - case IsNaN(x): - return x - case IsInf(x, 0): - return 0 - } - // J(-n, x) = (-1)**n * J(n, x), J(n, -x) = (-1)**n * J(n, x) - // Thus, J(-n, x) = J(n, -x) - - if n == 0 { - return J0(x) - } - if x == 0 { - return 0 - } - if n < 0 { - n, x = -n, -x - } - if n == 1 { - return J1(x) - } - sign := false - if x < 0 { - x = -x - if n&1 == 1 { - sign = true // odd n and negative x - } - } - var b float64 - if float64(n) <= x { - // Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) - if x >= Two302 { // x > 2**302 - - // (x >> n**2) - // Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) - // Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) - // Let s=sin(x), c=cos(x), - // xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then - // - // n sin(xn)*sqt2 cos(xn)*sqt2 - // ---------------------------------- - // 0 s-c c+s - // 1 -s-c -c+s - // 2 -s+c -c-s - // 3 s+c c-s - - var temp float64 - switch n & 3 { - case 0: - temp = Cos(x) + Sin(x) - case 1: - temp = -Cos(x) + Sin(x) - case 2: - temp = -Cos(x) - Sin(x) - case 3: - temp = Cos(x) - Sin(x) - } - b = (1 / SqrtPi) * temp / Sqrt(x) - } else { - b = J1(x) - for i, a := 1, J0(x); i < n; i++ { - a, b = b, b*(float64(i+i)/x)-a // avoid underflow - } - } - } else { - if x < TwoM29 { // x < 2**-29 - // x is tiny, return the first Taylor expansion of J(n,x) - // J(n,x) = 1/n!*(x/2)**n - ... - - if n > 33 { // underflow - b = 0 - } else { - temp := x * 0.5 - b = temp - a := 1.0 - for i := 2; i <= n; i++ { - a *= float64(i) // a = n! - b *= temp // b = (x/2)**n - } - b /= a - } - } else { - // use backward recurrence - // x x**2 x**2 - // J(n,x)/J(n-1,x) = ---- ------ ------ ..... - // 2n - 2(n+1) - 2(n+2) - // - // 1 1 1 - // (for large x) = ---- ------ ------ ..... - // 2n 2(n+1) 2(n+2) - // -- - ------ - ------ - - // x x x - // - // Let w = 2n/x and h=2/x, then the above quotient - // is equal to the continued fraction: - // 1 - // = ----------------------- - // 1 - // w - ----------------- - // 1 - // w+h - --------- - // w+2h - ... - // - // To determine how many terms needed, let - // Q(0) = w, Q(1) = w(w+h) - 1, - // Q(k) = (w+k*h)*Q(k-1) - Q(k-2), - // When Q(k) > 1e4 good for single - // When Q(k) > 1e9 good for double - // When Q(k) > 1e17 good for quadruple - - // determine k - w := float64(n+n) / x - h := 2 / x - q0 := w - z := w + h - q1 := w*z - 1 - k := 1 - for q1 < 1e9 { - k += 1 - z += h - q0, q1 = q1, z*q1-q0 - } - m := n + n - t := 0.0 - for i := 2 * (n + k); i >= m; i -= 2 { - t = 1 / (float64(i)/x - t) - } - a := t - b = 1 - // estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n) - // Hence, if n*(log(2n/x)) > ... - // single 8.8722839355e+01 - // double 7.09782712893383973096e+02 - // long double 1.1356523406294143949491931077970765006170e+04 - // then recurrent value may overflow and the result is - // likely underflow to zero - - tmp := float64(n) - v := 2 / x - tmp = tmp * Log(Abs(v*tmp)) - if tmp < 7.09782712893383973096e+02 { - for i := n - 1; i > 0; i-- { - di := float64(i + i) - a, b = b, b*di/x-a - di -= 2 - } - } else { - for i := n - 1; i > 0; i-- { - di := float64(i + i) - a, b = b, b*di/x-a - di -= 2 - // scale b to avoid spurious overflow - if b > 1e100 { - a /= b - t /= b - b = 1 - } - } - } - b = t * J0(x) / b - } - } - if sign { - return -b - } - return b -} - -// Yn returns the order-n Bessel function of the second kind. -// -// Special cases are: -// Yn(n, +Inf) = 0 -// Yn(n > 0, 0) = -Inf -// Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even -// Y1(n, x < 0) = NaN -// Y1(n, NaN) = NaN -func Yn(n int, x float64) float64 { - const Two302 = 1 << 302 // 2**302 0x52D0000000000000 - // special cases - switch { - case x < 0 || IsNaN(x): - return NaN() - case IsInf(x, 1): - return 0 - } - - if n == 0 { - return Y0(x) - } - if x == 0 { - if n < 0 && n&1 == 1 { - return Inf(1) - } - return Inf(-1) - } - sign := false - if n < 0 { - n = -n - if n&1 == 1 { - sign = true // sign true if n < 0 && |n| odd - } - } - if n == 1 { - if sign { - return -Y1(x) - } - return Y1(x) - } - var b float64 - if x >= Two302 { // x > 2**302 - // (x >> n**2) - // Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) - // Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) - // Let s=sin(x), c=cos(x), - // xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then - // - // n sin(xn)*sqt2 cos(xn)*sqt2 - // ---------------------------------- - // 0 s-c c+s - // 1 -s-c -c+s - // 2 -s+c -c-s - // 3 s+c c-s - - var temp float64 - switch n & 3 { - case 0: - temp = Sin(x) - Cos(x) - case 1: - temp = -Sin(x) - Cos(x) - case 2: - temp = -Sin(x) + Cos(x) - case 3: - temp = Sin(x) + Cos(x) - } - b = (1 / SqrtPi) * temp / Sqrt(x) - } else { - a := Y0(x) - b = Y1(x) - // quit if b is -inf - for i := 1; i < n && !IsInf(b, -1); i++ { - a, b = b, (float64(i+i)/x)*b-a - } - } - if sign { - return -b - } - return b -} diff --git a/src/pkg/math/ldexp.go b/src/pkg/math/ldexp.go deleted file mode 100644 index b5d2a5e7e..000000000 --- a/src/pkg/math/ldexp.go +++ /dev/null @@ -1,45 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// Ldexp is the inverse of Frexp. -// It returns frac × 2**exp. -// -// Special cases are: -// Ldexp(±0, exp) = ±0 -// Ldexp(±Inf, exp) = ±Inf -// Ldexp(NaN, exp) = NaN -func Ldexp(frac float64, exp int) float64 - -func ldexp(frac float64, exp int) float64 { - // special cases - switch { - case frac == 0: - return frac // correctly return -0 - case IsInf(frac, 0) || IsNaN(frac): - return frac - } - frac, e := normalize(frac) - exp += e - x := Float64bits(frac) - exp += int(x>>shift)&mask - bias - if exp < -1074 { - return Copysign(0, frac) // underflow - } - if exp > 1023 { // overflow - if frac < 0 { - return Inf(-1) - } - return Inf(1) - } - var m float64 = 1 - if exp < -1022 { // denormal - exp += 52 - m = 1.0 / (1 << 52) // 2**-52 - } - x &^= mask << shift - x |= uint64(exp+bias) << shift - return m * Float64frombits(x) -} diff --git a/src/pkg/math/ldexp_386.s b/src/pkg/math/ldexp_386.s deleted file mode 100644 index ac8e8ba54..000000000 --- a/src/pkg/math/ldexp_386.s +++ /dev/null @@ -1,14 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Ldexp(frac float64, exp int) float64 -TEXT ·Ldexp(SB),NOSPLIT,$0 - FMOVL exp+8(FP), F0 // F0=exp - FMOVD frac+0(FP), F0 // F0=frac, F1=e - FSCALE // F0=x*2**e, F1=e - FMOVDP F0, F1 // F0=x*2**e - FMOVDP F0, ret+12(FP) - RET diff --git a/src/pkg/math/ldexp_amd64.s b/src/pkg/math/ldexp_amd64.s deleted file mode 100644 index 6063a6480..000000000 --- a/src/pkg/math/ldexp_amd64.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Ldexp(SB),NOSPLIT,$0 - JMP ·ldexp(SB) diff --git a/src/pkg/math/ldexp_amd64p32.s b/src/pkg/math/ldexp_amd64p32.s deleted file mode 100644 index 9aa9d9da3..000000000 --- a/src/pkg/math/ldexp_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "ldexp_amd64.s" diff --git a/src/pkg/math/ldexp_arm.s b/src/pkg/math/ldexp_arm.s deleted file mode 100644 index fcffa2e0f..000000000 --- a/src/pkg/math/ldexp_arm.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Ldexp(SB),NOSPLIT,$0 - B ·ldexp(SB) diff --git a/src/pkg/math/lgamma.go b/src/pkg/math/lgamma.go deleted file mode 100644 index 6a02c412d..000000000 --- a/src/pkg/math/lgamma.go +++ /dev/null @@ -1,365 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -/* - Floating-point logarithm of the Gamma function. -*/ - -// The original C code and the long comment below are -// from FreeBSD's /usr/src/lib/msun/src/e_lgamma_r.c and -// came with this notice. The go code is a simplified -// version of the original C. -// -// ==================================================== -// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. -// -// Developed at SunPro, a Sun Microsystems, Inc. business. -// Permission to use, copy, modify, and distribute this -// software is freely granted, provided that this notice -// is preserved. -// ==================================================== -// -// __ieee754_lgamma_r(x, signgamp) -// Reentrant version of the logarithm of the Gamma function -// with user provided pointer for the sign of Gamma(x). -// -// Method: -// 1. Argument Reduction for 0 < x <= 8 -// Since gamma(1+s)=s*gamma(s), for x in [0,8], we may -// reduce x to a number in [1.5,2.5] by -// lgamma(1+s) = log(s) + lgamma(s) -// for example, -// lgamma(7.3) = log(6.3) + lgamma(6.3) -// = log(6.3*5.3) + lgamma(5.3) -// = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) -// 2. Polynomial approximation of lgamma around its -// minimum (ymin=1.461632144968362245) to maintain monotonicity. -// On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use -// Let z = x-ymin; -// lgamma(x) = -1.214862905358496078218 + z**2*poly(z) -// poly(z) is a 14 degree polynomial. -// 2. Rational approximation in the primary interval [2,3] -// We use the following approximation: -// s = x-2.0; -// lgamma(x) = 0.5*s + s*P(s)/Q(s) -// with accuracy -// |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 -// Our algorithms are based on the following observation -// -// zeta(2)-1 2 zeta(3)-1 3 -// lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... -// 2 3 -// -// where Euler = 0.5772156649... is the Euler constant, which -// is very close to 0.5. -// -// 3. For x>=8, we have -// lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... -// (better formula: -// lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) -// Let z = 1/x, then we approximation -// f(z) = lgamma(x) - (x-0.5)(log(x)-1) -// by -// 3 5 11 -// w = w0 + w1*z + w2*z + w3*z + ... + w6*z -// where -// |w - f(z)| < 2**-58.74 -// -// 4. For negative x, since (G is gamma function) -// -x*G(-x)*G(x) = pi/sin(pi*x), -// we have -// G(x) = pi/(sin(pi*x)*(-x)*G(-x)) -// since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 -// Hence, for x<0, signgam = sign(sin(pi*x)) and -// lgamma(x) = log(|Gamma(x)|) -// = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); -// Note: one should avoid computing pi*(-x) directly in the -// computation of sin(pi*(-x)). -// -// 5. Special Cases -// lgamma(2+s) ~ s*(1-Euler) for tiny s -// lgamma(1)=lgamma(2)=0 -// lgamma(x) ~ -log(x) for tiny x -// lgamma(0) = lgamma(inf) = inf -// lgamma(-integer) = +-inf -// -// - -var _lgamA = [...]float64{ - 7.72156649015328655494e-02, // 0x3FB3C467E37DB0C8 - 3.22467033424113591611e-01, // 0x3FD4A34CC4A60FAD - 6.73523010531292681824e-02, // 0x3FB13E001A5562A7 - 2.05808084325167332806e-02, // 0x3F951322AC92547B - 7.38555086081402883957e-03, // 0x3F7E404FB68FEFE8 - 2.89051383673415629091e-03, // 0x3F67ADD8CCB7926B - 1.19270763183362067845e-03, // 0x3F538A94116F3F5D - 5.10069792153511336608e-04, // 0x3F40B6C689B99C00 - 2.20862790713908385557e-04, // 0x3F2CF2ECED10E54D - 1.08011567247583939954e-04, // 0x3F1C5088987DFB07 - 2.52144565451257326939e-05, // 0x3EFA7074428CFA52 - 4.48640949618915160150e-05, // 0x3F07858E90A45837 -} -var _lgamR = [...]float64{ - 1.0, // placeholder - 1.39200533467621045958e+00, // 0x3FF645A762C4AB74 - 7.21935547567138069525e-01, // 0x3FE71A1893D3DCDC - 1.71933865632803078993e-01, // 0x3FC601EDCCFBDF27 - 1.86459191715652901344e-02, // 0x3F9317EA742ED475 - 7.77942496381893596434e-04, // 0x3F497DDACA41A95B - 7.32668430744625636189e-06, // 0x3EDEBAF7A5B38140 -} -var _lgamS = [...]float64{ - -7.72156649015328655494e-02, // 0xBFB3C467E37DB0C8 - 2.14982415960608852501e-01, // 0x3FCB848B36E20878 - 3.25778796408930981787e-01, // 0x3FD4D98F4F139F59 - 1.46350472652464452805e-01, // 0x3FC2BB9CBEE5F2F7 - 2.66422703033638609560e-02, // 0x3F9B481C7E939961 - 1.84028451407337715652e-03, // 0x3F5E26B67368F239 - 3.19475326584100867617e-05, // 0x3F00BFECDD17E945 -} -var _lgamT = [...]float64{ - 4.83836122723810047042e-01, // 0x3FDEF72BC8EE38A2 - -1.47587722994593911752e-01, // 0xBFC2E4278DC6C509 - 6.46249402391333854778e-02, // 0x3FB08B4294D5419B - -3.27885410759859649565e-02, // 0xBFA0C9A8DF35B713 - 1.79706750811820387126e-02, // 0x3F9266E7970AF9EC - -1.03142241298341437450e-02, // 0xBF851F9FBA91EC6A - 6.10053870246291332635e-03, // 0x3F78FCE0E370E344 - -3.68452016781138256760e-03, // 0xBF6E2EFFB3E914D7 - 2.25964780900612472250e-03, // 0x3F6282D32E15C915 - -1.40346469989232843813e-03, // 0xBF56FE8EBF2D1AF1 - 8.81081882437654011382e-04, // 0x3F4CDF0CEF61A8E9 - -5.38595305356740546715e-04, // 0xBF41A6109C73E0EC - 3.15632070903625950361e-04, // 0x3F34AF6D6C0EBBF7 - -3.12754168375120860518e-04, // 0xBF347F24ECC38C38 - 3.35529192635519073543e-04, // 0x3F35FD3EE8C2D3F4 -} -var _lgamU = [...]float64{ - -7.72156649015328655494e-02, // 0xBFB3C467E37DB0C8 - 6.32827064025093366517e-01, // 0x3FE4401E8B005DFF - 1.45492250137234768737e+00, // 0x3FF7475CD119BD6F - 9.77717527963372745603e-01, // 0x3FEF497644EA8450 - 2.28963728064692451092e-01, // 0x3FCD4EAEF6010924 - 1.33810918536787660377e-02, // 0x3F8B678BBF2BAB09 -} -var _lgamV = [...]float64{ - 1.0, - 2.45597793713041134822e+00, // 0x4003A5D7C2BD619C - 2.12848976379893395361e+00, // 0x40010725A42B18F5 - 7.69285150456672783825e-01, // 0x3FE89DFBE45050AF - 1.04222645593369134254e-01, // 0x3FBAAE55D6537C88 - 3.21709242282423911810e-03, // 0x3F6A5ABB57D0CF61 -} -var _lgamW = [...]float64{ - 4.18938533204672725052e-01, // 0x3FDACFE390C97D69 - 8.33333333333329678849e-02, // 0x3FB555555555553B - -2.77777777728775536470e-03, // 0xBF66C16C16B02E5C - 7.93650558643019558500e-04, // 0x3F4A019F98CF38B6 - -5.95187557450339963135e-04, // 0xBF4380CB8C0FE741 - 8.36339918996282139126e-04, // 0x3F4B67BA4CDAD5D1 - -1.63092934096575273989e-03, // 0xBF5AB89D0B9E43E4 -} - -// Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x). -// -// Special cases are: -// Lgamma(+Inf) = +Inf -// Lgamma(0) = +Inf -// Lgamma(-integer) = +Inf -// Lgamma(-Inf) = -Inf -// Lgamma(NaN) = NaN -func Lgamma(x float64) (lgamma float64, sign int) { - const ( - Ymin = 1.461632144968362245 - Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15 - Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15 - Two58 = 1 << 58 // 0x4390000000000000 ~2.8823e+17 - Tiny = 1.0 / (1 << 70) // 0x3b90000000000000 ~8.47033e-22 - Tc = 1.46163214496836224576e+00 // 0x3FF762D86356BE3F - Tf = -1.21486290535849611461e-01 // 0xBFBF19B9BCC38A42 - // Tt = -(tail of Tf) - Tt = -3.63867699703950536541e-18 // 0xBC50C7CAA48A971F - ) - // special cases - sign = 1 - switch { - case IsNaN(x): - lgamma = x - return - case IsInf(x, 0): - lgamma = x - return - case x == 0: - lgamma = Inf(1) - return - } - - neg := false - if x < 0 { - x = -x - neg = true - } - - if x < Tiny { // if |x| < 2**-70, return -log(|x|) - if neg { - sign = -1 - } - lgamma = -Log(x) - return - } - var nadj float64 - if neg { - if x >= Two52 { // |x| >= 2**52, must be -integer - lgamma = Inf(1) - return - } - t := sinPi(x) - if t == 0 { - lgamma = Inf(1) // -integer - return - } - nadj = Log(Pi / Abs(t*x)) - if t < 0 { - sign = -1 - } - } - - switch { - case x == 1 || x == 2: // purge off 1 and 2 - lgamma = 0 - return - case x < 2: // use lgamma(x) = lgamma(x+1) - log(x) - var y float64 - var i int - if x <= 0.9 { - lgamma = -Log(x) - switch { - case x >= (Ymin - 1 + 0.27): // 0.7316 <= x <= 0.9 - y = 1 - x - i = 0 - case x >= (Ymin - 1 - 0.27): // 0.2316 <= x < 0.7316 - y = x - (Tc - 1) - i = 1 - default: // 0 < x < 0.2316 - y = x - i = 2 - } - } else { - lgamma = 0 - switch { - case x >= (Ymin + 0.27): // 1.7316 <= x < 2 - y = 2 - x - i = 0 - case x >= (Ymin - 0.27): // 1.2316 <= x < 1.7316 - y = x - Tc - i = 1 - default: // 0.9 < x < 1.2316 - y = x - 1 - i = 2 - } - } - switch i { - case 0: - z := y * y - p1 := _lgamA[0] + z*(_lgamA[2]+z*(_lgamA[4]+z*(_lgamA[6]+z*(_lgamA[8]+z*_lgamA[10])))) - p2 := z * (_lgamA[1] + z*(+_lgamA[3]+z*(_lgamA[5]+z*(_lgamA[7]+z*(_lgamA[9]+z*_lgamA[11]))))) - p := y*p1 + p2 - lgamma += (p - 0.5*y) - case 1: - z := y * y - w := z * y - p1 := _lgamT[0] + w*(_lgamT[3]+w*(_lgamT[6]+w*(_lgamT[9]+w*_lgamT[12]))) // parallel comp - p2 := _lgamT[1] + w*(_lgamT[4]+w*(_lgamT[7]+w*(_lgamT[10]+w*_lgamT[13]))) - p3 := _lgamT[2] + w*(_lgamT[5]+w*(_lgamT[8]+w*(_lgamT[11]+w*_lgamT[14]))) - p := z*p1 - (Tt - w*(p2+y*p3)) - lgamma += (Tf + p) - case 2: - p1 := y * (_lgamU[0] + y*(_lgamU[1]+y*(_lgamU[2]+y*(_lgamU[3]+y*(_lgamU[4]+y*_lgamU[5]))))) - p2 := 1 + y*(_lgamV[1]+y*(_lgamV[2]+y*(_lgamV[3]+y*(_lgamV[4]+y*_lgamV[5])))) - lgamma += (-0.5*y + p1/p2) - } - case x < 8: // 2 <= x < 8 - i := int(x) - y := x - float64(i) - p := y * (_lgamS[0] + y*(_lgamS[1]+y*(_lgamS[2]+y*(_lgamS[3]+y*(_lgamS[4]+y*(_lgamS[5]+y*_lgamS[6])))))) - q := 1 + y*(_lgamR[1]+y*(_lgamR[2]+y*(_lgamR[3]+y*(_lgamR[4]+y*(_lgamR[5]+y*_lgamR[6]))))) - lgamma = 0.5*y + p/q - z := 1.0 // Lgamma(1+s) = Log(s) + Lgamma(s) - switch i { - case 7: - z *= (y + 6) - fallthrough - case 6: - z *= (y + 5) - fallthrough - case 5: - z *= (y + 4) - fallthrough - case 4: - z *= (y + 3) - fallthrough - case 3: - z *= (y + 2) - lgamma += Log(z) - } - case x < Two58: // 8 <= x < 2**58 - t := Log(x) - z := 1 / x - y := z * z - w := _lgamW[0] + z*(_lgamW[1]+y*(_lgamW[2]+y*(_lgamW[3]+y*(_lgamW[4]+y*(_lgamW[5]+y*_lgamW[6]))))) - lgamma = (x-0.5)*(t-1) + w - default: // 2**58 <= x <= Inf - lgamma = x * (Log(x) - 1) - } - if neg { - lgamma = nadj - lgamma - } - return -} - -// sinPi(x) is a helper function for negative x -func sinPi(x float64) float64 { - const ( - Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15 - Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15 - ) - if x < 0.25 { - return -Sin(Pi * x) - } - - // argument reduction - z := Floor(x) - var n int - if z != x { // inexact - x = Mod(x, 2) - n = int(x * 4) - } else { - if x >= Two53 { // x must be even - x = 0 - n = 0 - } else { - if x < Two52 { - z = x + Two52 // exact - } - n = int(1 & Float64bits(z)) - x = float64(n) - n <<= 2 - } - } - switch n { - case 0: - x = Sin(Pi * x) - case 1, 2: - x = Cos(Pi * (0.5 - x)) - case 3, 4: - x = Sin(Pi * (1 - x)) - case 5, 6: - x = -Cos(Pi * (x - 1.5)) - default: - x = Sin(Pi * (x - 2)) - } - return -x -} diff --git a/src/pkg/math/log.go b/src/pkg/math/log.go deleted file mode 100644 index 818f00a73..000000000 --- a/src/pkg/math/log.go +++ /dev/null @@ -1,123 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -/* - Floating-point logarithm. -*/ - -// The original C code, the long comment, and the constants -// below are from FreeBSD's /usr/src/lib/msun/src/e_log.c -// and came with this notice. The go code is a simpler -// version of the original C. -// -// ==================================================== -// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. -// -// Developed at SunPro, a Sun Microsystems, Inc. business. -// Permission to use, copy, modify, and distribute this -// software is freely granted, provided that this notice -// is preserved. -// ==================================================== -// -// __ieee754_log(x) -// Return the logarithm of x -// -// Method : -// 1. Argument Reduction: find k and f such that -// x = 2**k * (1+f), -// where sqrt(2)/2 < 1+f < sqrt(2) . -// -// 2. Approximation of log(1+f). -// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) -// = 2s + 2/3 s**3 + 2/5 s**5 + ....., -// = 2s + s*R -// We use a special Reme algorithm on [0,0.1716] to generate -// a polynomial of degree 14 to approximate R. The maximum error -// of this polynomial approximation is bounded by 2**-58.45. In -// other words, -// 2 4 6 8 10 12 14 -// R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s +L6*s +L7*s -// (the values of L1 to L7 are listed in the program) and -// | 2 14 | -58.45 -// | L1*s +...+L7*s - R(z) | <= 2 -// | | -// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. -// In order to guarantee error in log below 1ulp, we compute log by -// log(1+f) = f - s*(f - R) (if f is not too large) -// log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) -// -// 3. Finally, log(x) = k*Ln2 + log(1+f). -// = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo))) -// Here Ln2 is split into two floating point number: -// Ln2_hi + Ln2_lo, -// where n*Ln2_hi is always exact for |n| < 2000. -// -// Special cases: -// log(x) is NaN with signal if x < 0 (including -INF) ; -// log(+INF) is +INF; log(0) is -INF with signal; -// log(NaN) is that NaN with no signal. -// -// Accuracy: -// according to an error analysis, the error is always less than -// 1 ulp (unit in the last place). -// -// Constants: -// The hexadecimal values are the intended ones for the following -// constants. The decimal values may be used, provided that the -// compiler will convert from decimal to binary accurately enough -// to produce the hexadecimal values shown. - -// Log returns the natural logarithm of x. -// -// Special cases are: -// Log(+Inf) = +Inf -// Log(0) = -Inf -// Log(x < 0) = NaN -// Log(NaN) = NaN -func Log(x float64) float64 - -func log(x float64) float64 { - const ( - Ln2Hi = 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */ - Ln2Lo = 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */ - L1 = 6.666666666666735130e-01 /* 3FE55555 55555593 */ - L2 = 3.999999999940941908e-01 /* 3FD99999 9997FA04 */ - L3 = 2.857142874366239149e-01 /* 3FD24924 94229359 */ - L4 = 2.222219843214978396e-01 /* 3FCC71C5 1D8E78AF */ - L5 = 1.818357216161805012e-01 /* 3FC74664 96CB03DE */ - L6 = 1.531383769920937332e-01 /* 3FC39A09 D078C69F */ - L7 = 1.479819860511658591e-01 /* 3FC2F112 DF3E5244 */ - ) - - // special cases - switch { - case IsNaN(x) || IsInf(x, 1): - return x - case x < 0: - return NaN() - case x == 0: - return Inf(-1) - } - - // reduce - f1, ki := Frexp(x) - if f1 < Sqrt2/2 { - f1 *= 2 - ki-- - } - f := f1 - 1 - k := float64(ki) - - // compute - s := f / (2 + f) - s2 := s * s - s4 := s2 * s2 - t1 := s2 * (L1 + s4*(L3+s4*(L5+s4*L7))) - t2 := s4 * (L2 + s4*(L4+s4*L6)) - R := t1 + t2 - hfsq := 0.5 * f * f - return k*Ln2Hi - ((hfsq - (s*(hfsq+R) + k*Ln2Lo)) - f) -} diff --git a/src/pkg/math/log10.go b/src/pkg/math/log10.go deleted file mode 100644 index 95cfbf47c..000000000 --- a/src/pkg/math/log10.go +++ /dev/null @@ -1,22 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// Log10 returns the decimal logarithm of x. -// The special cases are the same as for Log. -func Log10(x float64) float64 - -func log10(x float64) float64 { - return Log(x) * (1 / Ln10) -} - -// Log2 returns the binary logarithm of x. -// The special cases are the same as for Log. -func Log2(x float64) float64 - -func log2(x float64) float64 { - frac, exp := Frexp(x) - return Log(frac)*(1/Ln2) + float64(exp) -} diff --git a/src/pkg/math/log10_386.s b/src/pkg/math/log10_386.s deleted file mode 100644 index 2897f3c15..000000000 --- a/src/pkg/math/log10_386.s +++ /dev/null @@ -1,21 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Log10(x float64) float64 -TEXT ·Log10(SB),NOSPLIT,$0 - FLDLG2 // F0=log10(2) - FMOVD x+0(FP), F0 // F0=x, F1=log10(2) - FYL2X // F0=log10(x)=log2(x)*log10(2) - FMOVDP F0, ret+8(FP) - RET - -// func Log2(x float64) float64 -TEXT ·Log2(SB),NOSPLIT,$0 - FLD1 // F0=1 - FMOVD x+0(FP), F0 // F0=x, F1=1 - FYL2X // F0=log2(x) - FMOVDP F0, ret+8(FP) - RET diff --git a/src/pkg/math/log10_amd64.s b/src/pkg/math/log10_amd64.s deleted file mode 100644 index 8382ba7ae..000000000 --- a/src/pkg/math/log10_amd64.s +++ /dev/null @@ -1,11 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Log10(SB),NOSPLIT,$0 - JMP ·log10(SB) - -TEXT ·Log2(SB),NOSPLIT,$0 - JMP ·log2(SB) diff --git a/src/pkg/math/log10_amd64p32.s b/src/pkg/math/log10_amd64p32.s deleted file mode 100644 index bf43841e2..000000000 --- a/src/pkg/math/log10_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "log10_amd64.s" diff --git a/src/pkg/math/log10_arm.s b/src/pkg/math/log10_arm.s deleted file mode 100644 index dbcb8351c..000000000 --- a/src/pkg/math/log10_arm.s +++ /dev/null @@ -1,11 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Log10(SB),NOSPLIT,$0 - B ·log10(SB) - -TEXT ·Log2(SB),NOSPLIT,$0 - B ·log2(SB) diff --git a/src/pkg/math/log1p.go b/src/pkg/math/log1p.go deleted file mode 100644 index 12b98684c..000000000 --- a/src/pkg/math/log1p.go +++ /dev/null @@ -1,200 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// The original C code, the long comment, and the constants -// below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c -// and came with this notice. The go code is a simplified -// version of the original C. -// -// ==================================================== -// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. -// -// Developed at SunPro, a Sun Microsystems, Inc. business. -// Permission to use, copy, modify, and distribute this -// software is freely granted, provided that this notice -// is preserved. -// ==================================================== -// -// -// double log1p(double x) -// -// Method : -// 1. Argument Reduction: find k and f such that -// 1+x = 2**k * (1+f), -// where sqrt(2)/2 < 1+f < sqrt(2) . -// -// Note. If k=0, then f=x is exact. However, if k!=0, then f -// may not be representable exactly. In that case, a correction -// term is need. Let u=1+x rounded. Let c = (1+x)-u, then -// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), -// and add back the correction term c/u. -// (Note: when x > 2**53, one can simply return log(x)) -// -// 2. Approximation of log1p(f). -// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) -// = 2s + 2/3 s**3 + 2/5 s**5 + ....., -// = 2s + s*R -// We use a special Reme algorithm on [0,0.1716] to generate -// a polynomial of degree 14 to approximate R The maximum error -// of this polynomial approximation is bounded by 2**-58.45. In -// other words, -// 2 4 6 8 10 12 14 -// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s -// (the values of Lp1 to Lp7 are listed in the program) -// and -// | 2 14 | -58.45 -// | Lp1*s +...+Lp7*s - R(z) | <= 2 -// | | -// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. -// In order to guarantee error in log below 1ulp, we compute log -// by -// log1p(f) = f - (hfsq - s*(hfsq+R)). -// -// 3. Finally, log1p(x) = k*ln2 + log1p(f). -// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) -// Here ln2 is split into two floating point number: -// ln2_hi + ln2_lo, -// where n*ln2_hi is always exact for |n| < 2000. -// -// Special cases: -// log1p(x) is NaN with signal if x < -1 (including -INF) ; -// log1p(+INF) is +INF; log1p(-1) is -INF with signal; -// log1p(NaN) is that NaN with no signal. -// -// Accuracy: -// according to an error analysis, the error is always less than -// 1 ulp (unit in the last place). -// -// Constants: -// The hexadecimal values are the intended ones for the following -// constants. The decimal values may be used, provided that the -// compiler will convert from decimal to binary accurately enough -// to produce the hexadecimal values shown. -// -// Note: Assuming log() return accurate answer, the following -// algorithm can be used to compute log1p(x) to within a few ULP: -// -// u = 1+x; -// if(u==1.0) return x ; else -// return log(u)*(x/(u-1.0)); -// -// See HP-15C Advanced Functions Handbook, p.193. - -// Log1p returns the natural logarithm of 1 plus its argument x. -// It is more accurate than Log(1 + x) when x is near zero. -// -// Special cases are: -// Log1p(+Inf) = +Inf -// Log1p(±0) = ±0 -// Log1p(-1) = -Inf -// Log1p(x < -1) = NaN -// Log1p(NaN) = NaN -func Log1p(x float64) float64 - -func log1p(x float64) float64 { - const ( - Sqrt2M1 = 4.142135623730950488017e-01 // Sqrt(2)-1 = 0x3fda827999fcef34 - Sqrt2HalfM1 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866 - Small = 1.0 / (1 << 29) // 2**-29 = 0x3e20000000000000 - Tiny = 1.0 / (1 << 54) // 2**-54 - Two53 = 1 << 53 // 2**53 - Ln2Hi = 6.93147180369123816490e-01 // 3fe62e42fee00000 - Ln2Lo = 1.90821492927058770002e-10 // 3dea39ef35793c76 - Lp1 = 6.666666666666735130e-01 // 3FE5555555555593 - Lp2 = 3.999999999940941908e-01 // 3FD999999997FA04 - Lp3 = 2.857142874366239149e-01 // 3FD2492494229359 - Lp4 = 2.222219843214978396e-01 // 3FCC71C51D8E78AF - Lp5 = 1.818357216161805012e-01 // 3FC7466496CB03DE - Lp6 = 1.531383769920937332e-01 // 3FC39A09D078C69F - Lp7 = 1.479819860511658591e-01 // 3FC2F112DF3E5244 - ) - - // special cases - switch { - case x < -1 || IsNaN(x): // includes -Inf - return NaN() - case x == -1: - return Inf(-1) - case IsInf(x, 1): - return Inf(1) - } - - absx := x - if absx < 0 { - absx = -absx - } - - var f float64 - var iu uint64 - k := 1 - if absx < Sqrt2M1 { // |x| < Sqrt(2)-1 - if absx < Small { // |x| < 2**-29 - if absx < Tiny { // |x| < 2**-54 - return x - } - return x - x*x*0.5 - } - if x > Sqrt2HalfM1 { // Sqrt(2)/2-1 < x - // (Sqrt(2)/2-1) < x < (Sqrt(2)-1) - k = 0 - f = x - iu = 1 - } - } - var c float64 - if k != 0 { - var u float64 - if absx < Two53 { // 1<<53 - u = 1.0 + x - iu = Float64bits(u) - k = int((iu >> 52) - 1023) - if k > 0 { - c = 1.0 - (u - x) - } else { - c = x - (u - 1.0) // correction term - c /= u - } - } else { - u = x - iu = Float64bits(u) - k = int((iu >> 52) - 1023) - c = 0 - } - iu &= 0x000fffffffffffff - if iu < 0x0006a09e667f3bcd { // mantissa of Sqrt(2) - u = Float64frombits(iu | 0x3ff0000000000000) // normalize u - } else { - k += 1 - u = Float64frombits(iu | 0x3fe0000000000000) // normalize u/2 - iu = (0x0010000000000000 - iu) >> 2 - } - f = u - 1.0 // Sqrt(2)/2 < u < Sqrt(2) - } - hfsq := 0.5 * f * f - var s, R, z float64 - if iu == 0 { // |f| < 2**-20 - if f == 0 { - if k == 0 { - return 0 - } else { - c += float64(k) * Ln2Lo - return float64(k)*Ln2Hi + c - } - } - R = hfsq * (1.0 - 0.66666666666666666*f) // avoid division - if k == 0 { - return f - R - } - return float64(k)*Ln2Hi - ((R - (float64(k)*Ln2Lo + c)) - f) - } - s = f / (2.0 + f) - z = s * s - R = z * (Lp1 + z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7)))))) - if k == 0 { - return f - (hfsq - s*(hfsq+R)) - } - return float64(k)*Ln2Hi - ((hfsq - (s*(hfsq+R) + (float64(k)*Ln2Lo + c))) - f) -} diff --git a/src/pkg/math/log1p_386.s b/src/pkg/math/log1p_386.s deleted file mode 100644 index 1c2d683a8..000000000 --- a/src/pkg/math/log1p_386.s +++ /dev/null @@ -1,27 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Log1p(x float64) float64 -TEXT ·Log1p(SB),NOSPLIT,$0 - FMOVD $(2.928932188134524e-01), F0 - FMOVD x+0(FP), F0 // F0=x, F1=1-sqrt(2)/2 = 0.29289321881345247559915564 - FABS // F0=|x|, F1=1-sqrt(2)/2 - FUCOMPP F0, F1 // compare F0 to F1 - FSTSW AX - FLDLN2 // F0=log(2) - ANDW $0x0100, AX - JEQ use_fyl2x // jump if F0 >= F1 - FMOVD x+0(FP), F0 // F0=x, F1=log(2) - FYL2XP1 // F0=log(1+x)=log2(1+x)*log(2) - FMOVDP F0, ret+8(FP) - RET -use_fyl2x: - FLD1 // F0=1, F2=log(2) - FADDD x+0(FP), F0 // F0=1+x, F1=log(2) - FYL2X // F0=log(1+x)=log2(1+x)*log(2) - FMOVDP F0, ret+8(FP) - RET - diff --git a/src/pkg/math/log1p_amd64.s b/src/pkg/math/log1p_amd64.s deleted file mode 100644 index 1e58fb110..000000000 --- a/src/pkg/math/log1p_amd64.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Log1p(SB),NOSPLIT,$0 - JMP ·log1p(SB) diff --git a/src/pkg/math/log1p_amd64p32.s b/src/pkg/math/log1p_amd64p32.s deleted file mode 100644 index a14b5e38a..000000000 --- a/src/pkg/math/log1p_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "log1p_amd64.s" diff --git a/src/pkg/math/log1p_arm.s b/src/pkg/math/log1p_arm.s deleted file mode 100644 index 95d549678..000000000 --- a/src/pkg/math/log1p_arm.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Log1p(SB),NOSPLIT,$0 - B ·log1p(SB) diff --git a/src/pkg/math/log_386.s b/src/pkg/math/log_386.s deleted file mode 100644 index ff998afb4..000000000 --- a/src/pkg/math/log_386.s +++ /dev/null @@ -1,13 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Log(x float64) float64 -TEXT ·Log(SB),NOSPLIT,$0 - FLDLN2 // F0=log(2) - FMOVD x+0(FP), F0 // F0=x, F1=log(2) - FYL2X // F0=log(x)=log2(x)*log(2) - FMOVDP F0, ret+8(FP) - RET diff --git a/src/pkg/math/log_amd64.s b/src/pkg/math/log_amd64.s deleted file mode 100644 index 84c60ab4d..000000000 --- a/src/pkg/math/log_amd64.s +++ /dev/null @@ -1,111 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -#define HSqrt2 7.07106781186547524401e-01 // sqrt(2)/2 -#define Ln2Hi 6.93147180369123816490e-01 // 0x3fe62e42fee00000 -#define Ln2Lo 1.90821492927058770002e-10 // 0x3dea39ef35793c76 -#define L1 6.666666666666735130e-01 // 0x3FE5555555555593 -#define L2 3.999999999940941908e-01 // 0x3FD999999997FA04 -#define L3 2.857142874366239149e-01 // 0x3FD2492494229359 -#define L4 2.222219843214978396e-01 // 0x3FCC71C51D8E78AF -#define L5 1.818357216161805012e-01 // 0x3FC7466496CB03DE -#define L6 1.531383769920937332e-01 // 0x3FC39A09D078C69F -#define L7 1.479819860511658591e-01 // 0x3FC2F112DF3E5244 -#define NaN 0x7FF8000000000001 -#define NegInf 0xFFF0000000000000 -#define PosInf 0x7FF0000000000000 - -// func Log(x float64) float64 -TEXT ·Log(SB),NOSPLIT,$0 - // test bits for special cases - MOVQ x+0(FP), BX - MOVQ $~(1<<63), AX // sign bit mask - ANDQ BX, AX - JEQ isZero - MOVQ $0, AX - CMPQ AX, BX - JGT isNegative - MOVQ $PosInf, AX - CMPQ AX, BX - JLE isInfOrNaN - // f1, ki := math.Frexp(x); k := float64(ki) - MOVQ BX, X0 - MOVQ $0x000FFFFFFFFFFFFF, AX - MOVQ AX, X2 - ANDPD X0, X2 - MOVSD $0.5, X0 // 0x3FE0000000000000 - ORPD X0, X2 // X2= f1 - SHRQ $52, BX - ANDL $0x7FF, BX - SUBL $0x3FE, BX - CVTSL2SD BX, X1 // x1= k, x2= f1 - // if f1 < math.Sqrt2/2 { k -= 1; f1 *= 2 } - MOVSD $HSqrt2, X0 // x0= 0.7071, x1= k, x2= f1 - CMPSD X2, X0, 5 // cmpnlt; x0= 0 or ^0, x1= k, x2 = f1 - MOVSD $1.0, X3 // x0= 0 or ^0, x1= k, x2 = f1, x3= 1 - ANDPD X0, X3 // x0= 0 or ^0, x1= k, x2 = f1, x3= 0 or 1 - SUBSD X3, X1 // x0= 0 or ^0, x1= k, x2 = f1, x3= 0 or 1 - MOVSD $1.0, X0 // x0= 1, x1= k, x2= f1, x3= 0 or 1 - ADDSD X0, X3 // x0= 1, x1= k, x2= f1, x3= 1 or 2 - MULSD X3, X2 // x0= 1, x1= k, x2= f1 - // f := f1 - 1 - SUBSD X0, X2 // x1= k, x2= f - // s := f / (2 + f) - MOVSD $2.0, X0 - ADDSD X2, X0 - MOVAPD X2, X3 - DIVSD X0, X3 // x1=k, x2= f, x3= s - // s2 := s * s - MOVAPD X3, X4 // x1= k, x2= f, x3= s - MULSD X4, X4 // x1= k, x2= f, x3= s, x4= s2 - // s4 := s2 * s2 - MOVAPD X4, X5 // x1= k, x2= f, x3= s, x4= s2 - MULSD X5, X5 // x1= k, x2= f, x3= s, x4= s2, x5= s4 - // t1 := s2 * (L1 + s4*(L3+s4*(L5+s4*L7))) - MOVSD $L7, X6 - MULSD X5, X6 - ADDSD $L5, X6 - MULSD X5, X6 - ADDSD $L3, X6 - MULSD X5, X6 - ADDSD $L1, X6 - MULSD X6, X4 // x1= k, x2= f, x3= s, x4= t1, x5= s4 - // t2 := s4 * (L2 + s4*(L4+s4*L6)) - MOVSD $L6, X6 - MULSD X5, X6 - ADDSD $L4, X6 - MULSD X5, X6 - ADDSD $L2, X6 - MULSD X6, X5 // x1= k, x2= f, x3= s, x4= t1, x5= t2 - // R := t1 + t2 - ADDSD X5, X4 // x1= k, x2= f, x3= s, x4= R - // hfsq := 0.5 * f * f - MOVSD $0.5, X0 - MULSD X2, X0 - MULSD X2, X0 // x0= hfsq, x1= k, x2= f, x3= s, x4= R - // return k*Ln2Hi - ((hfsq - (s*(hfsq+R) + k*Ln2Lo)) - f) - ADDSD X0, X4 // x0= hfsq, x1= k, x2= f, x3= s, x4= hfsq+R - MULSD X4, X3 // x0= hfsq, x1= k, x2= f, x3= s*(hfsq+R) - MOVSD $Ln2Lo, X4 - MULSD X1, X4 // x4= k*Ln2Lo - ADDSD X4, X3 // x0= hfsq, x1= k, x2= f, x3= s*(hfsq+R)+k*Ln2Lo - SUBSD X3, X0 // x0= hfsq-(s*(hfsq+R)+k*Ln2Lo), x1= k, x2= f - SUBSD X2, X0 // x0= (hfsq-(s*(hfsq+R)+k*Ln2Lo))-f, x1= k - MULSD $Ln2Hi, X1 // x0= (hfsq-(s*(hfsq+R)+k*Ln2Lo))-f, x1= k*Ln2Hi - SUBSD X0, X1 // x1= k*Ln2Hi-((hfsq-(s*(hfsq+R)+k*Ln2Lo))-f) - MOVSD X1, ret+8(FP) - RET -isInfOrNaN: - MOVQ BX, ret+8(FP) // +Inf or NaN, return x - RET -isNegative: - MOVQ $NaN, AX - MOVQ AX, ret+8(FP) // return NaN - RET -isZero: - MOVQ $NegInf, AX - MOVQ AX, ret+8(FP) // return -Inf - RET diff --git a/src/pkg/math/log_amd64p32.s b/src/pkg/math/log_amd64p32.s deleted file mode 100644 index 5058d607e..000000000 --- a/src/pkg/math/log_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "log_amd64.s" diff --git a/src/pkg/math/log_arm.s b/src/pkg/math/log_arm.s deleted file mode 100644 index e21d0366e..000000000 --- a/src/pkg/math/log_arm.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Log(SB),NOSPLIT,$0 - B ·log(SB) diff --git a/src/pkg/math/logb.go b/src/pkg/math/logb.go deleted file mode 100644 index f2769d4fd..000000000 --- a/src/pkg/math/logb.go +++ /dev/null @@ -1,50 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// Logb returns the binary exponent of x. -// -// Special cases are: -// Logb(±Inf) = +Inf -// Logb(0) = -Inf -// Logb(NaN) = NaN -func Logb(x float64) float64 { - // special cases - switch { - case x == 0: - return Inf(-1) - case IsInf(x, 0): - return Inf(1) - case IsNaN(x): - return x - } - return float64(ilogb(x)) -} - -// Ilogb returns the binary exponent of x as an integer. -// -// Special cases are: -// Ilogb(±Inf) = MaxInt32 -// Ilogb(0) = MinInt32 -// Ilogb(NaN) = MaxInt32 -func Ilogb(x float64) int { - // special cases - switch { - case x == 0: - return MinInt32 - case IsNaN(x): - return MaxInt32 - case IsInf(x, 0): - return MaxInt32 - } - return ilogb(x) -} - -// logb returns the binary exponent of x. It assumes x is finite and -// non-zero. -func ilogb(x float64) int { - x, exp := normalize(x) - return int((Float64bits(x)>>shift)&mask) - bias + exp -} diff --git a/src/pkg/math/mod.go b/src/pkg/math/mod.go deleted file mode 100644 index e1a414e5f..000000000 --- a/src/pkg/math/mod.go +++ /dev/null @@ -1,50 +0,0 @@ -// Copyright 2009-2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -/* - Floating-point mod function. -*/ - -// Mod returns the floating-point remainder of x/y. -// The magnitude of the result is less than y and its -// sign agrees with that of x. -// -// Special cases are: -// Mod(±Inf, y) = NaN -// Mod(NaN, y) = NaN -// Mod(x, 0) = NaN -// Mod(x, ±Inf) = x -// Mod(x, NaN) = NaN -func Mod(x, y float64) float64 - -func mod(x, y float64) float64 { - if y == 0 || IsInf(x, 0) || IsNaN(x) || IsNaN(y) { - return NaN() - } - if y < 0 { - y = -y - } - - yfr, yexp := Frexp(y) - sign := false - r := x - if x < 0 { - r = -x - sign = true - } - - for r >= y { - rfr, rexp := Frexp(r) - if rfr < yfr { - rexp = rexp - 1 - } - r = r - Ldexp(y, rexp-yexp) - } - if sign { - r = -r - } - return r -} diff --git a/src/pkg/math/mod_386.s b/src/pkg/math/mod_386.s deleted file mode 100644 index 10ad98be3..000000000 --- a/src/pkg/math/mod_386.s +++ /dev/null @@ -1,17 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Mod(x, y float64) float64 -TEXT ·Mod(SB),NOSPLIT,$0 - FMOVD y+8(FP), F0 // F0=y - FMOVD x+0(FP), F0 // F0=x, F1=y - FPREM // F0=reduced_x, F1=y - FSTSW AX // AX=status word - ANDW $0x0400, AX - JNE -3(PC) // jump if reduction incomplete - FMOVDP F0, F1 // F0=x-q*y - FMOVDP F0, ret+16(FP) - RET diff --git a/src/pkg/math/mod_amd64.s b/src/pkg/math/mod_amd64.s deleted file mode 100644 index f99dbe293..000000000 --- a/src/pkg/math/mod_amd64.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Mod(SB),NOSPLIT,$0 - JMP ·mod(SB) diff --git a/src/pkg/math/mod_amd64p32.s b/src/pkg/math/mod_amd64p32.s deleted file mode 100644 index c1b231124..000000000 --- a/src/pkg/math/mod_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "mod_amd64.s" diff --git a/src/pkg/math/mod_arm.s b/src/pkg/math/mod_arm.s deleted file mode 100644 index 5afb3594d..000000000 --- a/src/pkg/math/mod_arm.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Mod(SB),NOSPLIT,$0 - B ·mod(SB) diff --git a/src/pkg/math/modf.go b/src/pkg/math/modf.go deleted file mode 100644 index 1e8376a93..000000000 --- a/src/pkg/math/modf.go +++ /dev/null @@ -1,34 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// Modf returns integer and fractional floating-point numbers -// that sum to f. Both values have the same sign as f. -// -// Special cases are: -// Modf(±Inf) = ±Inf, NaN -// Modf(NaN) = NaN, NaN -func Modf(f float64) (int float64, frac float64) - -func modf(f float64) (int float64, frac float64) { - if f < 1 { - if f < 0 { - int, frac = Modf(-f) - return -int, -frac - } - return 0, f - } - - x := Float64bits(f) - e := uint(x>>shift)&mask - bias - - // Keep the top 12+e bits, the integer part; clear the rest. - if e < 64-12 { - x &^= 1<<(64-12-e) - 1 - } - int = Float64frombits(x) - frac = f - int - return -} diff --git a/src/pkg/math/modf_386.s b/src/pkg/math/modf_386.s deleted file mode 100644 index 3debd3b95..000000000 --- a/src/pkg/math/modf_386.s +++ /dev/null @@ -1,21 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Modf(f float64) (int float64, frac float64) -TEXT ·Modf(SB),NOSPLIT,$0 - FMOVD f+0(FP), F0 // F0=f - FMOVD F0, F1 // F0=f, F1=f - FSTCW -2(SP) // save old Control Word - MOVW -2(SP), AX - ORW $0x0c00, AX // Rounding Control set to truncate - MOVW AX, -4(SP) // store new Control Word - FLDCW -4(SP) // load new Control Word - FRNDINT // F0=trunc(f), F1=f - FLDCW -2(SP) // load old Control Word - FSUBD F0, F1 // F0=trunc(f), F1=f-trunc(f) - FMOVDP F0, int+8(FP) // F0=f-trunc(f) - FMOVDP F0, frac+16(FP) - RET diff --git a/src/pkg/math/modf_amd64.s b/src/pkg/math/modf_amd64.s deleted file mode 100644 index 701cf72a3..000000000 --- a/src/pkg/math/modf_amd64.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Modf(SB),NOSPLIT,$0 - JMP ·modf(SB) diff --git a/src/pkg/math/modf_amd64p32.s b/src/pkg/math/modf_amd64p32.s deleted file mode 100644 index 5508c2547..000000000 --- a/src/pkg/math/modf_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "modf_amd64.s" diff --git a/src/pkg/math/modf_arm.s b/src/pkg/math/modf_arm.s deleted file mode 100644 index ea3c8dc74..000000000 --- a/src/pkg/math/modf_arm.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Modf(SB),NOSPLIT,$0 - B ·modf(SB) diff --git a/src/pkg/math/nextafter.go b/src/pkg/math/nextafter.go deleted file mode 100644 index bbb139986..000000000 --- a/src/pkg/math/nextafter.go +++ /dev/null @@ -1,47 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// Nextafter32 returns the next representable float32 value after x towards y. -// Special cases: -// Nextafter32(x, x) = x -// Nextafter32(NaN, y) = NaN -// Nextafter32(x, NaN) = NaN -func Nextafter32(x, y float32) (r float32) { - switch { - case IsNaN(float64(x)) || IsNaN(float64(y)): // special case - r = float32(NaN()) - case x == y: - r = x - case x == 0: - r = float32(Copysign(float64(Float32frombits(1)), float64(y))) - case (y > x) == (x > 0): - r = Float32frombits(Float32bits(x) + 1) - default: - r = Float32frombits(Float32bits(x) - 1) - } - return -} - -// Nextafter returns the next representable float64 value after x towards y. -// Special cases: -// Nextafter64(x, x) = x -// Nextafter64(NaN, y) = NaN -// Nextafter64(x, NaN) = NaN -func Nextafter(x, y float64) (r float64) { - switch { - case IsNaN(x) || IsNaN(y): // special case - r = NaN() - case x == y: - r = x - case x == 0: - r = Copysign(Float64frombits(1), y) - case (y > x) == (x > 0): - r = Float64frombits(Float64bits(x) + 1) - default: - r = Float64frombits(Float64bits(x) - 1) - } - return -} diff --git a/src/pkg/math/pow.go b/src/pkg/math/pow.go deleted file mode 100644 index 77af25648..000000000 --- a/src/pkg/math/pow.go +++ /dev/null @@ -1,137 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -func isOddInt(x float64) bool { - xi, xf := Modf(x) - return xf == 0 && int64(xi)&1 == 1 -} - -// Special cases taken from FreeBSD's /usr/src/lib/msun/src/e_pow.c -// updated by IEEE Std. 754-2008 "Section 9.2.1 Special values". - -// Pow returns x**y, the base-x exponential of y. -// -// Special cases are (in order): -// Pow(x, ±0) = 1 for any x -// Pow(1, y) = 1 for any y -// Pow(x, 1) = x for any x -// Pow(NaN, y) = NaN -// Pow(x, NaN) = NaN -// Pow(±0, y) = ±Inf for y an odd integer < 0 -// Pow(±0, -Inf) = +Inf -// Pow(±0, +Inf) = +0 -// Pow(±0, y) = +Inf for finite y < 0 and not an odd integer -// Pow(±0, y) = ±0 for y an odd integer > 0 -// Pow(±0, y) = +0 for finite y > 0 and not an odd integer -// Pow(-1, ±Inf) = 1 -// Pow(x, +Inf) = +Inf for |x| > 1 -// Pow(x, -Inf) = +0 for |x| > 1 -// Pow(x, +Inf) = +0 for |x| < 1 -// Pow(x, -Inf) = +Inf for |x| < 1 -// Pow(+Inf, y) = +Inf for y > 0 -// Pow(+Inf, y) = +0 for y < 0 -// Pow(-Inf, y) = Pow(-0, -y) -// Pow(x, y) = NaN for finite x < 0 and finite non-integer y -func Pow(x, y float64) float64 { - switch { - case y == 0 || x == 1: - return 1 - case y == 1: - return x - case y == 0.5: - return Sqrt(x) - case y == -0.5: - return 1 / Sqrt(x) - case IsNaN(x) || IsNaN(y): - return NaN() - case x == 0: - switch { - case y < 0: - if isOddInt(y) { - return Copysign(Inf(1), x) - } - return Inf(1) - case y > 0: - if isOddInt(y) { - return x - } - return 0 - } - case IsInf(y, 0): - switch { - case x == -1: - return 1 - case (Abs(x) < 1) == IsInf(y, 1): - return 0 - default: - return Inf(1) - } - case IsInf(x, 0): - if IsInf(x, -1) { - return Pow(1/x, -y) // Pow(-0, -y) - } - switch { - case y < 0: - return 0 - case y > 0: - return Inf(1) - } - } - - absy := y - flip := false - if absy < 0 { - absy = -absy - flip = true - } - yi, yf := Modf(absy) - if yf != 0 && x < 0 { - return NaN() - } - if yi >= 1<<63 { - return Exp(y * Log(x)) - } - - // ans = a1 * 2**ae (= 1 for now). - a1 := 1.0 - ae := 0 - - // ans *= x**yf - if yf != 0 { - if yf > 0.5 { - yf-- - yi++ - } - a1 = Exp(yf * Log(x)) - } - - // ans *= x**yi - // by multiplying in successive squarings - // of x according to bits of yi. - // accumulate powers of two into exp. - x1, xe := Frexp(x) - for i := int64(yi); i != 0; i >>= 1 { - if i&1 == 1 { - a1 *= x1 - ae += xe - } - x1 *= x1 - xe <<= 1 - if x1 < .5 { - x1 += x1 - xe-- - } - } - - // ans = a1*2**ae - // if flip { ans = 1 / ans } - // but in the opposite order - if flip { - a1 = 1 / a1 - ae = -ae - } - return Ldexp(a1, ae) -} diff --git a/src/pkg/math/pow10.go b/src/pkg/math/pow10.go deleted file mode 100644 index f5ad28bb4..000000000 --- a/src/pkg/math/pow10.go +++ /dev/null @@ -1,40 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// This table might overflow 127-bit exponent representations. -// In that case, truncate it after 1.0e38. -var pow10tab [70]float64 - -// Pow10 returns 10**e, the base-10 exponential of e. -// -// Special cases are: -// Pow10(e) = +Inf for e > 309 -// Pow10(e) = 0 for e < -324 -func Pow10(e int) float64 { - if e <= -325 { - return 0 - } else if e > 309 { - return Inf(1) - } - - if e < 0 { - return 1 / Pow10(-e) - } - if e < len(pow10tab) { - return pow10tab[e] - } - m := e / 2 - return Pow10(m) * Pow10(e-m) -} - -func init() { - pow10tab[0] = 1.0e0 - pow10tab[1] = 1.0e1 - for i := 2; i < len(pow10tab); i++ { - m := i / 2 - pow10tab[i] = pow10tab[m] * pow10tab[i-m] - } -} diff --git a/src/pkg/math/rand/example_test.go b/src/pkg/math/rand/example_test.go deleted file mode 100644 index f42991453..000000000 --- a/src/pkg/math/rand/example_test.go +++ /dev/null @@ -1,97 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package rand_test - -import ( - "fmt" - "math/rand" - "os" - "text/tabwriter" -) - -// These tests serve as an example but also make sure we don't change -// the output of the random number generator when given a fixed seed. - -func Example() { - rand.Seed(42) // Try changing this number! - answers := []string{ - "It is certain", - "It is decidedly so", - "Without a doubt", - "Yes definitely", - "You may rely on it", - "As I see it yes", - "Most likely", - "Outlook good", - "Yes", - "Signs point to yes", - "Reply hazy try again", - "Ask again later", - "Better not tell you now", - "Cannot predict now", - "Concentrate and ask again", - "Don't count on it", - "My reply is no", - "My sources say no", - "Outlook not so good", - "Very doubtful", - } - fmt.Println("Magic 8-Ball says:", answers[rand.Intn(len(answers))]) - // Output: Magic 8-Ball says: As I see it yes -} - -// This example shows the use of each of the methods on a *Rand. -// The use of the global functions is the same, without the receiver. -func Example_rand() { - // Create and seed the generator. - // Typically a non-fixed seed should be used, such as time.Now().UnixNano(). - // Using a fixed seed will produce the same output on every run. - r := rand.New(rand.NewSource(99)) - - // The tabwriter here helps us generate aligned output. - w := tabwriter.NewWriter(os.Stdout, 1, 1, 1, ' ', 0) - defer w.Flush() - show := func(name string, v1, v2, v3 interface{}) { - fmt.Fprintf(w, "%s\t%v\t%v\t%v\n", name, v1, v2, v3) - } - - // Float32 and Float64 values are in [0, 1). - show("Float32", r.Float32(), r.Float32(), r.Float32()) - show("Float64", r.Float64(), r.Float64(), r.Float64()) - - // ExpFloat64 values have an average of 1 but decay exponentially. - show("ExpFloat64", r.ExpFloat64(), r.ExpFloat64(), r.ExpFloat64()) - - // NormFloat64 values have an average of 0 and a standard deviation of 1. - show("NormFloat64", r.NormFloat64(), r.NormFloat64(), r.NormFloat64()) - - // Int31, Int63, and Uint32 generate values of the given width. - // The Int method (not shown) is like either Int31 or Int63 - // depending on the size of 'int'. - show("Int31", r.Int31(), r.Int31(), r.Int31()) - show("Int63", r.Int63(), r.Int63(), r.Int63()) - show("Uint32", r.Int63(), r.Int63(), r.Int63()) - - // Intn, Int31n, and Int63n limit their output to be < n. - // They do so more carefully than using r.Int()%n. - show("Intn(10)", r.Intn(10), r.Intn(10), r.Intn(10)) - show("Int31n(10)", r.Int31n(10), r.Int31n(10), r.Int31n(10)) - show("Int63n(10)", r.Int63n(10), r.Int63n(10), r.Int63n(10)) - - // Perm generates a random permutation of the numbers [0, n). - show("Perm", r.Perm(5), r.Perm(5), r.Perm(5)) - // Output: - // Float32 0.2635776 0.6358173 0.6718283 - // Float64 0.628605430454327 0.4504798828572669 0.9562755949377957 - // ExpFloat64 0.3362240648200941 1.4256072328483647 0.24354758816173044 - // NormFloat64 0.17233959114940064 1.577014951434847 0.04259129641113857 - // Int31 1501292890 1486668269 182840835 - // Int63 3546343826724305832 5724354148158589552 5239846799706671610 - // Uint32 5927547564735367388 637072299495207830 4128311955958246186 - // Intn(10) 1 2 5 - // Int31n(10) 4 7 8 - // Int63n(10) 7 6 3 - // Perm [1 4 2 3 0] [4 2 1 3 0] [1 2 4 0 3] -} diff --git a/src/pkg/math/rand/exp.go b/src/pkg/math/rand/exp.go deleted file mode 100644 index 4bc110f91..000000000 --- a/src/pkg/math/rand/exp.go +++ /dev/null @@ -1,222 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package rand - -import ( - "math" -) - -/* - * Exponential distribution - * - * See "The Ziggurat Method for Generating Random Variables" - * (Marsaglia & Tsang, 2000) - * http://www.jstatsoft.org/v05/i08/paper [pdf] - */ - -const ( - re = 7.69711747013104972 -) - -// ExpFloat64 returns an exponentially distributed float64 in the range -// (0, +math.MaxFloat64] with an exponential distribution whose rate parameter -// (lambda) is 1 and whose mean is 1/lambda (1). -// To produce a distribution with a different rate parameter, -// callers can adjust the output using: -// -// sample = ExpFloat64() / desiredRateParameter -// -func (r *Rand) ExpFloat64() float64 { - for { - j := r.Uint32() - i := j & 0xFF - x := float64(j) * float64(we[i]) - if j < ke[i] { - return x - } - if i == 0 { - return re - math.Log(r.Float64()) - } - if fe[i]+float32(r.Float64())*(fe[i-1]-fe[i]) < float32(math.Exp(-x)) { - return x - } - } -} - -var ke = [256]uint32{ - 0xe290a139, 0x0, 0x9beadebc, 0xc377ac71, 0xd4ddb990, - 0xde893fb8, 0xe4a8e87c, 0xe8dff16a, 0xebf2deab, 0xee49a6e8, - 0xf0204efd, 0xf19bdb8e, 0xf2d458bb, 0xf3da104b, 0xf4b86d78, - 0xf577ad8a, 0xf61de83d, 0xf6afb784, 0xf730a573, 0xf7a37651, - 0xf80a5bb6, 0xf867189d, 0xf8bb1b4f, 0xf9079062, 0xf94d70ca, - 0xf98d8c7d, 0xf9c8928a, 0xf9ff175b, 0xfa319996, 0xfa6085f8, - 0xfa8c3a62, 0xfab5084e, 0xfadb36c8, 0xfaff0410, 0xfb20a6ea, - 0xfb404fb4, 0xfb5e2951, 0xfb7a59e9, 0xfb95038c, 0xfbae44ba, - 0xfbc638d8, 0xfbdcf892, 0xfbf29a30, 0xfc0731df, 0xfc1ad1ed, - 0xfc2d8b02, 0xfc3f6c4d, 0xfc5083ac, 0xfc60ddd1, 0xfc708662, - 0xfc7f8810, 0xfc8decb4, 0xfc9bbd62, 0xfca9027c, 0xfcb5c3c3, - 0xfcc20864, 0xfccdd70a, 0xfcd935e3, 0xfce42ab0, 0xfceebace, - 0xfcf8eb3b, 0xfd02c0a0, 0xfd0c3f59, 0xfd156b7b, 0xfd1e48d6, - 0xfd26daff, 0xfd2f2552, 0xfd372af7, 0xfd3eeee5, 0xfd4673e7, - 0xfd4dbc9e, 0xfd54cb85, 0xfd5ba2f2, 0xfd62451b, 0xfd68b415, - 0xfd6ef1da, 0xfd750047, 0xfd7ae120, 0xfd809612, 0xfd8620b4, - 0xfd8b8285, 0xfd90bcf5, 0xfd95d15e, 0xfd9ac10b, 0xfd9f8d36, - 0xfda43708, 0xfda8bf9e, 0xfdad2806, 0xfdb17141, 0xfdb59c46, - 0xfdb9a9fd, 0xfdbd9b46, 0xfdc170f6, 0xfdc52bd8, 0xfdc8ccac, - 0xfdcc542d, 0xfdcfc30b, 0xfdd319ef, 0xfdd6597a, 0xfdd98245, - 0xfddc94e5, 0xfddf91e6, 0xfde279ce, 0xfde54d1f, 0xfde80c52, - 0xfdeab7de, 0xfded5034, 0xfdefd5be, 0xfdf248e3, 0xfdf4aa06, - 0xfdf6f984, 0xfdf937b6, 0xfdfb64f4, 0xfdfd818d, 0xfdff8dd0, - 0xfe018a08, 0xfe03767a, 0xfe05536c, 0xfe07211c, 0xfe08dfc9, - 0xfe0a8fab, 0xfe0c30fb, 0xfe0dc3ec, 0xfe0f48b1, 0xfe10bf76, - 0xfe122869, 0xfe1383b4, 0xfe14d17c, 0xfe1611e7, 0xfe174516, - 0xfe186b2a, 0xfe19843e, 0xfe1a9070, 0xfe1b8fd6, 0xfe1c8289, - 0xfe1d689b, 0xfe1e4220, 0xfe1f0f26, 0xfe1fcfbc, 0xfe2083ed, - 0xfe212bc3, 0xfe21c745, 0xfe225678, 0xfe22d95f, 0xfe234ffb, - 0xfe23ba4a, 0xfe241849, 0xfe2469f2, 0xfe24af3c, 0xfe24e81e, - 0xfe25148b, 0xfe253474, 0xfe2547c7, 0xfe254e70, 0xfe25485a, - 0xfe25356a, 0xfe251586, 0xfe24e88f, 0xfe24ae64, 0xfe2466e1, - 0xfe2411df, 0xfe23af34, 0xfe233eb4, 0xfe22c02c, 0xfe22336b, - 0xfe219838, 0xfe20ee58, 0xfe20358c, 0xfe1f6d92, 0xfe1e9621, - 0xfe1daef0, 0xfe1cb7ac, 0xfe1bb002, 0xfe1a9798, 0xfe196e0d, - 0xfe1832fd, 0xfe16e5fe, 0xfe15869d, 0xfe141464, 0xfe128ed3, - 0xfe10f565, 0xfe0f478c, 0xfe0d84b1, 0xfe0bac36, 0xfe09bd73, - 0xfe07b7b5, 0xfe059a40, 0xfe03644c, 0xfe011504, 0xfdfeab88, - 0xfdfc26e9, 0xfdf98629, 0xfdf6c83b, 0xfdf3ec01, 0xfdf0f04a, - 0xfdedd3d1, 0xfdea953d, 0xfde7331e, 0xfde3abe9, 0xfddffdfb, - 0xfddc2791, 0xfdd826cd, 0xfdd3f9a8, 0xfdcf9dfc, 0xfdcb1176, - 0xfdc65198, 0xfdc15bb3, 0xfdbc2ce2, 0xfdb6c206, 0xfdb117be, - 0xfdab2a63, 0xfda4f5fd, 0xfd9e7640, 0xfd97a67a, 0xfd908192, - 0xfd8901f2, 0xfd812182, 0xfd78d98e, 0xfd7022bb, 0xfd66f4ed, - 0xfd5d4732, 0xfd530f9c, 0xfd48432b, 0xfd3cd59a, 0xfd30b936, - 0xfd23dea4, 0xfd16349e, 0xfd07a7a3, 0xfcf8219b, 0xfce7895b, - 0xfcd5c220, 0xfcc2aadb, 0xfcae1d5e, 0xfc97ed4e, 0xfc7fe6d4, - 0xfc65ccf3, 0xfc495762, 0xfc2a2fc8, 0xfc07ee19, 0xfbe213c1, - 0xfbb8051a, 0xfb890078, 0xfb5411a5, 0xfb180005, 0xfad33482, - 0xfa839276, 0xfa263b32, 0xf9b72d1c, 0xf930a1a2, 0xf889f023, - 0xf7b577d2, 0xf69c650c, 0xf51530f0, 0xf2cb0e3c, 0xeeefb15d, - 0xe6da6ecf, -} -var we = [256]float32{ - 2.0249555e-09, 1.486674e-11, 2.4409617e-11, 3.1968806e-11, - 3.844677e-11, 4.4228204e-11, 4.9516443e-11, 5.443359e-11, - 5.905944e-11, 6.344942e-11, 6.7643814e-11, 7.1672945e-11, - 7.556032e-11, 7.932458e-11, 8.298079e-11, 8.654132e-11, - 9.0016515e-11, 9.3415074e-11, 9.674443e-11, 1.0001099e-10, - 1.03220314e-10, 1.06377254e-10, 1.09486115e-10, 1.1255068e-10, - 1.1557435e-10, 1.1856015e-10, 1.2151083e-10, 1.2442886e-10, - 1.2731648e-10, 1.3017575e-10, 1.3300853e-10, 1.3581657e-10, - 1.3860142e-10, 1.4136457e-10, 1.4410738e-10, 1.4683108e-10, - 1.4953687e-10, 1.5222583e-10, 1.54899e-10, 1.5755733e-10, - 1.6020171e-10, 1.6283301e-10, 1.6545203e-10, 1.6805951e-10, - 1.7065617e-10, 1.732427e-10, 1.7581973e-10, 1.7838787e-10, - 1.8094774e-10, 1.8349985e-10, 1.8604476e-10, 1.8858298e-10, - 1.9111498e-10, 1.9364126e-10, 1.9616223e-10, 1.9867835e-10, - 2.0119004e-10, 2.0369768e-10, 2.0620168e-10, 2.087024e-10, - 2.1120022e-10, 2.136955e-10, 2.1618855e-10, 2.1867974e-10, - 2.2116936e-10, 2.2365775e-10, 2.261452e-10, 2.2863202e-10, - 2.311185e-10, 2.3360494e-10, 2.360916e-10, 2.3857874e-10, - 2.4106667e-10, 2.4355562e-10, 2.4604588e-10, 2.485377e-10, - 2.5103128e-10, 2.5352695e-10, 2.560249e-10, 2.585254e-10, - 2.6102867e-10, 2.6353494e-10, 2.6604446e-10, 2.6855745e-10, - 2.7107416e-10, 2.7359479e-10, 2.761196e-10, 2.7864877e-10, - 2.8118255e-10, 2.8372119e-10, 2.8626485e-10, 2.888138e-10, - 2.9136826e-10, 2.939284e-10, 2.9649452e-10, 2.9906677e-10, - 3.016454e-10, 3.0423064e-10, 3.0682268e-10, 3.0942177e-10, - 3.1202813e-10, 3.1464195e-10, 3.1726352e-10, 3.19893e-10, - 3.2253064e-10, 3.251767e-10, 3.2783135e-10, 3.3049485e-10, - 3.3316744e-10, 3.3584938e-10, 3.3854083e-10, 3.4124212e-10, - 3.4395342e-10, 3.46675e-10, 3.4940711e-10, 3.5215003e-10, - 3.5490397e-10, 3.5766917e-10, 3.6044595e-10, 3.6323455e-10, - 3.660352e-10, 3.6884823e-10, 3.7167386e-10, 3.745124e-10, - 3.773641e-10, 3.802293e-10, 3.8310827e-10, 3.860013e-10, - 3.8890866e-10, 3.918307e-10, 3.9476775e-10, 3.9772008e-10, - 4.0068804e-10, 4.0367196e-10, 4.0667217e-10, 4.09689e-10, - 4.1272286e-10, 4.1577405e-10, 4.1884296e-10, 4.2192994e-10, - 4.250354e-10, 4.281597e-10, 4.313033e-10, 4.3446652e-10, - 4.3764986e-10, 4.408537e-10, 4.4407847e-10, 4.4732465e-10, - 4.5059267e-10, 4.5388301e-10, 4.571962e-10, 4.6053267e-10, - 4.6389292e-10, 4.6727755e-10, 4.70687e-10, 4.741219e-10, - 4.7758275e-10, 4.810702e-10, 4.845848e-10, 4.8812715e-10, - 4.9169796e-10, 4.9529775e-10, 4.989273e-10, 5.0258725e-10, - 5.0627835e-10, 5.100013e-10, 5.1375687e-10, 5.1754584e-10, - 5.21369e-10, 5.2522725e-10, 5.2912136e-10, 5.330522e-10, - 5.370208e-10, 5.4102806e-10, 5.45075e-10, 5.491625e-10, - 5.532918e-10, 5.5746385e-10, 5.616799e-10, 5.6594107e-10, - 5.7024857e-10, 5.746037e-10, 5.7900773e-10, 5.834621e-10, - 5.8796823e-10, 5.925276e-10, 5.971417e-10, 6.018122e-10, - 6.065408e-10, 6.113292e-10, 6.1617933e-10, 6.2109295e-10, - 6.260722e-10, 6.3111916e-10, 6.3623595e-10, 6.4142497e-10, - 6.4668854e-10, 6.5202926e-10, 6.5744976e-10, 6.6295286e-10, - 6.6854156e-10, 6.742188e-10, 6.79988e-10, 6.858526e-10, - 6.9181616e-10, 6.978826e-10, 7.04056e-10, 7.103407e-10, - 7.167412e-10, 7.2326256e-10, 7.2990985e-10, 7.366886e-10, - 7.4360473e-10, 7.5066453e-10, 7.5787476e-10, 7.6524265e-10, - 7.7277595e-10, 7.80483e-10, 7.883728e-10, 7.9645507e-10, - 8.047402e-10, 8.1323964e-10, 8.219657e-10, 8.309319e-10, - 8.401528e-10, 8.496445e-10, 8.594247e-10, 8.6951274e-10, - 8.799301e-10, 8.9070046e-10, 9.018503e-10, 9.134092e-10, - 9.254101e-10, 9.378904e-10, 9.508923e-10, 9.644638e-10, - 9.786603e-10, 9.935448e-10, 1.0091913e-09, 1.025686e-09, - 1.0431306e-09, 1.0616465e-09, 1.08138e-09, 1.1025096e-09, - 1.1252564e-09, 1.1498986e-09, 1.1767932e-09, 1.206409e-09, - 1.2393786e-09, 1.276585e-09, 1.3193139e-09, 1.3695435e-09, - 1.4305498e-09, 1.508365e-09, 1.6160854e-09, 1.7921248e-09, -} -var fe = [256]float32{ - 1, 0.9381437, 0.90046996, 0.87170434, 0.8477855, 0.8269933, - 0.8084217, 0.7915276, 0.77595687, 0.7614634, 0.7478686, - 0.7350381, 0.72286767, 0.71127474, 0.70019263, 0.6895665, - 0.67935055, 0.6695063, 0.66000086, 0.65080583, 0.6418967, - 0.63325197, 0.6248527, 0.6166822, 0.60872537, 0.60096896, - 0.5934009, 0.58601034, 0.5787874, 0.57172304, 0.5648092, - 0.5580383, 0.5514034, 0.5448982, 0.5385169, 0.53225386, - 0.5261042, 0.52006316, 0.5141264, 0.50828975, 0.5025495, - 0.496902, 0.49134386, 0.485872, 0.48048335, 0.4751752, - 0.46994483, 0.46478975, 0.45970762, 0.45469615, 0.44975325, - 0.44487688, 0.44006512, 0.43531612, 0.43062815, 0.42599955, - 0.42142874, 0.4169142, 0.41245446, 0.40804818, 0.403694, - 0.3993907, 0.39513698, 0.39093173, 0.38677382, 0.38266218, - 0.37859577, 0.37457356, 0.37059465, 0.3666581, 0.362763, - 0.35890847, 0.35509375, 0.351318, 0.3475805, 0.34388044, - 0.34021714, 0.3365899, 0.33299807, 0.32944095, 0.32591796, - 0.3224285, 0.3189719, 0.31554767, 0.31215525, 0.30879408, - 0.3054636, 0.3021634, 0.29889292, 0.2956517, 0.29243928, - 0.28925523, 0.28609908, 0.28297043, 0.27986884, 0.27679393, - 0.2737453, 0.2707226, 0.2677254, 0.26475343, 0.26180625, - 0.25888354, 0.25598502, 0.2531103, 0.25025907, 0.24743107, - 0.24462597, 0.24184346, 0.23908329, 0.23634516, 0.23362878, - 0.23093392, 0.2282603, 0.22560766, 0.22297576, 0.22036438, - 0.21777324, 0.21520215, 0.21265087, 0.21011916, 0.20760682, - 0.20511365, 0.20263945, 0.20018397, 0.19774707, 0.19532852, - 0.19292815, 0.19054577, 0.1881812, 0.18583426, 0.18350479, - 0.1811926, 0.17889754, 0.17661946, 0.17435817, 0.17211354, - 0.1698854, 0.16767362, 0.16547804, 0.16329853, 0.16113494, - 0.15898713, 0.15685499, 0.15473837, 0.15263714, 0.15055119, - 0.14848037, 0.14642459, 0.14438373, 0.14235765, 0.14034624, - 0.13834943, 0.13636707, 0.13439907, 0.13244532, 0.13050574, - 0.1285802, 0.12666863, 0.12477092, 0.12288698, 0.12101672, - 0.119160056, 0.1173169, 0.115487166, 0.11367077, 0.11186763, - 0.11007768, 0.10830083, 0.10653701, 0.10478614, 0.10304816, - 0.101323, 0.09961058, 0.09791085, 0.09622374, 0.09454919, - 0.09288713, 0.091237515, 0.08960028, 0.087975375, 0.08636274, - 0.08476233, 0.083174095, 0.081597984, 0.08003395, 0.07848195, - 0.076941945, 0.07541389, 0.07389775, 0.072393484, 0.07090106, - 0.069420435, 0.06795159, 0.066494495, 0.06504912, 0.063615434, - 0.062193416, 0.060783047, 0.059384305, 0.057997175, - 0.05662164, 0.05525769, 0.053905312, 0.052564494, 0.051235236, - 0.049917534, 0.048611384, 0.047316793, 0.046033762, 0.0447623, - 0.043502413, 0.042254124, 0.041017443, 0.039792392, - 0.038578995, 0.037377283, 0.036187284, 0.035009038, - 0.033842582, 0.032687962, 0.031545233, 0.030414443, 0.02929566, - 0.02818895, 0.027094385, 0.026012046, 0.024942026, 0.023884421, - 0.022839336, 0.021806888, 0.020787204, 0.019780423, 0.0187867, - 0.0178062, 0.016839107, 0.015885621, 0.014945968, 0.014020392, - 0.013109165, 0.012212592, 0.011331013, 0.01046481, 0.009614414, - 0.008780315, 0.007963077, 0.0071633533, 0.006381906, - 0.0056196423, 0.0048776558, 0.004157295, 0.0034602648, - 0.0027887989, 0.0021459677, 0.0015362998, 0.0009672693, - 0.00045413437, -} diff --git a/src/pkg/math/rand/normal.go b/src/pkg/math/rand/normal.go deleted file mode 100644 index ba4ea54ca..000000000 --- a/src/pkg/math/rand/normal.go +++ /dev/null @@ -1,157 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package rand - -import ( - "math" -) - -/* - * Normal distribution - * - * See "The Ziggurat Method for Generating Random Variables" - * (Marsaglia & Tsang, 2000) - * http://www.jstatsoft.org/v05/i08/paper [pdf] - */ - -const ( - rn = 3.442619855899 -) - -func absInt32(i int32) uint32 { - if i < 0 { - return uint32(-i) - } - return uint32(i) -} - -// NormFloat64 returns a normally distributed float64 in the range -// [-math.MaxFloat64, +math.MaxFloat64] with -// standard normal distribution (mean = 0, stddev = 1). -// To produce a different normal distribution, callers can -// adjust the output using: -// -// sample = NormFloat64() * desiredStdDev + desiredMean -// -func (r *Rand) NormFloat64() float64 { - for { - j := int32(r.Uint32()) // Possibly negative - i := j & 0x7F - x := float64(j) * float64(wn[i]) - if absInt32(j) < kn[i] { - // This case should be hit better than 99% of the time. - return x - } - - if i == 0 { - // This extra work is only required for the base strip. - for { - x = -math.Log(r.Float64()) * (1.0 / rn) - y := -math.Log(r.Float64()) - if y+y >= x*x { - break - } - } - if j > 0 { - return rn + x - } - return -rn - x - } - if fn[i]+float32(r.Float64())*(fn[i-1]-fn[i]) < float32(math.Exp(-.5*x*x)) { - return x - } - } -} - -var kn = [128]uint32{ - 0x76ad2212, 0x0, 0x600f1b53, 0x6ce447a6, 0x725b46a2, - 0x7560051d, 0x774921eb, 0x789a25bd, 0x799045c3, 0x7a4bce5d, - 0x7adf629f, 0x7b5682a6, 0x7bb8a8c6, 0x7c0ae722, 0x7c50cce7, - 0x7c8cec5b, 0x7cc12cd6, 0x7ceefed2, 0x7d177e0b, 0x7d3b8883, - 0x7d5bce6c, 0x7d78dd64, 0x7d932886, 0x7dab0e57, 0x7dc0dd30, - 0x7dd4d688, 0x7de73185, 0x7df81cea, 0x7e07c0a3, 0x7e163efa, - 0x7e23b587, 0x7e303dfd, 0x7e3beec2, 0x7e46db77, 0x7e51155d, - 0x7e5aabb3, 0x7e63abf7, 0x7e6c222c, 0x7e741906, 0x7e7b9a18, - 0x7e82adfa, 0x7e895c63, 0x7e8fac4b, 0x7e95a3fb, 0x7e9b4924, - 0x7ea0a0ef, 0x7ea5b00d, 0x7eaa7ac3, 0x7eaf04f3, 0x7eb3522a, - 0x7eb765a5, 0x7ebb4259, 0x7ebeeafd, 0x7ec2620a, 0x7ec5a9c4, - 0x7ec8c441, 0x7ecbb365, 0x7ece78ed, 0x7ed11671, 0x7ed38d62, - 0x7ed5df12, 0x7ed80cb4, 0x7eda175c, 0x7edc0005, 0x7eddc78e, - 0x7edf6ebf, 0x7ee0f647, 0x7ee25ebe, 0x7ee3a8a9, 0x7ee4d473, - 0x7ee5e276, 0x7ee6d2f5, 0x7ee7a620, 0x7ee85c10, 0x7ee8f4cd, - 0x7ee97047, 0x7ee9ce59, 0x7eea0eca, 0x7eea3147, 0x7eea3568, - 0x7eea1aab, 0x7ee9e071, 0x7ee98602, 0x7ee90a88, 0x7ee86d08, - 0x7ee7ac6a, 0x7ee6c769, 0x7ee5bc9c, 0x7ee48a67, 0x7ee32efc, - 0x7ee1a857, 0x7edff42f, 0x7ede0ffa, 0x7edbf8d9, 0x7ed9ab94, - 0x7ed7248d, 0x7ed45fae, 0x7ed1585c, 0x7ece095f, 0x7eca6ccb, - 0x7ec67be2, 0x7ec22eee, 0x7ebd7d1a, 0x7eb85c35, 0x7eb2c075, - 0x7eac9c20, 0x7ea5df27, 0x7e9e769f, 0x7e964c16, 0x7e8d44ba, - 0x7e834033, 0x7e781728, 0x7e6b9933, 0x7e5d8a1a, 0x7e4d9ded, - 0x7e3b737a, 0x7e268c2f, 0x7e0e3ff5, 0x7df1aa5d, 0x7dcf8c72, - 0x7da61a1e, 0x7d72a0fb, 0x7d30e097, 0x7cd9b4ab, 0x7c600f1a, - 0x7ba90bdc, 0x7a722176, 0x77d664e5, -} -var wn = [128]float32{ - 1.7290405e-09, 1.2680929e-10, 1.6897518e-10, 1.9862688e-10, - 2.2232431e-10, 2.4244937e-10, 2.601613e-10, 2.7611988e-10, - 2.9073963e-10, 3.042997e-10, 3.1699796e-10, 3.289802e-10, - 3.4035738e-10, 3.5121603e-10, 3.616251e-10, 3.7164058e-10, - 3.8130857e-10, 3.9066758e-10, 3.9975012e-10, 4.08584e-10, - 4.1719309e-10, 4.2559822e-10, 4.338176e-10, 4.418672e-10, - 4.497613e-10, 4.5751258e-10, 4.651324e-10, 4.7263105e-10, - 4.8001775e-10, 4.87301e-10, 4.944885e-10, 5.015873e-10, - 5.0860405e-10, 5.155446e-10, 5.2241467e-10, 5.2921934e-10, - 5.359635e-10, 5.426517e-10, 5.4928817e-10, 5.5587696e-10, - 5.624219e-10, 5.6892646e-10, 5.753941e-10, 5.818282e-10, - 5.882317e-10, 5.946077e-10, 6.00959e-10, 6.072884e-10, - 6.135985e-10, 6.19892e-10, 6.2617134e-10, 6.3243905e-10, - 6.386974e-10, 6.449488e-10, 6.511956e-10, 6.5744005e-10, - 6.6368433e-10, 6.699307e-10, 6.7618144e-10, 6.824387e-10, - 6.8870465e-10, 6.949815e-10, 7.012715e-10, 7.075768e-10, - 7.1389966e-10, 7.202424e-10, 7.266073e-10, 7.329966e-10, - 7.394128e-10, 7.4585826e-10, 7.5233547e-10, 7.58847e-10, - 7.653954e-10, 7.719835e-10, 7.7861395e-10, 7.852897e-10, - 7.920138e-10, 7.987892e-10, 8.0561924e-10, 8.125073e-10, - 8.194569e-10, 8.2647167e-10, 8.3355556e-10, 8.407127e-10, - 8.479473e-10, 8.55264e-10, 8.6266755e-10, 8.7016316e-10, - 8.777562e-10, 8.8545243e-10, 8.932582e-10, 9.0117996e-10, - 9.09225e-10, 9.174008e-10, 9.2571584e-10, 9.341788e-10, - 9.427997e-10, 9.515889e-10, 9.605579e-10, 9.697193e-10, - 9.790869e-10, 9.88676e-10, 9.985036e-10, 1.0085882e-09, - 1.0189509e-09, 1.0296151e-09, 1.0406069e-09, 1.0519566e-09, - 1.063698e-09, 1.0758702e-09, 1.0885183e-09, 1.1016947e-09, - 1.1154611e-09, 1.1298902e-09, 1.1450696e-09, 1.1611052e-09, - 1.1781276e-09, 1.1962995e-09, 1.2158287e-09, 1.2369856e-09, - 1.2601323e-09, 1.2857697e-09, 1.3146202e-09, 1.347784e-09, - 1.3870636e-09, 1.4357403e-09, 1.5008659e-09, 1.6030948e-09, -} -var fn = [128]float32{ - 1, 0.9635997, 0.9362827, 0.9130436, 0.89228165, 0.87324303, - 0.8555006, 0.8387836, 0.8229072, 0.8077383, 0.793177, - 0.7791461, 0.7655842, 0.7524416, 0.73967725, 0.7272569, - 0.7151515, 0.7033361, 0.69178915, 0.68049186, 0.6694277, - 0.658582, 0.6479418, 0.63749546, 0.6272325, 0.6171434, - 0.6072195, 0.5974532, 0.58783704, 0.5783647, 0.56903, - 0.5598274, 0.5507518, 0.54179835, 0.5329627, 0.52424055, - 0.5156282, 0.50712204, 0.49871865, 0.49041483, 0.48220766, - 0.4740943, 0.46607214, 0.4581387, 0.45029163, 0.44252872, - 0.43484783, 0.427247, 0.41972435, 0.41227803, 0.40490642, - 0.39760786, 0.3903808, 0.3832238, 0.37613547, 0.36911446, - 0.3621595, 0.35526937, 0.34844297, 0.34167916, 0.33497685, - 0.3283351, 0.3217529, 0.3152294, 0.30876362, 0.30235484, - 0.29600215, 0.28970486, 0.2834622, 0.2772735, 0.27113807, - 0.2650553, 0.25902456, 0.2530453, 0.24711695, 0.241239, - 0.23541094, 0.22963232, 0.2239027, 0.21822165, 0.21258877, - 0.20700371, 0.20146611, 0.19597565, 0.19053204, 0.18513499, - 0.17978427, 0.17447963, 0.1692209, 0.16400786, 0.15884037, - 0.15371831, 0.14864157, 0.14361008, 0.13862377, 0.13368265, - 0.12878671, 0.12393598, 0.119130544, 0.11437051, 0.10965602, - 0.104987256, 0.10036444, 0.095787846, 0.0912578, 0.08677467, - 0.0823389, 0.077950984, 0.073611505, 0.06932112, 0.06508058, - 0.06089077, 0.056752663, 0.0526674, 0.048636295, 0.044660863, - 0.040742867, 0.03688439, 0.033087887, 0.029356318, - 0.025693292, 0.022103304, 0.018592102, 0.015167298, - 0.011839478, 0.008624485, 0.005548995, 0.0026696292, -} diff --git a/src/pkg/math/rand/rand.go b/src/pkg/math/rand/rand.go deleted file mode 100644 index 3ffb5c4e5..000000000 --- a/src/pkg/math/rand/rand.go +++ /dev/null @@ -1,246 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package rand implements pseudo-random number generators. -// -// Random numbers are generated by a Source. Top-level functions, such as -// Float64 and Int, use a default shared Source that produces a deterministic -// sequence of values each time a program is run. Use the Seed function to -// initialize the default Source if different behavior is required for each run. -// The default Source is safe for concurrent use by multiple goroutines. -package rand - -import "sync" - -// A Source represents a source of uniformly-distributed -// pseudo-random int64 values in the range [0, 1<<63). -type Source interface { - Int63() int64 - Seed(seed int64) -} - -// NewSource returns a new pseudo-random Source seeded with the given value. -func NewSource(seed int64) Source { - var rng rngSource - rng.Seed(seed) - return &rng -} - -// A Rand is a source of random numbers. -type Rand struct { - src Source -} - -// New returns a new Rand that uses random values from src -// to generate other random values. -func New(src Source) *Rand { return &Rand{src} } - -// Seed uses the provided seed value to initialize the generator to a deterministic state. -func (r *Rand) Seed(seed int64) { r.src.Seed(seed) } - -// Int63 returns a non-negative pseudo-random 63-bit integer as an int64. -func (r *Rand) Int63() int64 { return r.src.Int63() } - -// Uint32 returns a pseudo-random 32-bit value as a uint32. -func (r *Rand) Uint32() uint32 { return uint32(r.Int63() >> 31) } - -// Int31 returns a non-negative pseudo-random 31-bit integer as an int32. -func (r *Rand) Int31() int32 { return int32(r.Int63() >> 32) } - -// Int returns a non-negative pseudo-random int. -func (r *Rand) Int() int { - u := uint(r.Int63()) - return int(u << 1 >> 1) // clear sign bit if int == int32 -} - -// Int63n returns, as an int64, a non-negative pseudo-random number in [0,n). -// It panics if n <= 0. -func (r *Rand) Int63n(n int64) int64 { - if n <= 0 { - panic("invalid argument to Int63n") - } - if n&(n-1) == 0 { // n is power of two, can mask - return r.Int63() & (n - 1) - } - max := int64((1 << 63) - 1 - (1<<63)%uint64(n)) - v := r.Int63() - for v > max { - v = r.Int63() - } - return v % n -} - -// Int31n returns, as an int32, a non-negative pseudo-random number in [0,n). -// It panics if n <= 0. -func (r *Rand) Int31n(n int32) int32 { - if n <= 0 { - panic("invalid argument to Int31n") - } - if n&(n-1) == 0 { // n is power of two, can mask - return r.Int31() & (n - 1) - } - max := int32((1 << 31) - 1 - (1<<31)%uint32(n)) - v := r.Int31() - for v > max { - v = r.Int31() - } - return v % n -} - -// Intn returns, as an int, a non-negative pseudo-random number in [0,n). -// It panics if n <= 0. -func (r *Rand) Intn(n int) int { - if n <= 0 { - panic("invalid argument to Intn") - } - if n <= 1<<31-1 { - return int(r.Int31n(int32(n))) - } - return int(r.Int63n(int64(n))) -} - -// Float64 returns, as a float64, a pseudo-random number in [0.0,1.0). -func (r *Rand) Float64() float64 { - // A clearer, simpler implementation would be: - // return float64(r.Int63n(1<<53)) / (1<<53) - // However, Go 1 shipped with - // return float64(r.Int63()) / (1 << 63) - // and we want to preserve that value stream. - // - // There is one bug in the value stream: r.Int63() may be so close - // to 1<<63 that the division rounds up to 1.0, and we've guaranteed - // that the result is always less than 1.0. To fix that, we treat the - // range as cyclic and map 1 back to 0. This is justified by observing - // that while some of the values rounded down to 0, nothing was - // rounding up to 0, so 0 was underrepresented in the results. - // Mapping 1 back to zero restores some balance. - // (The balance is not perfect because the implementation - // returns denormalized numbers for very small r.Int63(), - // and those steal from what would normally be 0 results.) - // The remapping only happens 1/2⁵³ of the time, so most clients - // will not observe it anyway. - f := float64(r.Int63()) / (1 << 63) - if f == 1 { - f = 0 - } - return f -} - -// Float32 returns, as a float32, a pseudo-random number in [0.0,1.0). -func (r *Rand) Float32() float32 { - // Same rationale as in Float64: we want to preserve the Go 1 value - // stream except we want to fix it not to return 1.0 - // There is a double rounding going on here, but the argument for - // mapping 1 to 0 still applies: 0 was underrepresented before, - // so mapping 1 to 0 doesn't cause too many 0s. - // This only happens 1/2²⁴ of the time (plus the 1/2⁵³ of the time in Float64). - f := float32(r.Float64()) - if f == 1 { - f = 0 - } - return f -} - -// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n). -func (r *Rand) Perm(n int) []int { - m := make([]int, n) - for i := 0; i < n; i++ { - j := r.Intn(i + 1) - m[i] = m[j] - m[j] = i - } - return m -} - -/* - * Top-level convenience functions - */ - -var globalRand = New(&lockedSource{src: NewSource(1)}) - -// Seed uses the provided seed value to initialize the default Source to a -// deterministic state. If Seed is not called, the generator behaves as -// if seeded by Seed(1). -func Seed(seed int64) { globalRand.Seed(seed) } - -// Int63 returns a non-negative pseudo-random 63-bit integer as an int64 -// from the default Source. -func Int63() int64 { return globalRand.Int63() } - -// Uint32 returns a pseudo-random 32-bit value as a uint32 -// from the default Source. -func Uint32() uint32 { return globalRand.Uint32() } - -// Int31 returns a non-negative pseudo-random 31-bit integer as an int32 -// from the default Source. -func Int31() int32 { return globalRand.Int31() } - -// Int returns a non-negative pseudo-random int from the default Source. -func Int() int { return globalRand.Int() } - -// Int63n returns, as an int64, a non-negative pseudo-random number in [0,n) -// from the default Source. -// It panics if n <= 0. -func Int63n(n int64) int64 { return globalRand.Int63n(n) } - -// Int31n returns, as an int32, a non-negative pseudo-random number in [0,n) -// from the default Source. -// It panics if n <= 0. -func Int31n(n int32) int32 { return globalRand.Int31n(n) } - -// Intn returns, as an int, a non-negative pseudo-random number in [0,n) -// from the default Source. -// It panics if n <= 0. -func Intn(n int) int { return globalRand.Intn(n) } - -// Float64 returns, as a float64, a pseudo-random number in [0.0,1.0) -// from the default Source. -func Float64() float64 { return globalRand.Float64() } - -// Float32 returns, as a float32, a pseudo-random number in [0.0,1.0) -// from the default Source. -func Float32() float32 { return globalRand.Float32() } - -// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n) -// from the default Source. -func Perm(n int) []int { return globalRand.Perm(n) } - -// NormFloat64 returns a normally distributed float64 in the range -// [-math.MaxFloat64, +math.MaxFloat64] with -// standard normal distribution (mean = 0, stddev = 1) -// from the default Source. -// To produce a different normal distribution, callers can -// adjust the output using: -// -// sample = NormFloat64() * desiredStdDev + desiredMean -// -func NormFloat64() float64 { return globalRand.NormFloat64() } - -// ExpFloat64 returns an exponentially distributed float64 in the range -// (0, +math.MaxFloat64] with an exponential distribution whose rate parameter -// (lambda) is 1 and whose mean is 1/lambda (1) from the default Source. -// To produce a distribution with a different rate parameter, -// callers can adjust the output using: -// -// sample = ExpFloat64() / desiredRateParameter -// -func ExpFloat64() float64 { return globalRand.ExpFloat64() } - -type lockedSource struct { - lk sync.Mutex - src Source -} - -func (r *lockedSource) Int63() (n int64) { - r.lk.Lock() - n = r.src.Int63() - r.lk.Unlock() - return -} - -func (r *lockedSource) Seed(seed int64) { - r.lk.Lock() - r.src.Seed(seed) - r.lk.Unlock() -} diff --git a/src/pkg/math/rand/rand_test.go b/src/pkg/math/rand/rand_test.go deleted file mode 100644 index ab0dc49b4..000000000 --- a/src/pkg/math/rand/rand_test.go +++ /dev/null @@ -1,398 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package rand - -import ( - "errors" - "fmt" - "math" - "testing" -) - -const ( - numTestSamples = 10000 -) - -type statsResults struct { - mean float64 - stddev float64 - closeEnough float64 - maxError float64 -} - -func max(a, b float64) float64 { - if a > b { - return a - } - return b -} - -func nearEqual(a, b, closeEnough, maxError float64) bool { - absDiff := math.Abs(a - b) - if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero. - return true - } - return absDiff/max(math.Abs(a), math.Abs(b)) < maxError -} - -var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961} - -// checkSimilarDistribution returns success if the mean and stddev of the -// two statsResults are similar. -func (this *statsResults) checkSimilarDistribution(expected *statsResults) error { - if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) { - s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError) - fmt.Println(s) - return errors.New(s) - } - if !nearEqual(this.stddev, expected.stddev, 0, expected.maxError) { - s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError) - fmt.Println(s) - return errors.New(s) - } - return nil -} - -func getStatsResults(samples []float64) *statsResults { - res := new(statsResults) - var sum, squaresum float64 - for _, s := range samples { - sum += s - squaresum += s * s - } - res.mean = sum / float64(len(samples)) - res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean) - return res -} - -func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) { - actual := getStatsResults(samples) - err := actual.checkSimilarDistribution(expected) - if err != nil { - t.Errorf(err.Error()) - } -} - -func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) { - chunk := len(samples) / nslices - for i := 0; i < nslices; i++ { - low := i * chunk - var high int - if i == nslices-1 { - high = len(samples) - 1 - } else { - high = (i + 1) * chunk - } - checkSampleDistribution(t, samples[low:high], expected) - } -} - -// -// Normal distribution tests -// - -func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 { - r := New(NewSource(seed)) - samples := make([]float64, nsamples) - for i := range samples { - samples[i] = r.NormFloat64()*stddev + mean - } - return samples -} - -func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) { - //fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed); - - samples := generateNormalSamples(nsamples, mean, stddev, seed) - errorScale := max(1.0, stddev) // Error scales with stddev - expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale} - - // Make sure that the entire set matches the expected distribution. - checkSampleDistribution(t, samples, expected) - - // Make sure that each half of the set matches the expected distribution. - checkSampleSliceDistributions(t, samples, 2, expected) - - // Make sure that each 7th of the set matches the expected distribution. - checkSampleSliceDistributions(t, samples, 7, expected) -} - -// Actual tests - -func TestStandardNormalValues(t *testing.T) { - for _, seed := range testSeeds { - testNormalDistribution(t, numTestSamples, 0, 1, seed) - } -} - -func TestNonStandardNormalValues(t *testing.T) { - sdmax := 1000.0 - mmax := 1000.0 - if testing.Short() { - sdmax = 5 - mmax = 5 - } - for sd := 0.5; sd < sdmax; sd *= 2 { - for m := 0.5; m < mmax; m *= 2 { - for _, seed := range testSeeds { - testNormalDistribution(t, numTestSamples, m, sd, seed) - if testing.Short() { - break - } - } - } - } -} - -// -// Exponential distribution tests -// - -func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 { - r := New(NewSource(seed)) - samples := make([]float64, nsamples) - for i := range samples { - samples[i] = r.ExpFloat64() / rate - } - return samples -} - -func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) { - //fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed); - - mean := 1 / rate - stddev := mean - - samples := generateExponentialSamples(nsamples, rate, seed) - errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate - expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale} - - // Make sure that the entire set matches the expected distribution. - checkSampleDistribution(t, samples, expected) - - // Make sure that each half of the set matches the expected distribution. - checkSampleSliceDistributions(t, samples, 2, expected) - - // Make sure that each 7th of the set matches the expected distribution. - checkSampleSliceDistributions(t, samples, 7, expected) -} - -// Actual tests - -func TestStandardExponentialValues(t *testing.T) { - for _, seed := range testSeeds { - testExponentialDistribution(t, numTestSamples, 1, seed) - } -} - -func TestNonStandardExponentialValues(t *testing.T) { - for rate := 0.05; rate < 10; rate *= 2 { - for _, seed := range testSeeds { - testExponentialDistribution(t, numTestSamples, rate, seed) - if testing.Short() { - break - } - } - } -} - -// -// Table generation tests -// - -func initNorm() (testKn []uint32, testWn, testFn []float32) { - const m1 = 1 << 31 - var ( - dn float64 = rn - tn = dn - vn float64 = 9.91256303526217e-3 - ) - - testKn = make([]uint32, 128) - testWn = make([]float32, 128) - testFn = make([]float32, 128) - - q := vn / math.Exp(-0.5*dn*dn) - testKn[0] = uint32((dn / q) * m1) - testKn[1] = 0 - testWn[0] = float32(q / m1) - testWn[127] = float32(dn / m1) - testFn[0] = 1.0 - testFn[127] = float32(math.Exp(-0.5 * dn * dn)) - for i := 126; i >= 1; i-- { - dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn))) - testKn[i+1] = uint32((dn / tn) * m1) - tn = dn - testFn[i] = float32(math.Exp(-0.5 * dn * dn)) - testWn[i] = float32(dn / m1) - } - return -} - -func initExp() (testKe []uint32, testWe, testFe []float32) { - const m2 = 1 << 32 - var ( - de float64 = re - te = de - ve float64 = 3.9496598225815571993e-3 - ) - - testKe = make([]uint32, 256) - testWe = make([]float32, 256) - testFe = make([]float32, 256) - - q := ve / math.Exp(-de) - testKe[0] = uint32((de / q) * m2) - testKe[1] = 0 - testWe[0] = float32(q / m2) - testWe[255] = float32(de / m2) - testFe[0] = 1.0 - testFe[255] = float32(math.Exp(-de)) - for i := 254; i >= 1; i-- { - de = -math.Log(ve/de + math.Exp(-de)) - testKe[i+1] = uint32((de / te) * m2) - te = de - testFe[i] = float32(math.Exp(-de)) - testWe[i] = float32(de / m2) - } - return -} - -// compareUint32Slices returns the first index where the two slices -// disagree, or <0 if the lengths are the same and all elements -// are identical. -func compareUint32Slices(s1, s2 []uint32) int { - if len(s1) != len(s2) { - if len(s1) > len(s2) { - return len(s2) + 1 - } - return len(s1) + 1 - } - for i := range s1 { - if s1[i] != s2[i] { - return i - } - } - return -1 -} - -// compareFloat32Slices returns the first index where the two slices -// disagree, or <0 if the lengths are the same and all elements -// are identical. -func compareFloat32Slices(s1, s2 []float32) int { - if len(s1) != len(s2) { - if len(s1) > len(s2) { - return len(s2) + 1 - } - return len(s1) + 1 - } - for i := range s1 { - if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) { - return i - } - } - return -1 -} - -func TestNormTables(t *testing.T) { - testKn, testWn, testFn := initNorm() - if i := compareUint32Slices(kn[0:], testKn); i >= 0 { - t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i]) - } - if i := compareFloat32Slices(wn[0:], testWn); i >= 0 { - t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i]) - } - if i := compareFloat32Slices(fn[0:], testFn); i >= 0 { - t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i]) - } -} - -func TestExpTables(t *testing.T) { - testKe, testWe, testFe := initExp() - if i := compareUint32Slices(ke[0:], testKe); i >= 0 { - t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i]) - } - if i := compareFloat32Slices(we[0:], testWe); i >= 0 { - t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i]) - } - if i := compareFloat32Slices(fe[0:], testFe); i >= 0 { - t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i]) - } -} - -// For issue 6721, the problem came after 7533753 calls, so check 10e6. -func TestFloat32(t *testing.T) { - r := New(NewSource(1)) - for ct := 0; ct < 10e6; ct++ { - f := r.Float32() - if f >= 1 { - t.Fatal("Float32() should be in range [0,1). ct:", ct, "f:", f) - } - } -} - -// Benchmarks - -func BenchmarkInt63Threadsafe(b *testing.B) { - for n := b.N; n > 0; n-- { - Int63() - } -} - -func BenchmarkInt63Unthreadsafe(b *testing.B) { - r := New(NewSource(1)) - for n := b.N; n > 0; n-- { - r.Int63() - } -} - -func BenchmarkIntn1000(b *testing.B) { - r := New(NewSource(1)) - for n := b.N; n > 0; n-- { - r.Intn(1000) - } -} - -func BenchmarkInt63n1000(b *testing.B) { - r := New(NewSource(1)) - for n := b.N; n > 0; n-- { - r.Int63n(1000) - } -} - -func BenchmarkInt31n1000(b *testing.B) { - r := New(NewSource(1)) - for n := b.N; n > 0; n-- { - r.Int31n(1000) - } -} - -func BenchmarkFloat32(b *testing.B) { - r := New(NewSource(1)) - for n := b.N; n > 0; n-- { - r.Float32() - } -} - -func BenchmarkFloat64(b *testing.B) { - r := New(NewSource(1)) - for n := b.N; n > 0; n-- { - r.Float64() - } -} - -func BenchmarkPerm3(b *testing.B) { - r := New(NewSource(1)) - for n := b.N; n > 0; n-- { - r.Perm(3) - } -} - -func BenchmarkPerm30(b *testing.B) { - r := New(NewSource(1)) - for n := b.N; n > 0; n-- { - r.Perm(30) - } -} diff --git a/src/pkg/math/rand/regress_test.go b/src/pkg/math/rand/regress_test.go deleted file mode 100644 index 2b012af89..000000000 --- a/src/pkg/math/rand/regress_test.go +++ /dev/null @@ -1,355 +0,0 @@ -// Copyright 2014 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Test that random number sequences generated by a specific seed -// do not change from version to version. -// -// Do NOT make changes to the golden outputs. If bugs need to be fixed -// in the underlying code, find ways to fix them that do not affect the -// outputs. - -package rand_test - -import ( - "flag" - "fmt" - . "math/rand" - "reflect" - "testing" -) - -var printgolden = flag.Bool("printgolden", false, "print golden results for regression test") - -func TestRegress(t *testing.T) { - var int32s = []int32{1, 10, 32, 1 << 20, 1<<20 + 1, 1000000000, 1 << 30, 1<<31 - 2, 1<<31 - 1} - var int64s = []int64{1, 10, 32, 1 << 20, 1<<20 + 1, 1000000000, 1 << 30, 1<<31 - 2, 1<<31 - 1, 1000000000000000000, 1 << 60, 1<<63 - 2, 1<<63 - 1} - var permSizes = []int{0, 1, 5, 8, 9, 10, 16} - r := New(NewSource(0)) - - rv := reflect.ValueOf(r) - n := rv.NumMethod() - p := 0 - if *printgolden { - fmt.Printf("var regressGolden = []interface{}{\n") - } - for i := 0; i < n; i++ { - m := rv.Type().Method(i) - mv := rv.Method(i) - mt := mv.Type() - if mt.NumOut() == 0 { - continue - } - if mt.NumOut() != 1 { - t.Fatalf("unexpected result count for r.%s", m.Name) - } - r.Seed(0) - for repeat := 0; repeat < 20; repeat++ { - var args []reflect.Value - var argstr string - if mt.NumIn() == 1 { - var x interface{} - switch mt.In(0).Kind() { - default: - t.Fatalf("unexpected argument type for r.%s", m.Name) - - case reflect.Int: - if m.Name == "Perm" { - x = permSizes[repeat%len(permSizes)] - break - } - big := int64s[repeat%len(int64s)] - if int64(int(big)) != big { - r.Int63n(big) // what would happen on 64-bit machine, to keep stream in sync - if *printgolden { - fmt.Printf("\tskipped, // must run printgolden on 64-bit machine\n") - } - p++ - continue - } - x = int(big) - - case reflect.Int32: - x = int32s[repeat%len(int32s)] - - case reflect.Int64: - x = int64s[repeat%len(int64s)] - } - argstr = fmt.Sprint(x) - args = append(args, reflect.ValueOf(x)) - } - out := mv.Call(args)[0].Interface() - if m.Name == "Int" || m.Name == "Intn" { - out = int64(out.(int)) - } - if *printgolden { - var val string - big := int64(1 << 60) - if int64(int(big)) != big && (m.Name == "Int" || m.Name == "Intn") { - // 32-bit machine cannot print 64-bit results - val = "truncated" - } else if reflect.TypeOf(out).Kind() == reflect.Slice { - val = fmt.Sprintf("%#v", out) - } else { - val = fmt.Sprintf("%T(%v)", out, out) - } - fmt.Printf("\t%s, // %s(%s)\n", val, m.Name, argstr) - } else { - want := regressGolden[p] - if m.Name == "Int" { - want = int64(int(uint(want.(int64)) << 1 >> 1)) - } - if !reflect.DeepEqual(out, want) { - t.Errorf("r.%s(%s) = %v, want %v", m.Name, argstr, out, want) - } - } - p++ - } - } - if *printgolden { - fmt.Printf("}\n") - } -} - -var regressGolden = []interface{}{ - float64(4.668112973579268), // ExpFloat64() - float64(0.1601593871172866), // ExpFloat64() - float64(3.0465834105636), // ExpFloat64() - float64(0.06385839451671879), // ExpFloat64() - float64(1.8578917487258961), // ExpFloat64() - float64(0.784676123472182), // ExpFloat64() - float64(0.11225477361256932), // ExpFloat64() - float64(0.20173283329802255), // ExpFloat64() - float64(0.3468619496201105), // ExpFloat64() - float64(0.35601103454384536), // ExpFloat64() - float64(0.888376329507869), // ExpFloat64() - float64(1.4081362450365698), // ExpFloat64() - float64(1.0077753823151994), // ExpFloat64() - float64(0.23594100766227588), // ExpFloat64() - float64(2.777245612300007), // ExpFloat64() - float64(0.5202997830662377), // ExpFloat64() - float64(1.2842705247770294), // ExpFloat64() - float64(0.030307408362776206), // ExpFloat64() - float64(2.204156824853721), // ExpFloat64() - float64(2.09891923895058), // ExpFloat64() - float32(0.94519615), // Float32() - float32(0.24496509), // Float32() - float32(0.65595627), // Float32() - float32(0.05434384), // Float32() - float32(0.3675872), // Float32() - float32(0.28948045), // Float32() - float32(0.1924386), // Float32() - float32(0.65533215), // Float32() - float32(0.8971697), // Float32() - float32(0.16735445), // Float32() - float32(0.28858566), // Float32() - float32(0.9026048), // Float32() - float32(0.84978026), // Float32() - float32(0.2730468), // Float32() - float32(0.6090802), // Float32() - float32(0.253656), // Float32() - float32(0.7746542), // Float32() - float32(0.017480763), // Float32() - float32(0.78707397), // Float32() - float32(0.7993937), // Float32() - float64(0.9451961492941164), // Float64() - float64(0.24496508529377975), // Float64() - float64(0.6559562651954052), // Float64() - float64(0.05434383959970039), // Float64() - float64(0.36758720663245853), // Float64() - float64(0.2894804331565928), // Float64() - float64(0.19243860967493215), // Float64() - float64(0.6553321508148324), // Float64() - float64(0.897169713149801), // Float64() - float64(0.16735444255905835), // Float64() - float64(0.2885856518054551), // Float64() - float64(0.9026048462705047), // Float64() - float64(0.8497802817628735), // Float64() - float64(0.2730468047134829), // Float64() - float64(0.6090801919903561), // Float64() - float64(0.25365600644283687), // Float64() - float64(0.7746542391859803), // Float64() - float64(0.017480762156647272), // Float64() - float64(0.7870739563039942), // Float64() - float64(0.7993936979594545), // Float64() - int64(8717895732742165505), // Int() - int64(2259404117704393152), // Int() - int64(6050128673802995827), // Int() - int64(501233450539197794), // Int() - int64(3390393562759376202), // Int() - int64(2669985732393126063), // Int() - int64(1774932891286980153), // Int() - int64(6044372234677422456), // Int() - int64(8274930044578894929), // Int() - int64(1543572285742637646), // Int() - int64(2661732831099943416), // Int() - int64(8325060299420976708), // Int() - int64(7837839688282259259), // Int() - int64(2518412263346885298), // Int() - int64(5617773211005988520), // Int() - int64(2339563716805116249), // Int() - int64(7144924247938981575), // Int() - int64(161231572858529631), // Int() - int64(7259475919510918339), // Int() - int64(7373105480197164748), // Int() - int32(2029793274), // Int31() - int32(526058514), // Int31() - int32(1408655353), // Int31() - int32(116702506), // Int31() - int32(789387515), // Int31() - int32(621654496), // Int31() - int32(413258767), // Int31() - int32(1407315077), // Int31() - int32(1926657288), // Int31() - int32(359390928), // Int31() - int32(619732968), // Int31() - int32(1938329147), // Int31() - int32(1824889259), // Int31() - int32(586363548), // Int31() - int32(1307989752), // Int31() - int32(544722126), // Int31() - int32(1663557311), // Int31() - int32(37539650), // Int31() - int32(1690228450), // Int31() - int32(1716684894), // Int31() - int32(0), // Int31n(1) - int32(4), // Int31n(10) - int32(25), // Int31n(32) - int32(310570), // Int31n(1048576) - int32(857611), // Int31n(1048577) - int32(621654496), // Int31n(1000000000) - int32(413258767), // Int31n(1073741824) - int32(1407315077), // Int31n(2147483646) - int32(1926657288), // Int31n(2147483647) - int32(0), // Int31n(1) - int32(8), // Int31n(10) - int32(27), // Int31n(32) - int32(367019), // Int31n(1048576) - int32(209005), // Int31n(1048577) - int32(307989752), // Int31n(1000000000) - int32(544722126), // Int31n(1073741824) - int32(1663557311), // Int31n(2147483646) - int32(37539650), // Int31n(2147483647) - int32(0), // Int31n(1) - int32(4), // Int31n(10) - int64(8717895732742165505), // Int63() - int64(2259404117704393152), // Int63() - int64(6050128673802995827), // Int63() - int64(501233450539197794), // Int63() - int64(3390393562759376202), // Int63() - int64(2669985732393126063), // Int63() - int64(1774932891286980153), // Int63() - int64(6044372234677422456), // Int63() - int64(8274930044578894929), // Int63() - int64(1543572285742637646), // Int63() - int64(2661732831099943416), // Int63() - int64(8325060299420976708), // Int63() - int64(7837839688282259259), // Int63() - int64(2518412263346885298), // Int63() - int64(5617773211005988520), // Int63() - int64(2339563716805116249), // Int63() - int64(7144924247938981575), // Int63() - int64(161231572858529631), // Int63() - int64(7259475919510918339), // Int63() - int64(7373105480197164748), // Int63() - int64(0), // Int63n(1) - int64(2), // Int63n(10) - int64(19), // Int63n(32) - int64(959842), // Int63n(1048576) - int64(688912), // Int63n(1048577) - int64(393126063), // Int63n(1000000000) - int64(89212473), // Int63n(1073741824) - int64(834026388), // Int63n(2147483646) - int64(1577188963), // Int63n(2147483647) - int64(543572285742637646), // Int63n(1000000000000000000) - int64(355889821886249464), // Int63n(1152921504606846976) - int64(8325060299420976708), // Int63n(9223372036854775806) - int64(7837839688282259259), // Int63n(9223372036854775807) - int64(0), // Int63n(1) - int64(0), // Int63n(10) - int64(25), // Int63n(32) - int64(679623), // Int63n(1048576) - int64(882178), // Int63n(1048577) - int64(510918339), // Int63n(1000000000) - int64(782454476), // Int63n(1073741824) - int64(0), // Intn(1) - int64(4), // Intn(10) - int64(25), // Intn(32) - int64(310570), // Intn(1048576) - int64(857611), // Intn(1048577) - int64(621654496), // Intn(1000000000) - int64(413258767), // Intn(1073741824) - int64(1407315077), // Intn(2147483646) - int64(1926657288), // Intn(2147483647) - int64(543572285742637646), // Intn(1000000000000000000) - int64(355889821886249464), // Intn(1152921504606846976) - int64(8325060299420976708), // Intn(9223372036854775806) - int64(7837839688282259259), // Intn(9223372036854775807) - int64(0), // Intn(1) - int64(2), // Intn(10) - int64(14), // Intn(32) - int64(515775), // Intn(1048576) - int64(839455), // Intn(1048577) - int64(690228450), // Intn(1000000000) - int64(642943070), // Intn(1073741824) - float64(-0.28158587086436215), // NormFloat64() - float64(0.570933095808067), // NormFloat64() - float64(-1.6920196326157044), // NormFloat64() - float64(0.1996229111693099), // NormFloat64() - float64(1.9195199291234621), // NormFloat64() - float64(0.8954838794918353), // NormFloat64() - float64(0.41457072128813166), // NormFloat64() - float64(-0.48700161491544713), // NormFloat64() - float64(-0.1684059662402393), // NormFloat64() - float64(0.37056410998929545), // NormFloat64() - float64(1.0156889027029008), // NormFloat64() - float64(-0.5174422210625114), // NormFloat64() - float64(-0.5565834214413804), // NormFloat64() - float64(0.778320596648391), // NormFloat64() - float64(-1.8970718197702225), // NormFloat64() - float64(0.5229525761688676), // NormFloat64() - float64(-1.5515595563231523), // NormFloat64() - float64(0.0182029289376123), // NormFloat64() - float64(-0.6820951356608795), // NormFloat64() - float64(-0.5987943422687668), // NormFloat64() - []int{}, // Perm(0) - []int{0}, // Perm(1) - []int{0, 4, 1, 3, 2}, // Perm(5) - []int{3, 1, 0, 4, 7, 5, 2, 6}, // Perm(8) - []int{5, 0, 3, 6, 7, 4, 2, 1, 8}, // Perm(9) - []int{4, 5, 0, 2, 6, 9, 3, 1, 8, 7}, // Perm(10) - []int{14, 2, 0, 8, 3, 5, 13, 12, 1, 4, 6, 7, 11, 9, 15, 10}, // Perm(16) - []int{}, // Perm(0) - []int{0}, // Perm(1) - []int{3, 0, 1, 2, 4}, // Perm(5) - []int{5, 1, 2, 0, 4, 7, 3, 6}, // Perm(8) - []int{4, 0, 6, 8, 1, 5, 2, 7, 3}, // Perm(9) - []int{8, 6, 1, 7, 5, 4, 3, 2, 9, 0}, // Perm(10) - []int{0, 3, 13, 2, 15, 4, 10, 1, 8, 14, 7, 6, 12, 9, 5, 11}, // Perm(16) - []int{}, // Perm(0) - []int{0}, // Perm(1) - []int{0, 4, 2, 1, 3}, // Perm(5) - []int{2, 1, 7, 0, 6, 3, 4, 5}, // Perm(8) - []int{8, 7, 5, 3, 4, 6, 0, 1, 2}, // Perm(9) - []int{1, 0, 2, 5, 7, 6, 9, 8, 3, 4}, // Perm(10) - uint32(4059586549), // Uint32() - uint32(1052117029), // Uint32() - uint32(2817310706), // Uint32() - uint32(233405013), // Uint32() - uint32(1578775030), // Uint32() - uint32(1243308993), // Uint32() - uint32(826517535), // Uint32() - uint32(2814630155), // Uint32() - uint32(3853314576), // Uint32() - uint32(718781857), // Uint32() - uint32(1239465936), // Uint32() - uint32(3876658295), // Uint32() - uint32(3649778518), // Uint32() - uint32(1172727096), // Uint32() - uint32(2615979505), // Uint32() - uint32(1089444252), // Uint32() - uint32(3327114623), // Uint32() - uint32(75079301), // Uint32() - uint32(3380456901), // Uint32() - uint32(3433369789), // Uint32() -} diff --git a/src/pkg/math/rand/rng.go b/src/pkg/math/rand/rng.go deleted file mode 100644 index 947c49f0f..000000000 --- a/src/pkg/math/rand/rng.go +++ /dev/null @@ -1,246 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package rand - -/* - * Uniform distribution - * - * algorithm by - * DP Mitchell and JA Reeds - */ - -const ( - _LEN = 607 - _TAP = 273 - _MAX = 1 << 63 - _MASK = _MAX - 1 - _A = 48271 - _M = (1 << 31) - 1 - _Q = 44488 - _R = 3399 -) - -var ( - // cooked random numbers - // the state of the rng - // after 780e10 iterations - rng_cooked [_LEN]int64 = [...]int64{ - 5041579894721019882, 4646389086726545243, 1395769623340756751, 5333664234075297259, - 2875692520355975054, 9033628115061424579, 7143218595135194537, 4812947590706362721, - 7937252194349799378, 5307299880338848416, 8209348851763925077, 2115741599318814044, - 4593015457530856296, 8140875735541888011, 3319429241265089026, 8619815648190321034, - 1727074043483619500, 113108499721038619, 4569519971459345583, 5062833859075314731, - 2387618771259064424, 2716131344356686112, 6559392774825876886, 7650093201692370310, - 7684323884043752161, 257867835996031390, 6593456519409015164, 271327514973697897, - 2789386447340118284, 1065192797246149621, 3344507881999356393, 4459797941780066633, - 7465081662728599889, 1014950805555097187, 4449440729345990775, 3481109366438502643, - 2418672789110888383, 5796562887576294778, 4484266064449540171, 3738982361971787048, - 4523597184512354423, 10530508058128498, 8633833783282346118, 2625309929628791628, - 8660405965245884302, 10162832508971942, 6540714680961817391, 7031802312784620857, - 6240911277345944669, 831864355460801054, 8004434137542152891, 2116287251661052151, - 2202309800992166967, 9161020366945053561, 4069299552407763864, 4936383537992622449, - 457351505131524928, 342195045928179354, 2847771682816600509, 2068020115986376518, - 4368649989588021065, 887231587095185257, 5563591506886576496, 6816225200251950296, - 5616972787034086048, 8471809303394836566, 1686575021641186857, 4045484338074262002, - 4244156215201778923, 7848217333783577387, 5632136521049761902, 833283142057835272, - 9029726508369077193, 3243583134664087292, 4316371101804477087, 8937849979965997980, - 6446940406810434101, 1679342092332374735, 6050638460742422078, 6993520719509581582, - 7640877852514293609, 5881353426285907985, 812786550756860885, 4541845584483343330, - 2725470216277009086, 4980675660146853729, 5210769080603236061, 8894283318990530821, - 6326442804750084282, 1495812843684243920, 7069751578799128019, 7370257291860230865, - 6756929275356942261, 4706794511633873654, 7824520467827898663, 8549875090542453214, - 33650829478596156, 1328918435751322643, 7297902601803624459, 1011190183918857495, - 2238025036817854944, 5147159997473910359, 896512091560522982, 2659470849286379941, - 6097729358393448602, 1731725986304753684, 4106255841983812711, 8327155210721535508, - 8477511620686074402, 5803876044675762232, 8435417780860221662, 5988852856651071244, - 4715837297103951910, 7566171971264485114, 505808562678895611, 5070098180695063370, - 842110666775871513, 572156825025677802, 1791881013492340891, 3393267094866038768, - 3778721850472236509, 2352769483186201278, 1292459583847367458, 8897907043675088419, - 5781809037144163536, 2733958794029492513, 5092019688680754699, 8996124554772526841, - 4234737173186232084, 5027558287275472836, 4635198586344772304, 8687338893267139351, - 5907508150730407386, 784756255473944452, 972392927514829904, 5422057694808175112, - 5158420642969283891, 9048531678558643225, 2407211146698877100, 7583282216521099569, - 3940796514530962282, 3341174631045206375, 3095313889586102949, 7405321895688238710, - 5832080132947175283, 7890064875145919662, 8184139210799583195, 1149859861409226130, - 1464597243840211302, 4641648007187991873, 3516491885471466898, 956288521791657692, - 6657089965014657519, 5220884358887979358, 1796677326474620641, 5340761970648932916, - 1147977171614181568, 5066037465548252321, 2574765911837859848, 1085848279845204775, - 3350107529868390359, 6116438694366558490, 2107701075971293812, 1803294065921269267, - 2469478054175558874, 7368243281019965984, 3791908367843677526, 185046971116456637, - 2257095756513439648, 7217693971077460129, 909049953079504259, 7196649268545224266, - 5637660345400869599, 3955544945427965183, 8057528650917418961, 4139268440301127643, - 6621926588513568059, 1373361136802681441, 6527366231383600011, 3507654575162700890, - 9202058512774729859, 1954818376891585542, 6640380907130175705, 8299563319178235687, - 3901867355218954373, 7046310742295574065, 6847195391333990232, 1572638100518868053, - 8850422670118399721, 3631909142291992901, 5158881091950831288, 2882958317343121593, - 4763258931815816403, 6280052734341785344, 4243789408204964850, 2043464728020827976, - 6545300466022085465, 4562580375758598164, 5495451168795427352, 1738312861590151095, - 553004618757816492, 6895160632757959823, 8233623922264685171, 7139506338801360852, - 8550891222387991669, 5535668688139305547, 2430933853350256242, 5401941257863201076, - 8159640039107728799, 6157493831600770366, 7632066283658143750, 6308328381617103346, - 3681878764086140361, 3289686137190109749, 6587997200611086848, 244714774258135476, - 4079788377417136100, 8090302575944624335, 2945117363431356361, 864324395848741045, - 3009039260312620700, 8430027460082534031, 401084700045993341, 7254622446438694921, - 4707864159563588614, 5640248530963493951, 5982507712689997893, 3315098242282210105, - 5503847578771918426, 3941971367175193882, 8118566580304798074, 3839261274019871296, - 7062410411742090847, 741381002980207668, 6027994129690250817, 2497829994150063930, - 6251390334426228834, 1368930247903518833, 8809096399316380241, 6492004350391900708, - 2462145737463489636, 404828418920299174, 4153026434231690595, 261785715255475940, - 5464715384600071357, 592710404378763017, 6764129236657751224, 8513655718539357449, - 5820343663801914208, 385298524683789911, 5224135003438199467, 6303131641338802145, - 7150122561309371392, 368107899140673753, 3115186834558311558, 2915636353584281051, - 4782583894627718279, 6718292300699989587, 8387085186914375220, 3387513132024756289, - 4654329375432538231, 8930667561363381602, 5374373436876319273, 7623042350483453954, - 7725442901813263321, 9186225467561587250, 4091027289597503355, 2357631606492579800, - 2530936820058611833, 1636551876240043639, 5564664674334965799, 1452244145334316253, - 2061642381019690829, 1279580266495294036, 9108481583171221009, 6023278686734049809, - 5007630032676973346, 2153168792952589781, 6720334534964750538, 6041546491134794105, - 3433922409283786309, 2285479922797300912, 3110614940896576130, 6366559590722842893, - 5418791419666136509, 7163298419643543757, 4891138053923696990, 580618510277907015, - 1684034065251686769, 4429514767357295841, 330346578555450005, 1119637995812174675, - 7177515271653460134, 4589042248470800257, 7693288629059004563, 143607045258444228, - 246994305896273627, 866417324803099287, 6473547110565816071, 3092379936208876896, - 2058427839513754051, 5133784708526867938, 8785882556301281247, 6149332666841167611, - 8585842181454472135, 6137678347805511274, 2070447184436970006, 5708223427705576541, - 5999657892458244504, 4358391411789012426, 325123008708389849, 6837621693887290924, - 4843721905315627004, 6010651222149276415, 5398352198963874652, 4602025990114250980, - 1044646352569048800, 9106614159853161675, 829256115228593269, 4919284369102997000, - 2681532557646850893, 3681559472488511871, 5307999518958214035, 6334130388442829274, - 2658708232916537604, 1163313865052186287, 581945337509520675, 3648778920718647903, - 4423673246306544414, 1620799783996955743, 220828013409515943, 8150384699999389761, - 4287360518296753003, 4590000184845883843, 5513660857261085186, 6964829100392774275, - 478991688350776035, 8746140185685648781, 228500091334420247, 1356187007457302238, - 3019253992034194581, 3152601605678500003, 430152752706002213, 5559581553696971176, - 4916432985369275664, 663574931734554391, 3420773838927732076, 2868348622579915573, - 1999319134044418520, 3328689518636282723, 2587672709781371173, 1517255313529399333, - 3092343956317362483, 3662252519007064108, 972445599196498113, 7664865435875959367, - 1708913533482282562, 6917817162668868494, 3217629022545312900, 2570043027221707107, - 8739788839543624613, 2488075924621352812, 4694002395387436668, 4559628481798514356, - 2997203966153298104, 1282559373026354493, 240113143146674385, 8665713329246516443, - 628141331766346752, 4571950817186770476, 1472811188152235408, 7596648026010355826, - 6091219417754424743, 7834161864828164065, 7103445518877254909, 4390861237357459201, - 4442653864240571734, 8903482404847331368, 622261699494173647, 6037261250297213248, - 504404948065709118, 7275215526217113061, 1011176780856001400, 2194750105623461063, - 2623071828615234808, 5157313728073836108, 3738405111966602044, 2539767524076729570, - 2467284396349269342, 5256026990536851868, 7841086888628396109, 6640857538655893162, - 1202087339038317498, 2113514992440715978, 7534350895342931403, 4925284734898484745, - 5145623771477493805, 8225140880134972332, 2719520354384050532, 9132346697815513771, - 4332154495710163773, 7137789594094346916, 6994721091344268833, 6667228574869048934, - 655440045726677499, 59934747298466858, 6124974028078036405, 8957774780655365418, - 2332206071942466437, 1701056712286369627, 3154897383618636503, 1637766181387607527, - 2460521277767576533, 197309393502684135, 643677854385267315, 2543179307861934850, - 4350769010207485119, 4754652089410667672, 2015595502641514512, 7999059458976458608, - 4287946071480840813, 8362686366770308971, 6486469209321732151, 3617727845841796026, - 7554353525834302244, 4450022655153542367, 1605195740213535749, 5327014565305508387, - 4626575813550328320, 2692222020597705149, 241045573717249868, 5098046974627094010, - 7916882295460730264, 884817090297530579, 5329160409530630596, 7790979528857726136, - 4955070238059373407, 4918537275422674302, 3008076183950404629, 3007769226071157901, - 2470346235617803020, 8928702772696731736, 7856187920214445904, 4474874585391974885, - 7900176660600710914, 2140571127916226672, 2425445057265199971, 2486055153341847830, - 4186670094382025798, 1883939007446035042, 8808666044074867985, 3734134241178479257, - 4065968871360089196, 6953124200385847784, 1305686814738899057, 1637739099014457647, - 3656125660947993209, 3966759634633167020, 3106378204088556331, 6328899822778449810, - 4565385105440252958, 1979884289539493806, 2331793186920865425, 3783206694208922581, - 8464961209802336085, 2843963751609577687, 3030678195484896323, 4793717574095772604, - 4459239494808162889, 402587895800087237, 8057891408711167515, 4541888170938985079, - 1042662272908816815, 5557303057122568958, 2647678726283249984, 2144477441549833761, - 5806352215355387087, 7117771003473903623, 5916597177708541638, 462597715452321361, - 8833658097025758785, 5970273481425315300, 563813119381731307, 2768349550652697015, - 1598828206250873866, 5206393647403558110, 6235043485709261823, 3152217402014639496, - 8469693267274066490, 125672920241807416, 5311079624024060938, 6663754932310491587, - 8736848295048751716, 4488039774992061878, 5923302823487327109, 140891791083103236, - 7414942793393574290, 7990420780896957397, 4317817392807076702, 3625184369705367340, - 2740722765288122703, 5743100009702758344, 5997898640509039159, 8854493341352484163, - 5242208035432907801, 701338899890987198, 7609280429197514109, 3020985755112334161, - 6651322707055512866, 2635195723621160615, 5144520864246028816, 1035086515727829828, - 1567242097116389047, 8172389260191636581, 6337820351429292273, 2163012566996458925, - 2743190902890262681, 1906367633221323427, 6011544915663598137, 5932255307352610768, - 2241128460406315459, 895504896216695588, 3094483003111372717, 4583857460292963101, - 9079887171656594975, 8839289181930711403, 5762740387243057873, 4225072055348026230, - 1838220598389033063, 3801620336801580414, 8823526620080073856, 1776617605585100335, - 7899055018877642622, 5421679761463003041, 5521102963086275121, 4248279443559365898, - 8735487530905098534, 1760527091573692978, 7142485049657745894, 8222656872927218123, - 4969531564923704323, 3394475942196872480, 6424174453260338141, 359248545074932887, - 3273651282831730598, 6797106199797138596, 3030918217665093212, 145600834617314036, - 6036575856065626233, 740416251634527158, 7080427635449935582, 6951781370868335478, - 399922722363687927, 294902314447253185, 7844950936339178523, 880320858634709042, - 6192655680808675579, 411604686384710388, 9026808440365124461, 6440783557497587732, - 4615674634722404292, 539897290441580544, 2096238225866883852, 8751955639408182687, - 1907224908052289603, 7381039757301768559, 6157238513393239656, 7749994231914157575, - 8629571604380892756, 5280433031239081479, 7101611890139813254, 2479018537985767835, - 7169176924412769570, 7942066497793203302, 1357759729055557688, 2278447439451174845, - 3625338785743880657, 6477479539006708521, 8976185375579272206, 5511371554711836120, - 1326024180520890843, 7537449876596048829, 5464680203499696154, 3189671183162196045, - 6346751753565857109, 241159987320630307, 3095793449658682053, 8978332846736310159, - 2902794662273147216, 7208698530190629697, 7276901792339343736, 1732385229314443140, - 4133292154170828382, 2918308698224194548, 1519461397937144458, 5293934712616591764, - 4922828954023452664, 2879211533496425641, 5896236396443472108, 8465043815351752425, - 7329020396871624740, 8915471717014488588, 2944902635677463047, 7052079073493465134, - 8382142935188824023, 9103922860780351547, 4152330101494654406, - } -) - -type rngSource struct { - tap int // index into vec - feed int // index into vec - vec [_LEN]int64 // current feedback register -} - -// seed rng x[n+1] = 48271 * x[n] mod (2**31 - 1) -func seedrand(x int32) int32 { - hi := x / _Q - lo := x % _Q - x = _A*lo - _R*hi - if x < 0 { - x += _M - } - return x -} - -// Seed uses the provided seed value to initialize the generator to a deterministic state. -func (rng *rngSource) Seed(seed int64) { - rng.tap = 0 - rng.feed = _LEN - _TAP - - seed = seed % _M - if seed < 0 { - seed += _M - } - if seed == 0 { - seed = 89482311 - } - - x := int32(seed) - for i := -20; i < _LEN; i++ { - x = seedrand(x) - if i >= 0 { - var u int64 - u = int64(x) << 40 - x = seedrand(x) - u ^= int64(x) << 20 - x = seedrand(x) - u ^= int64(x) - u ^= rng_cooked[i] - rng.vec[i] = u & _MASK - } - } -} - -// Int63 returns a non-negative pseudo-random 63-bit integer as an int64. -func (rng *rngSource) Int63() int64 { - rng.tap-- - if rng.tap < 0 { - rng.tap += _LEN - } - - rng.feed-- - if rng.feed < 0 { - rng.feed += _LEN - } - - x := (rng.vec[rng.feed] + rng.vec[rng.tap]) & _MASK - rng.vec[rng.feed] = x - return x -} diff --git a/src/pkg/math/rand/zipf.go b/src/pkg/math/rand/zipf.go deleted file mode 100644 index 8db2c6f5b..000000000 --- a/src/pkg/math/rand/zipf.go +++ /dev/null @@ -1,75 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// W.Hormann, G.Derflinger: -// "Rejection-Inversion to Generate Variates -// from Monotone Discrete Distributions" -// http://eeyore.wu-wien.ac.at/papers/96-04-04.wh-der.ps.gz - -package rand - -import "math" - -// A Zipf generates Zipf distributed variates. -type Zipf struct { - r *Rand - imax float64 - v float64 - q float64 - s float64 - oneminusQ float64 - oneminusQinv float64 - hxm float64 - hx0minusHxm float64 -} - -func (z *Zipf) h(x float64) float64 { - return math.Exp(z.oneminusQ*math.Log(z.v+x)) * z.oneminusQinv -} - -func (z *Zipf) hinv(x float64) float64 { - return math.Exp(z.oneminusQinv*math.Log(z.oneminusQ*x)) - z.v -} - -// NewZipf returns a Zipf generating variates p(k) on [0, imax] -// proportional to (v+k)**(-s) where s>1 and k>=0, and v>=1. -func NewZipf(r *Rand, s float64, v float64, imax uint64) *Zipf { - z := new(Zipf) - if s <= 1.0 || v < 1 { - return nil - } - z.r = r - z.imax = float64(imax) - z.v = v - z.q = s - z.oneminusQ = 1.0 - z.q - z.oneminusQinv = 1.0 / z.oneminusQ - z.hxm = z.h(z.imax + 0.5) - z.hx0minusHxm = z.h(0.5) - math.Exp(math.Log(z.v)*(-z.q)) - z.hxm - z.s = 1 - z.hinv(z.h(1.5)-math.Exp(-z.q*math.Log(z.v+1.0))) - return z -} - -// Uint64 returns a value drawn from the Zipf distribution described -// by the Zipf object. -func (z *Zipf) Uint64() uint64 { - if z == nil { - panic("rand: nil Zipf") - } - k := 0.0 - - for { - r := z.r.Float64() // r on [0,1] - ur := z.hxm + r*z.hx0minusHxm - x := z.hinv(ur) - k = math.Floor(x + 0.5) - if k-x <= z.s { - break - } - if ur >= z.h(k+0.5)-math.Exp(-math.Log(k+z.v)*z.q) { - break - } - } - return uint64(k) -} diff --git a/src/pkg/math/remainder.go b/src/pkg/math/remainder.go deleted file mode 100644 index 9a4e4154c..000000000 --- a/src/pkg/math/remainder.go +++ /dev/null @@ -1,85 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// The original C code and the comment below are from -// FreeBSD's /usr/src/lib/msun/src/e_remainder.c and came -// with this notice. The go code is a simplified version of -// the original C. -// -// ==================================================== -// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. -// -// Developed at SunPro, a Sun Microsystems, Inc. business. -// Permission to use, copy, modify, and distribute this -// software is freely granted, provided that this notice -// is preserved. -// ==================================================== -// -// __ieee754_remainder(x,y) -// Return : -// returns x REM y = x - [x/y]*y as if in infinite -// precision arithmetic, where [x/y] is the (infinite bit) -// integer nearest x/y (in half way cases, choose the even one). -// Method : -// Based on Mod() returning x - [x/y]chopped * y exactly. - -// Remainder returns the IEEE 754 floating-point remainder of x/y. -// -// Special cases are: -// Remainder(±Inf, y) = NaN -// Remainder(NaN, y) = NaN -// Remainder(x, 0) = NaN -// Remainder(x, ±Inf) = x -// Remainder(x, NaN) = NaN -func Remainder(x, y float64) float64 - -func remainder(x, y float64) float64 { - const ( - Tiny = 4.45014771701440276618e-308 // 0x0020000000000000 - HalfMax = MaxFloat64 / 2 - ) - // special cases - switch { - case IsNaN(x) || IsNaN(y) || IsInf(x, 0) || y == 0: - return NaN() - case IsInf(y, 0): - return x - } - sign := false - if x < 0 { - x = -x - sign = true - } - if y < 0 { - y = -y - } - if x == y { - return 0 - } - if y <= HalfMax { - x = Mod(x, y+y) // now x < 2y - } - if y < Tiny { - if x+x > y { - x -= y - if x+x >= y { - x -= y - } - } - } else { - yHalf := 0.5 * y - if x > yHalf { - x -= y - if x >= yHalf { - x -= y - } - } - } - if sign { - x = -x - } - return x -} diff --git a/src/pkg/math/remainder_386.s b/src/pkg/math/remainder_386.s deleted file mode 100644 index 318fa2c46..000000000 --- a/src/pkg/math/remainder_386.s +++ /dev/null @@ -1,17 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Remainder(x, y float64) float64 -TEXT ·Remainder(SB),NOSPLIT,$0 - FMOVD y+8(FP), F0 // F0=y - FMOVD x+0(FP), F0 // F0=x, F1=y - FPREM1 // F0=reduced_x, F1=y - FSTSW AX // AX=status word - ANDW $0x0400, AX - JNE -3(PC) // jump if reduction incomplete - FMOVDP F0, F1 // F0=x-q*y - FMOVDP F0, ret+16(FP) - RET diff --git a/src/pkg/math/remainder_amd64.s b/src/pkg/math/remainder_amd64.s deleted file mode 100644 index f7fda99d8..000000000 --- a/src/pkg/math/remainder_amd64.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Remainder(SB),NOSPLIT,$0 - JMP ·remainder(SB) diff --git a/src/pkg/math/remainder_amd64p32.s b/src/pkg/math/remainder_amd64p32.s deleted file mode 100644 index cd5cf55ff..000000000 --- a/src/pkg/math/remainder_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "remainder_amd64.s" diff --git a/src/pkg/math/remainder_arm.s b/src/pkg/math/remainder_arm.s deleted file mode 100644 index 1ae597a60..000000000 --- a/src/pkg/math/remainder_arm.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Remainder(SB),NOSPLIT,$0 - B ·remainder(SB) diff --git a/src/pkg/math/signbit.go b/src/pkg/math/signbit.go deleted file mode 100644 index 670cc1a66..000000000 --- a/src/pkg/math/signbit.go +++ /dev/null @@ -1,10 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// Signbit returns true if x is negative or negative zero. -func Signbit(x float64) bool { - return Float64bits(x)&(1<<63) != 0 -} diff --git a/src/pkg/math/sin.go b/src/pkg/math/sin.go deleted file mode 100644 index ed85f21be..000000000 --- a/src/pkg/math/sin.go +++ /dev/null @@ -1,224 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -/* - Floating-point sine and cosine. -*/ - -// The original C code, the long comment, and the constants -// below were from http://netlib.sandia.gov/cephes/cmath/sin.c, -// available from http://www.netlib.org/cephes/cmath.tgz. -// The go code is a simplified version of the original C. -// -// sin.c -// -// Circular sine -// -// SYNOPSIS: -// -// double x, y, sin(); -// y = sin( x ); -// -// DESCRIPTION: -// -// Range reduction is into intervals of pi/4. The reduction error is nearly -// eliminated by contriving an extended precision modular arithmetic. -// -// Two polynomial approximating functions are employed. -// Between 0 and pi/4 the sine is approximated by -// x + x**3 P(x**2). -// Between pi/4 and pi/2 the cosine is represented as -// 1 - x**2 Q(x**2). -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// DEC 0, 10 150000 3.0e-17 7.8e-18 -// IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17 -// -// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss -// is not gradual, but jumps suddenly to about 1 part in 10e7. Results may -// be meaningless for x > 2**49 = 5.6e14. -// -// cos.c -// -// Circular cosine -// -// SYNOPSIS: -// -// double x, y, cos(); -// y = cos( x ); -// -// DESCRIPTION: -// -// Range reduction is into intervals of pi/4. The reduction error is nearly -// eliminated by contriving an extended precision modular arithmetic. -// -// Two polynomial approximating functions are employed. -// Between 0 and pi/4 the cosine is approximated by -// 1 - x**2 Q(x**2). -// Between pi/4 and pi/2 the sine is represented as -// x + x**3 P(x**2). -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17 -// DEC 0,+1.07e9 17000 3.0e-17 7.2e-18 -// -// Cephes Math Library Release 2.8: June, 2000 -// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier -// -// The readme file at http://netlib.sandia.gov/cephes/ says: -// Some software in this archive may be from the book _Methods and -// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster -// International, 1989) or from the Cephes Mathematical Library, a -// commercial product. In either event, it is copyrighted by the author. -// What you see here may be used freely but it comes with no support or -// guarantee. -// -// The two known misprints in the book are repaired here in the -// source listings for the gamma function and the incomplete beta -// integral. -// -// Stephen L. Moshier -// moshier@na-net.ornl.gov - -// sin coefficients -var _sin = [...]float64{ - 1.58962301576546568060E-10, // 0x3de5d8fd1fd19ccd - -2.50507477628578072866E-8, // 0xbe5ae5e5a9291f5d - 2.75573136213857245213E-6, // 0x3ec71de3567d48a1 - -1.98412698295895385996E-4, // 0xbf2a01a019bfdf03 - 8.33333333332211858878E-3, // 0x3f8111111110f7d0 - -1.66666666666666307295E-1, // 0xbfc5555555555548 -} - -// cos coefficients -var _cos = [...]float64{ - -1.13585365213876817300E-11, // 0xbda8fa49a0861a9b - 2.08757008419747316778E-9, // 0x3e21ee9d7b4e3f05 - -2.75573141792967388112E-7, // 0xbe927e4f7eac4bc6 - 2.48015872888517045348E-5, // 0x3efa01a019c844f5 - -1.38888888888730564116E-3, // 0xbf56c16c16c14f91 - 4.16666666666665929218E-2, // 0x3fa555555555554b -} - -// Cos returns the cosine of the radian argument x. -// -// Special cases are: -// Cos(±Inf) = NaN -// Cos(NaN) = NaN -func Cos(x float64) float64 - -func cos(x float64) float64 { - const ( - PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts - PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000, - PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170, - M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi - ) - // special cases - switch { - case IsNaN(x) || IsInf(x, 0): - return NaN() - } - - // make argument positive - sign := false - if x < 0 { - x = -x - } - - j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle - y := float64(j) // integer part of x/(Pi/4), as float - - // map zeros to origin - if j&1 == 1 { - j += 1 - y += 1 - } - j &= 7 // octant modulo 2Pi radians (360 degrees) - if j > 3 { - j -= 4 - sign = !sign - } - if j > 1 { - sign = !sign - } - - z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic - zz := z * z - if j == 1 || j == 2 { - y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5]) - } else { - y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5]) - } - if sign { - y = -y - } - return y -} - -// Sin returns the sine of the radian argument x. -// -// Special cases are: -// Sin(±0) = ±0 -// Sin(±Inf) = NaN -// Sin(NaN) = NaN -func Sin(x float64) float64 - -func sin(x float64) float64 { - const ( - PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts - PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000, - PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170, - M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi - ) - // special cases - switch { - case x == 0 || IsNaN(x): - return x // return ±0 || NaN() - case IsInf(x, 0): - return NaN() - } - - // make argument positive but save the sign - sign := false - if x < 0 { - x = -x - sign = true - } - - j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle - y := float64(j) // integer part of x/(Pi/4), as float - - // map zeros to origin - if j&1 == 1 { - j += 1 - y += 1 - } - j &= 7 // octant modulo 2Pi radians (360 degrees) - // reflect in x axis - if j > 3 { - sign = !sign - j -= 4 - } - - z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic - zz := z * z - if j == 1 || j == 2 { - y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5]) - } else { - y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5]) - } - if sign { - y = -y - } - return y -} diff --git a/src/pkg/math/sin_386.s b/src/pkg/math/sin_386.s deleted file mode 100644 index ccc8e64be..000000000 --- a/src/pkg/math/sin_386.s +++ /dev/null @@ -1,47 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Cos(x float64) float64 -TEXT ·Cos(SB),NOSPLIT,$0 - FMOVD x+0(FP), F0 // F0=x - FCOS // F0=cos(x) if -2**63 < x < 2**63 - FSTSW AX // AX=status word - ANDW $0x0400, AX - JNE 3(PC) // jump if x outside range - FMOVDP F0, ret+8(FP) - RET - FLDPI // F0=Pi, F1=x - FADDD F0, F0 // F0=2*Pi, F1=x - FXCHD F0, F1 // F0=x, F1=2*Pi - FPREM1 // F0=reduced_x, F1=2*Pi - FSTSW AX // AX=status word - ANDW $0x0400, AX - JNE -3(PC) // jump if reduction incomplete - FMOVDP F0, F1 // F0=reduced_x - FCOS // F0=cos(reduced_x) - FMOVDP F0, ret+8(FP) - RET - -// func Sin(x float64) float64 -TEXT ·Sin(SB),NOSPLIT,$0 - FMOVD x+0(FP), F0 // F0=x - FSIN // F0=sin(x) if -2**63 < x < 2**63 - FSTSW AX // AX=status word - ANDW $0x0400, AX - JNE 3(PC) // jump if x outside range - FMOVDP F0, ret+8(FP) - RET - FLDPI // F0=Pi, F1=x - FADDD F0, F0 // F0=2*Pi, F1=x - FXCHD F0, F1 // F0=x, F1=2*Pi - FPREM1 // F0=reduced_x, F1=2*Pi - FSTSW AX // AX=status word - ANDW $0x0400, AX - JNE -3(PC) // jump if reduction incomplete - FMOVDP F0, F1 // F0=reduced_x - FSIN // F0=sin(reduced_x) - FMOVDP F0, ret+8(FP) - RET diff --git a/src/pkg/math/sin_amd64.s b/src/pkg/math/sin_amd64.s deleted file mode 100644 index 0c33cecef..000000000 --- a/src/pkg/math/sin_amd64.s +++ /dev/null @@ -1,11 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Sin(SB),NOSPLIT,$0 - JMP ·sin(SB) - -TEXT ·Cos(SB),NOSPLIT,$0 - JMP ·cos(SB) diff --git a/src/pkg/math/sin_amd64p32.s b/src/pkg/math/sin_amd64p32.s deleted file mode 100644 index 9f93eba20..000000000 --- a/src/pkg/math/sin_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "sin_amd64.s" diff --git a/src/pkg/math/sin_arm.s b/src/pkg/math/sin_arm.s deleted file mode 100644 index 467af3dea..000000000 --- a/src/pkg/math/sin_arm.s +++ /dev/null @@ -1,11 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Sin(SB),NOSPLIT,$0 - B ·sin(SB) - -TEXT ·Cos(SB),NOSPLIT,$0 - B ·cos(SB) diff --git a/src/pkg/math/sincos.go b/src/pkg/math/sincos.go deleted file mode 100644 index 718030319..000000000 --- a/src/pkg/math/sincos.go +++ /dev/null @@ -1,69 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// Coefficients _sin[] and _cos[] are found in pkg/math/sin.go. - -// Sincos returns Sin(x), Cos(x). -// -// Special cases are: -// Sincos(±0) = ±0, 1 -// Sincos(±Inf) = NaN, NaN -// Sincos(NaN) = NaN, NaN -func Sincos(x float64) (sin, cos float64) - -func sincos(x float64) (sin, cos float64) { - const ( - PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts - PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000, - PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170, - M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi - ) - // special cases - switch { - case x == 0: - return x, 1 // return ±0.0, 1.0 - case IsNaN(x) || IsInf(x, 0): - return NaN(), NaN() - } - - // make argument positive - sinSign, cosSign := false, false - if x < 0 { - x = -x - sinSign = true - } - - j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle - y := float64(j) // integer part of x/(Pi/4), as float - - if j&1 == 1 { // map zeros to origin - j += 1 - y += 1 - } - j &= 7 // octant modulo 2Pi radians (360 degrees) - if j > 3 { // reflect in x axis - j -= 4 - sinSign, cosSign = !sinSign, !cosSign - } - if j > 1 { - cosSign = !cosSign - } - - z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic - zz := z * z - cos = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5]) - sin = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5]) - if j == 1 || j == 2 { - sin, cos = cos, sin - } - if cosSign { - cos = -cos - } - if sinSign { - sin = -sin - } - return -} diff --git a/src/pkg/math/sincos_386.s b/src/pkg/math/sincos_386.s deleted file mode 100644 index 83af5016e..000000000 --- a/src/pkg/math/sincos_386.s +++ /dev/null @@ -1,28 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Sincos(x float64) (sin, cos float64) -TEXT ·Sincos(SB),NOSPLIT,$0 - FMOVD x+0(FP), F0 // F0=x - FSINCOS // F0=cos(x), F1=sin(x) if -2**63 < x < 2**63 - FSTSW AX // AX=status word - ANDW $0x0400, AX - JNE 4(PC) // jump if x outside range - FMOVDP F0, cos+16(FP) // F0=sin(x) - FMOVDP F0, sin+8(FP) - RET - FLDPI // F0=Pi, F1=x - FADDD F0, F0 // F0=2*Pi, F1=x - FXCHD F0, F1 // F0=x, F1=2*Pi - FPREM1 // F0=reduced_x, F1=2*Pi - FSTSW AX // AX=status word - ANDW $0x0400, AX - JNE -3(PC) // jump if reduction incomplete - FMOVDP F0, F1 // F0=reduced_x - FSINCOS // F0=cos(reduced_x), F1=sin(reduced_x) - FMOVDP F0, cos+16(FP) // F0=sin(reduced_x) - FMOVDP F0, sin+8(FP) - RET diff --git a/src/pkg/math/sincos_amd64.s b/src/pkg/math/sincos_amd64.s deleted file mode 100644 index dae636b24..000000000 --- a/src/pkg/math/sincos_amd64.s +++ /dev/null @@ -1,145 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// The method is based on a paper by Naoki Shibata: "Efficient evaluation -// methods of elementary functions suitable for SIMD computation", Proc. -// of International Supercomputing Conference 2010 (ISC'10), pp. 25 -- 32 -// (May 2010). The paper is available at -// http://www.springerlink.com/content/340228x165742104/ -// -// The original code and the constants below are from the author's -// implementation available at http://freshmeat.net/projects/sleef. -// The README file says, "The software is in public domain. -// You can use the software without any obligation." -// -// This code is a simplified version of the original. The CMPSD -// instruction, not generated by the compiler, eliminates jumps in the -// body of the calculation. - -#define PosOne 0x3FF0000000000000 -#define PosInf 0x7FF0000000000000 -#define NaN 0x7FF8000000000001 -#define PI4A 0.7853981554508209228515625 // pi/4 split into three parts -#define PI4B 0.794662735614792836713604629039764404296875e-8 -#define PI4C 0.306161699786838294306516483068750264552437361480769e-16 -#define M4PI 1.273239544735162542821171882678754627704620361328125 // 4/pi -#define T0 1.0 -#define T1 -8.33333333333333333333333e-02 // (-1.0/12) -#define T2 2.77777777777777777777778e-03 // (+1.0/360) -#define T3 -4.96031746031746031746032e-05 // (-1.0/20160) -#define T4 5.51146384479717813051146e-07 // (+1.0/1814400) - -// func Sincos(d float64) (sin, cos float64) -TEXT ·Sincos(SB),NOSPLIT,$0 - // test for special cases - MOVQ $~(1<<63), DX // sign bit mask - MOVQ x+0(FP), BX - ANDQ BX, DX - JEQ isZero - MOVQ $PosInf, AX - CMPQ AX, DX - JLE isInfOrNaN - // Reduce argument - MOVQ BX, X7 // x7= d - MOVQ DX, X0 // x0= |d| - MOVSD $M4PI, X2 - MULSD X0, X2 - CVTTSD2SQ X2, BX // bx= q - MOVQ $1, AX - ANDQ BX, AX - ADDQ BX, AX - CVTSQ2SD AX, X2 - MOVSD $PI4A, X3 - MULSD X2, X3 - SUBSD X3, X0 - MOVSD $PI4B, X3 - MULSD X2, X3 - SUBSD X3, X0 - MOVSD $PI4C, X3 - MULSD X2, X3 - SUBSD X3, X0 - MULSD $0.125, X0 // x0= x, x7= d, bx= q - // Evaluate Taylor series - MULSD X0, X0 - MOVSD $T4, X2 - MULSD X0, X2 - ADDSD $T3, X2 - MULSD X0, X2 - ADDSD $T2, X2 - MULSD X0, X2 - ADDSD $T1, X2 - MULSD X0, X2 - ADDSD $T0, X2 - MULSD X2, X0 // x0= x, x7= d, bx= q - // Apply double angle formula - MOVSD $4.0, X2 - SUBSD X0, X2 - MULSD X2, X0 - MOVSD $4.0, X2 - SUBSD X0, X2 - MULSD X2, X0 - MOVSD $4.0, X2 - SUBSD X0, X2 - MULSD X2, X0 - MULSD $0.5, X0 // x0= x, x7= d, bx= q - // sin = sqrt((2 - x) * x) - MOVSD $2.0, X2 - SUBSD X0, X2 - MULSD X0, X2 - SQRTSD X2, X2 // x0= x, x2= z, x7= d, bx= q - // cos = 1 - x - MOVSD $1.0, X1 - SUBSD X0, X1 // x1= x, x2= z, x7= d, bx= q - // if ((q + 1) & 2) != 0 { sin, cos = cos, sin } - MOVQ $1, DX - ADDQ BX, DX - MOVQ $2, AX - ANDQ AX, DX - MOVQ DX, X0 - MOVSD $0.0, X3 - CMPSD X0, X3, 0 // cmpeq; x1= x, x2= z, x3 = y, x7= d, bx= q - // sin = (y & z) | (^y & x) - MOVAPD X2, X0 - ANDPD X3, X0 // x0= sin - MOVAPD X3, X4 - ANDNPD X1, X4 - ORPD X4, X0 // x0= sin, x1= x, x2= z, x3= y, x7= d, bx= q - // cos = (y & x) | (^y & z) - ANDPD X3, X1 // x1= cos - ANDNPD X2, X3 - ORPD X3, X1 // x0= sin, x1= cos, x7= d, bx= q - // if ((q & 4) != 0) != (d < 0) { sin = -sin } - MOVQ BX, AX - MOVQ $61, CX - SHLQ CX, AX - MOVQ AX, X3 - XORPD X7, X3 - MOVQ $(1<<63), AX - MOVQ AX, X2 // x2= -0.0 - ANDPD X2, X3 - ORPD X3, X0 // x0= sin, x1= cos, x2= -0.0, bx= q - // if ((q + 2) & 4) != 0 { cos = -cos } - MOVQ $2, AX - ADDQ AX, BX - MOVQ $61, CX - SHLQ CX, BX - MOVQ BX, X3 - ANDPD X2, X3 - ORPD X3, X1 // x0= sin, x1= cos - // return (sin, cos) - MOVSD X0, sin+8(FP) - MOVSD X1, cos+16(FP) - RET -isZero: // return (±0.0, 1.0) - MOVQ BX, sin+8(FP) - MOVQ $PosOne, AX - MOVQ AX, cos+16(FP) - RET -isInfOrNaN: // return (NaN, NaN) - MOVQ $NaN, AX - MOVQ AX, sin+8(FP) - MOVQ AX, cos+16(FP) - RET diff --git a/src/pkg/math/sincos_amd64p32.s b/src/pkg/math/sincos_amd64p32.s deleted file mode 100644 index 360e94d09..000000000 --- a/src/pkg/math/sincos_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "sincos_amd64.s" diff --git a/src/pkg/math/sincos_arm.s b/src/pkg/math/sincos_arm.s deleted file mode 100644 index 9fe048248..000000000 --- a/src/pkg/math/sincos_arm.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Sincos(SB),NOSPLIT,$0 - B ·sincos(SB) diff --git a/src/pkg/math/sinh.go b/src/pkg/math/sinh.go deleted file mode 100644 index 139b911fe..000000000 --- a/src/pkg/math/sinh.go +++ /dev/null @@ -1,77 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -/* - Floating-point hyperbolic sine and cosine. - - The exponential func is called for arguments - greater in magnitude than 0.5. - - A series is used for arguments smaller in magnitude than 0.5. - - Cosh(x) is computed from the exponential func for - all arguments. -*/ - -// Sinh returns the hyperbolic sine of x. -// -// Special cases are: -// Sinh(±0) = ±0 -// Sinh(±Inf) = ±Inf -// Sinh(NaN) = NaN -func Sinh(x float64) float64 { - // The coefficients are #2029 from Hart & Cheney. (20.36D) - const ( - P0 = -0.6307673640497716991184787251e+6 - P1 = -0.8991272022039509355398013511e+5 - P2 = -0.2894211355989563807284660366e+4 - P3 = -0.2630563213397497062819489e+2 - Q0 = -0.6307673640497716991212077277e+6 - Q1 = 0.1521517378790019070696485176e+5 - Q2 = -0.173678953558233699533450911e+3 - ) - - sign := false - if x < 0 { - x = -x - sign = true - } - - var temp float64 - switch true { - case x > 21: - temp = Exp(x) / 2 - - case x > 0.5: - temp = (Exp(x) - Exp(-x)) / 2 - - default: - sq := x * x - temp = (((P3*sq+P2)*sq+P1)*sq + P0) * x - temp = temp / (((sq+Q2)*sq+Q1)*sq + Q0) - } - - if sign { - temp = -temp - } - return temp -} - -// Cosh returns the hyperbolic cosine of x. -// -// Special cases are: -// Cosh(±0) = 1 -// Cosh(±Inf) = +Inf -// Cosh(NaN) = NaN -func Cosh(x float64) float64 { - if x < 0 { - x = -x - } - if x > 21 { - return Exp(x) / 2 - } - return (Exp(x) + Exp(-x)) / 2 -} diff --git a/src/pkg/math/sqrt.go b/src/pkg/math/sqrt.go deleted file mode 100644 index fdc869992..000000000 --- a/src/pkg/math/sqrt.go +++ /dev/null @@ -1,143 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// The original C code and the long comment below are -// from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and -// came with this notice. The go code is a simplified -// version of the original C. -// -// ==================================================== -// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. -// -// Developed at SunPro, a Sun Microsystems, Inc. business. -// Permission to use, copy, modify, and distribute this -// software is freely granted, provided that this notice -// is preserved. -// ==================================================== -// -// __ieee754_sqrt(x) -// Return correctly rounded sqrt. -// ----------------------------------------- -// | Use the hardware sqrt if you have one | -// ----------------------------------------- -// Method: -// Bit by bit method using integer arithmetic. (Slow, but portable) -// 1. Normalization -// Scale x to y in [1,4) with even powers of 2: -// find an integer k such that 1 <= (y=x*2**(2k)) < 4, then -// sqrt(x) = 2**k * sqrt(y) -// 2. Bit by bit computation -// Let q = sqrt(y) truncated to i bit after binary point (q = 1), -// i 0 -// i+1 2 -// s = 2*q , and y = 2 * ( y - q ). (1) -// i i i i -// -// To compute q from q , one checks whether -// i+1 i -// -// -(i+1) 2 -// (q + 2 ) <= y. (2) -// i -// -(i+1) -// If (2) is false, then q = q ; otherwise q = q + 2 . -// i+1 i i+1 i -// -// With some algebraic manipulation, it is not difficult to see -// that (2) is equivalent to -// -(i+1) -// s + 2 <= y (3) -// i i -// -// The advantage of (3) is that s and y can be computed by -// i i -// the following recurrence formula: -// if (3) is false -// -// s = s , y = y ; (4) -// i+1 i i+1 i -// -// otherwise, -// -i -(i+1) -// s = s + 2 , y = y - s - 2 (5) -// i+1 i i+1 i i -// -// One may easily use induction to prove (4) and (5). -// Note. Since the left hand side of (3) contain only i+2 bits, -// it does not necessary to do a full (53-bit) comparison -// in (3). -// 3. Final rounding -// After generating the 53 bits result, we compute one more bit. -// Together with the remainder, we can decide whether the -// result is exact, bigger than 1/2ulp, or less than 1/2ulp -// (it will never equal to 1/2ulp). -// The rounding mode can be detected by checking whether -// huge + tiny is equal to huge, and whether huge - tiny is -// equal to huge for some floating point number "huge" and "tiny". -// -// -// Notes: Rounding mode detection omitted. The constants "mask", "shift", -// and "bias" are found in src/math/bits.go - -// Sqrt returns the square root of x. -// -// Special cases are: -// Sqrt(+Inf) = +Inf -// Sqrt(±0) = ±0 -// Sqrt(x < 0) = NaN -// Sqrt(NaN) = NaN -func Sqrt(x float64) float64 - -func sqrt(x float64) float64 { - // special cases - switch { - case x == 0 || IsNaN(x) || IsInf(x, 1): - return x - case x < 0: - return NaN() - } - ix := Float64bits(x) - // normalize x - exp := int((ix >> shift) & mask) - if exp == 0 { // subnormal x - for ix&1<<shift == 0 { - ix <<= 1 - exp-- - } - exp++ - } - exp -= bias // unbias exponent - ix &^= mask << shift - ix |= 1 << shift - if exp&1 == 1 { // odd exp, double x to make it even - ix <<= 1 - } - exp >>= 1 // exp = exp/2, exponent of square root - // generate sqrt(x) bit by bit - ix <<= 1 - var q, s uint64 // q = sqrt(x) - r := uint64(1 << (shift + 1)) // r = moving bit from MSB to LSB - for r != 0 { - t := s + r - if t <= ix { - s = t + r - ix -= t - q += r - } - ix <<= 1 - r >>= 1 - } - // final rounding - if ix != 0 { // remainder, result not exact - q += q & 1 // round according to extra bit - } - ix = q>>1 + uint64(exp-1+bias)<<shift // significand + biased exponent - return Float64frombits(ix) -} - -func sqrtC(f float64, r *float64) { - *r = sqrt(f) -} diff --git a/src/pkg/math/sqrt_386.s b/src/pkg/math/sqrt_386.s deleted file mode 100644 index 5234a1e88..000000000 --- a/src/pkg/math/sqrt_386.s +++ /dev/null @@ -1,12 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Sqrt(x float64) float64 -TEXT ·Sqrt(SB),NOSPLIT,$0 - FMOVD x+0(FP),F0 - FSQRT - FMOVDP F0,ret+8(FP) - RET diff --git a/src/pkg/math/sqrt_amd64.s b/src/pkg/math/sqrt_amd64.s deleted file mode 100644 index 443d83fe3..000000000 --- a/src/pkg/math/sqrt_amd64.s +++ /dev/null @@ -1,11 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Sqrt(x float64) float64 -TEXT ·Sqrt(SB),NOSPLIT,$0 - SQRTSD x+0(FP), X0 - MOVSD X0, ret+8(FP) - RET diff --git a/src/pkg/math/sqrt_amd64p32.s b/src/pkg/math/sqrt_amd64p32.s deleted file mode 100644 index d83a286c2..000000000 --- a/src/pkg/math/sqrt_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "sqrt_amd64.s" diff --git a/src/pkg/math/sqrt_arm.s b/src/pkg/math/sqrt_arm.s deleted file mode 100644 index 4f9dc2e03..000000000 --- a/src/pkg/math/sqrt_arm.s +++ /dev/null @@ -1,12 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Sqrt(x float64) float64 -TEXT ·Sqrt(SB),NOSPLIT,$0 - MOVD x+0(FP),F0 - SQRTD F0,F0 - MOVD F0,ret+8(FP) - RET diff --git a/src/pkg/math/tan.go b/src/pkg/math/tan.go deleted file mode 100644 index 285eff1ab..000000000 --- a/src/pkg/math/tan.go +++ /dev/null @@ -1,130 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -/* - Floating-point tangent. -*/ - -// The original C code, the long comment, and the constants -// below were from http://netlib.sandia.gov/cephes/cmath/sin.c, -// available from http://www.netlib.org/cephes/cmath.tgz. -// The go code is a simplified version of the original C. -// -// tan.c -// -// Circular tangent -// -// SYNOPSIS: -// -// double x, y, tan(); -// y = tan( x ); -// -// DESCRIPTION: -// -// Returns the circular tangent of the radian argument x. -// -// Range reduction is modulo pi/4. A rational function -// x + x**3 P(x**2)/Q(x**2) -// is employed in the basic interval [0, pi/4]. -// -// ACCURACY: -// Relative error: -// arithmetic domain # trials peak rms -// DEC +-1.07e9 44000 4.1e-17 1.0e-17 -// IEEE +-1.07e9 30000 2.9e-16 8.1e-17 -// -// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss -// is not gradual, but jumps suddenly to about 1 part in 10e7. Results may -// be meaningless for x > 2**49 = 5.6e14. -// [Accuracy loss statement from sin.go comments.] -// -// Cephes Math Library Release 2.8: June, 2000 -// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier -// -// The readme file at http://netlib.sandia.gov/cephes/ says: -// Some software in this archive may be from the book _Methods and -// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster -// International, 1989) or from the Cephes Mathematical Library, a -// commercial product. In either event, it is copyrighted by the author. -// What you see here may be used freely but it comes with no support or -// guarantee. -// -// The two known misprints in the book are repaired here in the -// source listings for the gamma function and the incomplete beta -// integral. -// -// Stephen L. Moshier -// moshier@na-net.ornl.gov - -// tan coefficients -var _tanP = [...]float64{ - -1.30936939181383777646E4, // 0xc0c992d8d24f3f38 - 1.15351664838587416140E6, // 0x413199eca5fc9ddd - -1.79565251976484877988E7, // 0xc1711fead3299176 -} -var _tanQ = [...]float64{ - 1.00000000000000000000E0, - 1.36812963470692954678E4, //0x40cab8a5eeb36572 - -1.32089234440210967447E6, //0xc13427bc582abc96 - 2.50083801823357915839E7, //0x4177d98fc2ead8ef - -5.38695755929454629881E7, //0xc189afe03cbe5a31 -} - -// Tan returns the tangent of the radian argument x. -// -// Special cases are: -// Tan(±0) = ±0 -// Tan(±Inf) = NaN -// Tan(NaN) = NaN -func Tan(x float64) float64 - -func tan(x float64) float64 { - const ( - PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts - PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000, - PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170, - M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi - ) - // special cases - switch { - case x == 0 || IsNaN(x): - return x // return ±0 || NaN() - case IsInf(x, 0): - return NaN() - } - - // make argument positive but save the sign - sign := false - if x < 0 { - x = -x - sign = true - } - - j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle - y := float64(j) // integer part of x/(Pi/4), as float - - /* map zeros and singularities to origin */ - if j&1 == 1 { - j += 1 - y += 1 - } - - z := ((x - y*PI4A) - y*PI4B) - y*PI4C - zz := z * z - - if zz > 1e-14 { - y = z + z*(zz*(((_tanP[0]*zz)+_tanP[1])*zz+_tanP[2])/((((zz+_tanQ[1])*zz+_tanQ[2])*zz+_tanQ[3])*zz+_tanQ[4])) - } else { - y = z - } - if j&2 == 2 { - y = -1 / y - } - if sign { - y = -y - } - return y -} diff --git a/src/pkg/math/tan_386.s b/src/pkg/math/tan_386.s deleted file mode 100644 index f1bdae153..000000000 --- a/src/pkg/math/tan_386.s +++ /dev/null @@ -1,28 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -// func Tan(x float64) float64 -TEXT ·Tan(SB),NOSPLIT,$0 - FMOVD x+0(FP), F0 // F0=x - FPTAN // F0=1, F1=tan(x) if -2**63 < x < 2**63 - FSTSW AX // AX=status word - ANDW $0x0400, AX - JNE 4(PC) // jump if x outside range - FMOVDP F0, F0 // F0=tan(x) - FMOVDP F0, ret+8(FP) - RET - FLDPI // F0=Pi, F1=x - FADDD F0, F0 // F0=2*Pi, F1=x - FXCHD F0, F1 // F0=x, F1=2*Pi - FPREM1 // F0=reduced_x, F1=2*Pi - FSTSW AX // AX=status word - ANDW $0x0400, AX - JNE -3(PC) // jump if reduction incomplete - FMOVDP F0, F1 // F0=reduced_x - FPTAN // F0=1, F1=tan(reduced_x) - FMOVDP F0, F0 // F0=tan(reduced_x) - FMOVDP F0, ret+8(FP) - RET diff --git a/src/pkg/math/tan_amd64.s b/src/pkg/math/tan_amd64.s deleted file mode 100644 index 39aa08061..000000000 --- a/src/pkg/math/tan_amd64.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Tan(SB),NOSPLIT,$0 - JMP ·tan(SB) diff --git a/src/pkg/math/tan_amd64p32.s b/src/pkg/math/tan_amd64p32.s deleted file mode 100644 index 9b3f70de7..000000000 --- a/src/pkg/math/tan_amd64p32.s +++ /dev/null @@ -1,5 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "tan_amd64.s" diff --git a/src/pkg/math/tan_arm.s b/src/pkg/math/tan_arm.s deleted file mode 100644 index 36c7c128f..000000000 --- a/src/pkg/math/tan_arm.s +++ /dev/null @@ -1,8 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "textflag.h" - -TEXT ·Tan(SB),NOSPLIT,$0 - B ·tan(SB) diff --git a/src/pkg/math/tanh.go b/src/pkg/math/tanh.go deleted file mode 100644 index cf0ffa192..000000000 --- a/src/pkg/math/tanh.go +++ /dev/null @@ -1,97 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// The original C code, the long comment, and the constants -// below were from http://netlib.sandia.gov/cephes/cmath/sin.c, -// available from http://www.netlib.org/cephes/cmath.tgz. -// The go code is a simplified version of the original C. -// tanh.c -// -// Hyperbolic tangent -// -// SYNOPSIS: -// -// double x, y, tanh(); -// -// y = tanh( x ); -// -// DESCRIPTION: -// -// Returns hyperbolic tangent of argument in the range MINLOG to MAXLOG. -// MAXLOG = 8.8029691931113054295988e+01 = log(2**127) -// MINLOG = -8.872283911167299960540e+01 = log(2**-128) -// -// A rational function is used for |x| < 0.625. The form -// x + x**3 P(x)/Q(x) of Cody & Waite is employed. -// Otherwise, -// tanh(x) = sinh(x)/cosh(x) = 1 - 2/(exp(2x) + 1). -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// IEEE -2,2 30000 2.5e-16 5.8e-17 -// -// Cephes Math Library Release 2.8: June, 2000 -// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier -// -// The readme file at http://netlib.sandia.gov/cephes/ says: -// Some software in this archive may be from the book _Methods and -// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster -// International, 1989) or from the Cephes Mathematical Library, a -// commercial product. In either event, it is copyrighted by the author. -// What you see here may be used freely but it comes with no support or -// guarantee. -// -// The two known misprints in the book are repaired here in the -// source listings for the gamma function and the incomplete beta -// integral. -// -// Stephen L. Moshier -// moshier@na-net.ornl.gov -// - -var tanhP = [...]float64{ - -9.64399179425052238628E-1, - -9.92877231001918586564E1, - -1.61468768441708447952E3, -} -var tanhQ = [...]float64{ - 1.12811678491632931402E2, - 2.23548839060100448583E3, - 4.84406305325125486048E3, -} - -// Tanh returns the hyperbolic tangent of x. -// -// Special cases are: -// Tanh(±0) = ±0 -// Tanh(±Inf) = ±1 -// Tanh(NaN) = NaN -func Tanh(x float64) float64 { - const MAXLOG = 8.8029691931113054295988e+01 // log(2**127) - z := Abs(x) - switch { - case z > 0.5*MAXLOG: - if x < 0 { - return -1 - } - return 1 - case z >= 0.625: - s := Exp(2 * z) - z = 1 - 2/(s+1) - if x < 0 { - z = -z - } - default: - if x == 0 { - return x - } - s := x * x - z = x + x*s*((tanhP[0]*s+tanhP[1])*s+tanhP[2])/(((s+tanhQ[0])*s+tanhQ[1])*s+tanhQ[2]) - } - return z -} diff --git a/src/pkg/math/unsafe.go b/src/pkg/math/unsafe.go deleted file mode 100644 index 5ae67420f..000000000 --- a/src/pkg/math/unsafe.go +++ /dev/null @@ -1,21 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -import "unsafe" - -// Float32bits returns the IEEE 754 binary representation of f. -func Float32bits(f float32) uint32 { return *(*uint32)(unsafe.Pointer(&f)) } - -// Float32frombits returns the floating point number corresponding -// to the IEEE 754 binary representation b. -func Float32frombits(b uint32) float32 { return *(*float32)(unsafe.Pointer(&b)) } - -// Float64bits returns the IEEE 754 binary representation of f. -func Float64bits(f float64) uint64 { return *(*uint64)(unsafe.Pointer(&f)) } - -// Float64frombits returns the floating point number corresponding -// the IEEE 754 binary representation b. -func Float64frombits(b uint64) float64 { return *(*float64)(unsafe.Pointer(&b)) } |